JPS63315233A - Manufacture of polyolefin metallic laminated sheet - Google Patents

Manufacture of polyolefin metallic laminated sheet

Info

Publication number
JPS63315233A
JPS63315233A JP15212987A JP15212987A JPS63315233A JP S63315233 A JPS63315233 A JP S63315233A JP 15212987 A JP15212987 A JP 15212987A JP 15212987 A JP15212987 A JP 15212987A JP S63315233 A JPS63315233 A JP S63315233A
Authority
JP
Japan
Prior art keywords
polyolefin
glass fiber
fiber cloth
adhesive film
metallic foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15212987A
Other languages
Japanese (ja)
Inventor
Norio Takahata
紀雄 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15212987A priority Critical patent/JPS63315233A/en
Publication of JPS63315233A publication Critical patent/JPS63315233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive an improvement in manufacturing efficiency by improving adhesion between polyolefin superior in dielectric properties and a metallic foil, by laminating the metallic foil, a polyolefin adhesive film, glass fiber cloth and a crosslinkable polyolefin sheet in order and they are integrated through heating and pressurization. CONSTITUTION:A metallic foil 1, a polyolefin adhesive film 2, glass fiber cloth 3 and a crosslinkable polyolefin sheet 4 are superposed upon one another, for example, in the order of the metallic foil 1-polyolefin adhesive film 2-glass fiber cloth 3- crosslinkable polyolefin sheet 4-glass fiber cloth 3-polyolefin adhesive film 2-metallic foil 1. Then after passing them through a hot roll 6 of a preheating tank 5, they are integrated by passing them through a rotary pressure roll 7 and formed into the laminated sheet of about 1.5mm thick. The glass fiber cloth 3 can prevent a warp or a twist to be generated on the laminated sheet due to a distortion to be generated at the time of molding processing such as heating-cooling processes. As the polyolefin sheet 4 becomes hard to melt thermally due to use of the same crosslinked beforehand, it becomes possible to perform continuously heating and pressurizing operations at the time of monolithic molding, and manufacturing efficiency can be improved as compared with that of press molding.

Description

【発明の詳細な説明】 [産業−にの利用分野] 本発明は、高周波回路基板への適用に好適なポリオレフ
ィン金属積層板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a polyolefin metal laminate suitable for application to high frequency circuit boards.

[従来の技術] 高度情報化社会への移行に伴ない種々の分野で著しい技
術革新かなされており、電子工業、通信工業の分野もそ
の例外ではなく、むしろ最も大きな技術革新かなされて
いるといっても過言ではない。その−例として、使用周
波数帯域か次第に高周波帯域に移行していることがあけ
られ、キロヘルツからメカヘルツへ、そして近年ではギ
ガヘルツ帯域へ移行しつつある。
[Conventional technology] With the transition to an advanced information society, remarkable technological innovations have been made in various fields, and the fields of electronics and communication industries are no exception, and are considered to be the most technologically innovative. It is no exaggeration to say that. An example of this is that the frequency band in use is gradually shifting to higher frequency bands, from kilohertz to mechahertz and, in recent years, to gigahertz.

電子回路用配線基板用としては、従来、紙−フェノール
あるいはエポキシ−ガラスといった絶縁基材と金属箔と
の積層板が最も多(使用されてきている。しかし、これ
らは本質的に誘電率、誘電損失および共振特性(クォリ
ティファクターQ)などが劣るために、高周波領域では
伝送エネルギーの損失、伝送速度の不足、損失歪の増大
といった不利を招くことになる。
Conventionally, laminates made of insulating substrates such as paper-phenol or epoxy glass and metal foils have been most commonly used for wiring boards for electronic circuits. Due to poor loss and resonance characteristics (quality factor Q), disadvantages such as loss of transmission energy, insufficient transmission speed, and increase in loss distortion occur in the high frequency region.

メガヘルツあるいはギガヘルツ帯域で使用される配線基
板には、誘電率、通電損失および共振特性に優れた絶縁
基材を選択する必要があり、ふっ素系樹脂を絶縁基材と
したものか開発されるに至った。しかし、ふっ素系樹脂
は高価な材料であることに加えて、金属箔と積層する加
工工程か複雑であるという問題がある。
For wiring boards used in the megahertz or gigahertz band, it is necessary to select an insulating base material with excellent dielectric constant, conduction loss, and resonance characteristics. Ta. However, in addition to being an expensive material, fluororesin has problems in that the processing process for laminating it with metal foil is complicated.

このような状況から、ポリオレフィンを絶縁基材とした
積層板が注目されるようになってきた。
Under these circumstances, laminates using polyolefin as an insulating base material have been attracting attention.

[発明が解決しようとする問題点] しかし、ポリオレフィンは本質的に他の物質との接着性
が悪く、ポリオレフィンと金属箔との接着にポリエステ
ル系、ポリウレタン系あるいはエポキシ系の接着剤を使
用すると、高周波帯域における誘電特性が低下し、実用
性に乏しくなる。
[Problems to be Solved by the Invention] However, polyolefin inherently has poor adhesion to other substances, and when polyester, polyurethane, or epoxy adhesives are used to bond polyolefin and metal foil, The dielectric properties in the high frequency band deteriorate, making it impractical.

また、ポリオレフィンは比較的低い温度で軟化、溶融し
てしまうことから、金属箔と一体成形はプレス成形しか
適用できず、製造能率上問題がある。
In addition, since polyolefin softens and melts at relatively low temperatures, press molding is the only way to integrally mold it with metal foil, which poses a problem in production efficiency.

本発明は、上記に基づいてなされたものであり、安価で
誘電特性に優れたポリオレフィンと金属箔との接着性を
改良でき、また製造能率を向上できるポリオレフィン金
属積層板の製造方法の提供を目的とするもので゛ある。
The present invention has been made based on the above, and aims to provide a method for manufacturing a polyolefin metal laminate that is inexpensive and has excellent dielectric properties, can improve the adhesiveness between polyolefin and metal foil, and can improve manufacturing efficiency. There is something to be said.

1問題点を解決するための手段] 本発明のポリオレフィン金属積層板の製造方法は、金属
箔、ポリオレフィン系接着性フィルム、ガラス繊維布お
よび架橋ポリオレフィンシートを順次重ね合せ、これら
を加熱、加圧により一体化することを特徴とするもので
ある。
Means for Solving Problem 1] The method for producing a polyolefin metal laminate of the present invention involves sequentially stacking metal foil, polyolefin adhesive film, glass fiber cloth, and crosslinked polyolefin sheet, and heating and pressurizing these layers. It is characterized by being integrated.

金属箔の材料としては、銅が最も好ましく、中でも無酸
素銅は高周波帯域での伝送に適している。
Copper is the most preferred material for the metal foil, and oxygen-free copper is especially suitable for transmission in high frequency bands.

銅箔は、陽極酸化処理、化学処理あるいは交流エツチン
グ処理等により表面を粗化したものが、接着性を向上さ
せる上で好ましい。鋼販外の金属箔材料としては、金、
銀、白金、ニッケル、ステンレス、アルミニウム、銅合
金(白銅、青銅、黄銅)なども要求により使用可能であ
る。
It is preferable that the surface of the copper foil be roughened by anodizing treatment, chemical treatment, alternating current etching treatment, or the like in order to improve adhesiveness. Metal foil materials other than steel sales include gold,
Silver, platinum, nickel, stainless steel, aluminum, copper alloys (cupronickel, bronze, brass), etc. can also be used upon request.

ポリオレフィン系接着性フィルムは金属箔と絶縁基材と
の接着を良好にするために用いられるものである。具体
的材料としては、ポリエチレン、ポリプロピレン、エチ
レン−プロピレン共重合体、エチレン−酢酸ビニル共重
合体、エチレン−エチルアクリレート共重合体などのポ
リオレフィンを主体とし、これに無水マレイン酸、アク
リル酸なとの不飽和カルホン酸を、共重合、グラフト共
重合あるいはブレンドなどしたものがあげられる。この
場合、カルボン酸の含有量は1%以下で強力に金属と接
着することから、高周波帯域における誘電特性に悪影響
を与えることはない。上記以外では、ポリオレフィンに
ポリケトン、グリシジルメタクリレート、シラン類とい
ったものをグラフト化したものも有用である。ポリオレ
フィン系接着性フィルムは、架橋または非架橋のいずれ
でもよいが、耐熱性向上のためには架橋フィルムを用い
るのが好ましい。架橋する場合のゲル分率は、30〜7
0%か好ましく、ゲル分率が70%を越えると接着性が
低下する傾向にある。なお、フィルム厚さがO,1mm
以下程度であれば、半田付は時の加熱で溶融しても、収
縮、変形などには影響ないので非架橋でもよい。
A polyolefin adhesive film is used to improve adhesion between a metal foil and an insulating base material. Specific materials include mainly polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-ethyl acrylate copolymer, as well as maleic anhydride and acrylic acid. Examples include those obtained by copolymerizing, graft copolymerizing, or blending unsaturated carbonic acids. In this case, since the carboxylic acid content is 1% or less and strongly adheres to the metal, it does not adversely affect the dielectric properties in the high frequency band. In addition to the above, polyolefins grafted with polyketones, glycidyl methacrylate, silanes, etc. are also useful. The polyolefin adhesive film may be crosslinked or non-crosslinked, but it is preferable to use a crosslinked film in order to improve heat resistance. The gel fraction in the case of crosslinking is 30 to 7
0% is preferable, and if the gel fraction exceeds 70%, adhesiveness tends to decrease. In addition, the film thickness is O, 1mm
As long as it is below, even if the solder is melted by heating, it will not affect shrinkage or deformation, so it may be non-crosslinked.

カラス繊維布は、後述するポリオレフィンシートと共に
絶縁基材を構成するものであるが、金属箔と絶縁基材と
の間の熱膨張係数や比熱などの差、あるいは加熱〜冷却
など成形加工時に生じる歪などにより積層板に生しるソ
リやネジレの防止に不可欠のものである。ガラス繊維布
の誘電特性も重要であり、Na2Oやに20といったア
ルカリ成分を含まない無アルカリまたは低アルカリガラ
スを用いたものか好ましい。ガラス繊維布の織り方は特
に制限するものではなく、縦および横糸の本数、密度、
織目の数、在庫なども積層板にソリやネジレが生じない
ものであれば良く、特に限定しない。また、ガラス繊維
布はポリオレフィンシートなどとの接着を良くするため
に、ビニルシラン、アミノシラン、アクリルシランとい
ったもので表面処理したものを使用してもよい。
The glass fiber cloth constitutes the insulating base material together with the polyolefin sheet described below, but there are differences in thermal expansion coefficient and specific heat between the metal foil and the insulating base material, and distortions that occur during the molding process such as heating and cooling. This is essential for preventing warping and twisting that occur in laminates due to such factors. The dielectric properties of the glass fiber cloth are also important, and it is preferable to use alkali-free or low-alkali glass that does not contain alkaline components such as Na2O 20. There are no particular restrictions on the weaving method of glass fiber cloth, and the number of warp and weft threads, density,
The number of weaves, inventory, etc. are not particularly limited as long as the laminate does not warp or twist. Further, the surface of the glass fiber cloth may be treated with vinyl silane, amino silane, acrylic silane, etc. in order to improve adhesion to polyolefin sheets and the like.

架橋ポリオレフィンシートは、ガラス繊維布と共に絶縁
基材を構成するものであり、ベースポリマの具体的材料
としては、ポリエチレン、ポリプロピレン、ポリ7テン
−1、ポリ4−メチルペンテン−1などのαオレフイン
系ポリマ、エチレンとプロピレン、ブテン−1、ペンテ
ン−1,4−メチルペンテン−1、ヘプテン−1、ヘキ
セン−1、オクテン−1などのαオレフィンとの共重合
体、エチレン−酢酸ビニル共重合体、エチレン−エチル
アクリレート共重合体などがあけられ、これらは単独使
用あるいは2種以上の併用でもよい。ポリオレフィンシ
ートは、予め架橋したものを使用することにより熱溶融
しにく(なることから、一体成形時の加熱加圧操作をロ
ールを用いて連続的に行なうことか可能となり、プレス
成形に比して製造能率を大幅に向」二できるようになる
The crosslinked polyolefin sheet constitutes an insulating base material together with glass fiber cloth, and specific materials for the base polymer include α-olefin-based materials such as polyethylene, polypropylene, poly7ten-1, and poly4-methylpentene-1. Polymers, copolymers of ethylene and alpha olefins such as propylene, butene-1, pentene-1,4-methylpentene-1, heptene-1, hexene-1, octene-1, ethylene-vinyl acetate copolymers, Examples include ethylene-ethyl acrylate copolymer, and these may be used alone or in combination of two or more. By using a polyolefin sheet that has been cross-linked in advance, it is difficult to melt under heat (this makes it possible to continuously perform heating and pressing operations during integral molding using rolls, which is faster than press molding). This will greatly improve manufacturing efficiency.

架橋は、有機パーオキサイドなどの添加による化学架橋
、電子線などの電離性放射線の照射による架橋、シラン
をグラフトさせて水分に接触させる水架橋のいずれでも
よい。化学架橋では、有機パーオキサイドの反応温度の
関係で中高密度ポリエチレン、ポリプロピレンの架橋か
難しいこと、放射線照射による架橋では崩壊タイプのポ
リプロピレンへの適用か難しいことから、本発明では水
架橋による方法が好適である。
The crosslinking may be chemical crosslinking by adding organic peroxide or the like, crosslinking by irradiation with ionizing radiation such as an electron beam, or water crosslinking by grafting silane and bringing it into contact with moisture. With chemical crosslinking, it is difficult to crosslink medium-high density polyethylene and polypropylene due to the reaction temperature of organic peroxide, and with crosslinking by radiation irradiation, it is difficult to apply to collapsing type polypropylene, so water crosslinking is preferred in the present invention. It is.

水架橋による架橋方法は、上記したベースポリマに一般
式RR’ SiY、、 (式中Rはケイ素−炭素結合に
よりケイ素原子に結合し、そして炭素、水素および場合
によっては酸素によって構成される一価のオレフィン性
の不飽和基、Yは加水分解可能な有機基、R′ は脂肪
酸不飽和基を含まない一価の炭化水素基または基Yであ
る)であられされるシランを、140°C以上の温度で
その温度における半減期が6分以下の遊離ラジカル生成
化合物の存在下においてグラフト反応させ、これをジブ
チル錫シラウレ−1〜などのシラノール縮合触媒の存在
下において水分と接触させることにより架橋させるもの
である。グラフト反応の具体例としては、ビニルトリメ
I・キシシラン、ビニルトリエトキシシランなどのビニ
ルシランを0.5〜5%、ジクミルパーオキサイドを0
.05〜0.5%含有するポリオレフィンを200°C
近傍の押出機中でグラフト反応させるといったものがあ
げられる。
The crosslinking method by water crosslinking is based on the above-mentioned base polymer having the general formula RR'SiY, where R is bonded to the silicon atom by a silicon-carbon bond and is composed of a monovalent compound composed of carbon, hydrogen and optionally oxygen. olefinically unsaturated group, Y is a hydrolyzable organic group, and R' is a monovalent hydrocarbon group or group Y containing no fatty acid unsaturated group) at 140°C or higher. grafting reaction in the presence of a free radical-generating compound with a half-life of 6 minutes or less at a temperature of It is something. As a specific example of the graft reaction, 0.5 to 5% of vinylsilane such as vinyl trime I xysilane or vinyltriethoxysilane and 0.0% of dicumyl peroxide are used.
.. Polyolefin containing 05-0.5% at 200°C
One example is a graft reaction in a nearby extruder.

[発明の実施例] 実施例1 金属箔として無酸素銅を圧延した後表面をエツチング処
理した厚さ35μmの銅箔、ポリオレフィン系接着性フ
ィルムとしてポリエチレンと無水マレイン酸との共重合
体からなる厚さ0.1mmのフィルム、ガラス繊維布と
して厚さ0.1mm、密度(25mm長さにおける縦糸
本数×横糸本数)40X32、表面をシラン処理した平
織布、架橋ポリオレフィンシートとして、密度0.94
5の高密度ポリエチレン100重量部にビニルトリメト
キシシラン2重量部、ジクミルパーオキサイド0.2重
量部加えたものをバレル帯域120〜220°C1ヘツ
ド210℃、ダイ21o0cノ押出機に投入してグラフ
ト反応を行なわせたものを厚さ1.3mmのシートに成
形し、シフチル錫ジラウレ−1・を塗布して蒸気圧0.
4kg/crn2の水蒸気中に20時間保持して架橋し
たシートをそれぞれ用いた。これらを、第1図に示すよ
うに金属箔]−ポリオレフィン系接着性フィルム2−ガ
ラス繊維布3−水架橋性ポリオレフィンシーI・4− 
ガラス繊維布3−ポリオレフィン系接着性フィルム2−
金属箔1の順に重ね合せ、予熱槽5の熱ロール6通して
加熱した後回転加圧ロール7を通過さぜることにより一
体化し、厚さ1.5mmの積層板を連続製造した。
[Examples of the invention] Example 1 A 35 μm thick copper foil whose surface was etched after rolling oxygen-free copper as a metal foil, and a thick one made of a copolymer of polyethylene and maleic anhydride as a polyolefin adhesive film. A film with a diameter of 0.1 mm, a thickness of 0.1 mm as a glass fiber cloth, a density (number of warp threads x number of weft threads in a length of 25 mm) 40 x 32, a plain woven cloth whose surface is silane treated, a density of 0.94 as a crosslinked polyolefin sheet.
A mixture of 100 parts by weight of high-density polyethylene, 2 parts by weight of vinyltrimethoxysilane, and 0.2 parts by weight of dicumyl peroxide was added to an extruder with a barrel zone of 120 to 220°C, a head of 210°C, and a die of 21°C. The grafted product was molded into a 1.3 mm thick sheet, coated with siftyltin dilaure-1.The vapor pressure was 0.
Each sheet was crosslinked by being kept in water vapor at 4 kg/crn2 for 20 hours. As shown in FIG.
Glass fiber cloth 3 - Polyolefin adhesive film 2 -
The metal foils 1 were stacked one on top of the other in this order, heated by passing through a heating roll 6 in a preheating tank 5, and then passed through a rotating pressure roll 7 to be integrated, thereby continuously manufacturing a laminate with a thickness of 1.5 mm.

実施例2 ポリオレフィン系接着性フィルムを予め架橋したゲル分
率40%のフィルムとし、ポリオレフィンシー1−のベ
ースポリマをを高密度ポリエチレンに代えてポリプロピ
レンとした以外は実施例1と同様にして積層板を製造し
た。
Example 2 A laminate was prepared in the same manner as in Example 1, except that the polyolefin adhesive film was a pre-crosslinked film with a gel fraction of 40%, and the base polymer of polyolefin seam 1 was polypropylene instead of high-density polyethylene. was manufactured.

比較例 ポリオレフィン系接着性フィルムの材料をポリエチレン
と無水マレイン酸との共重合体に代えてポリエステル系
接着剤(ポリエチレンテレフタレートベース)とした以
外は実施例1と同様にして積層板を製造した。
Comparative Example A laminate was produced in the same manner as in Example 1, except that a polyester adhesive (based on polyethylene terephthalate) was used instead of the copolymer of polyethylene and maleic anhydride as the material for the polyolefin adhesive film.

実施例および比較例の積層板についての評価結果は第1
表に示す通りである。常態引き剥し強さおよび耐半田性
はJIS−C−6481に準拠して測定し、誘電率およ
び誘電正接はJIS−に−6760に準拠し30 M 
Hzの周波数で測定した。
The evaluation results for the laminates of Examples and Comparative Examples are as follows.
As shown in the table. Normal peel strength and solder resistance are measured in accordance with JIS-C-6481, and dielectric constant and dielectric loss tangent are 30 M in accordance with JIS-6760.
Measurements were made at a frequency of Hz.

第    1    表 [発明の効果] 以」二の説明から明らかな通り、本発明によれば安価で
誘電特性に優れたポリオレフィンと金属箔との接着性を
改良でき、また製造能率を向上できるようになる。
Table 1 [Effects of the Invention] As is clear from the explanation below, the present invention makes it possible to improve the adhesion between inexpensive polyolefin with excellent dielectric properties and metal foil, and to improve manufacturing efficiency. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の概略説明図である。 1:金属箔 2:ポリオレフィン系接着性フィルム 3ニガラス繊維布 4:架橋ポリオレフィンシート 5:予熱槽 6:熱ロール 7:加圧ロール FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention. 1: Metal foil 2: Polyolefin adhesive film 3. Glass fiber cloth 4: Crosslinked polyolefin sheet 5: Preheating tank 6: Heat roll 7: Pressure roll

Claims (1)

【特許請求の範囲】[Claims] (1)金属箔、ポリオレフィン系接着性フィルム、ガラ
ス繊維布および架橋ポリオレフィンシートを順次重ね合
せ、これらを加熱、加圧により一体化することを特徴と
するポリオレフィン金属積層板の製造方法。
(1) A method for producing a polyolefin metal laminate, which comprises sequentially laminating metal foil, polyolefin adhesive film, glass fiber cloth, and crosslinked polyolefin sheet, and integrating these by heating and pressurizing.
JP15212987A 1987-06-18 1987-06-18 Manufacture of polyolefin metallic laminated sheet Pending JPS63315233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15212987A JPS63315233A (en) 1987-06-18 1987-06-18 Manufacture of polyolefin metallic laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15212987A JPS63315233A (en) 1987-06-18 1987-06-18 Manufacture of polyolefin metallic laminated sheet

Publications (1)

Publication Number Publication Date
JPS63315233A true JPS63315233A (en) 1988-12-22

Family

ID=15533693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15212987A Pending JPS63315233A (en) 1987-06-18 1987-06-18 Manufacture of polyolefin metallic laminated sheet

Country Status (1)

Country Link
JP (1) JPS63315233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235456A (en) * 2010-05-06 2011-11-24 Fujicopian Co Ltd Copper layer transfer sheet
CN108617111A (en) * 2018-05-03 2018-10-02 深圳崇达多层线路板有限公司 A kind of manufacture craft of super thick copper circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235456A (en) * 2010-05-06 2011-11-24 Fujicopian Co Ltd Copper layer transfer sheet
CN108617111A (en) * 2018-05-03 2018-10-02 深圳崇达多层线路板有限公司 A kind of manufacture craft of super thick copper circuit board

Similar Documents

Publication Publication Date Title
US4087300A (en) Process for producing metal-plastic laminate
US4049904A (en) Plastic laminated metallic foil and method for preparing the same
US4092452A (en) Plastic laminated metallic foil and method for preparing the same
EP0019835A1 (en) Formable metal-plastic-metal structural laminates and process for preparing such laminates
JPS60240747A (en) Crosslinkable composition and ester-crosslinked polymer
JP2008103559A (en) Production method of electronic circuit board
US5071702A (en) Laminated plate for high frequency
JPS63315233A (en) Manufacture of polyolefin metallic laminated sheet
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JPS63315228A (en) Manufacture of polyolefin metallic laminated sheet
JPH0160175B2 (en)
JPS63315214A (en) Manufacture of polyolefin metallic laminated sheet
JPS63315213A (en) Manufacture of polyolefin metallic laminated sheet
JPS63315212A (en) Manufacture of polyolefin metallic laminated sheet
JPH0311307B2 (en)
JPS63315234A (en) Polyolefin metallic laminated sheet
JPS58128846A (en) Manufacture of polyimide group resin one-sided copper lined laminated board
JP4428157B2 (en) Manufacturing method of laminate
JPS62199437A (en) Printed substrate
JPH01173695A (en) Laminated sheet for high-frequency circuit
JPS59221324A (en) Manufacture of composite laminate board
JPS62183592A (en) Flexible printed circuit substrate
JPS60251276A (en) Formation of metallic layer on resin substrate
JPS6122629B2 (en)
JPS60175478A (en) Flexible printed board