JPS63314882A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS63314882A JPS63314882A JP15182487A JP15182487A JPS63314882A JP S63314882 A JPS63314882 A JP S63314882A JP 15182487 A JP15182487 A JP 15182487A JP 15182487 A JP15182487 A JP 15182487A JP S63314882 A JPS63314882 A JP S63314882A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- type gaas
- thickness
- win
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 19
- 230000010355 oscillation Effects 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 238000005253 cladding Methods 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910016920 AlzGa1−z Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000005530 etching Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、単−横モードで発振するAIGaInP系の
半導体レーザ装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an AIGaInP semiconductor laser device that oscillates in a single transverse mode.
(従来の技術)
最近、有機金属熱分解法(以後MOVPEと略す)によ
る結晶成長により形成された単−横モードで発振するA
IGaInP系の半導体レーザ装置として、第3図に示
すような構造が報告されている(ExtendedAb
strarts of the 18th Confe
rence on 5olid 5tateDevic
es and Materials、 Tokyo、
1986. pp、153−156)。(Prior art) Recently, A that oscillates in a single transverse mode is formed by crystal growth using metal organic pyrolysis (hereinafter abbreviated as MOVPE).
As an IGaInP-based semiconductor laser device, the structure shown in Figure 3 has been reported (Extended Ab
strarts of the 18th Confe
rence on 5solid 5tateDevic
es and Materials, Tokyo,
1986. pp. 153-156).
この構造は、第1回目の成長でn型GaAs基板1上に
1n型(Alo、5Gao、s)o、5IIno、49
Pクラッド層2%GaInP活性層3、p型(Alo、
5Gao、s)o、5tIno、49Pクラッド層4、
p型GaAsキャップ層7を順次形成する。次にフォト
リソグラフィにより5i02をマスクとして、メサスト
ライプを形成する。そして、5i02マスクをつけたま
ま、第2回目の成長を行ないエツチングしたところをn
型GaAs層8で埋め込む。次に5i02マスクを除去
し、p側全面に電極が形成できるように第3回目の成長
でp型GaAsコンタクト層9を成長する。This structure was formed on the n-type GaAs substrate 1 during the first growth.
P cladding layer 2% GaInP active layer 3, p type (Alo,
5Gao, s)o, 5tIno, 49P cladding layer 4,
A p-type GaAs cap layer 7 is sequentially formed. Next, mesa stripes are formed by photolithography using 5i02 as a mask. Then, with the 5i02 mask on, the second growth was performed and the etched area was
It is filled with a type GaAs layer 8. Next, the 5i02 mask is removed, and a p-type GaAs contact layer 9 is grown in a third growth so that an electrode can be formed on the entire p-side surface.
この構造により電流はn型GaAs層8によりブロック
されメサストライプ部にのみ注入される。また、メサス
トライプ形成のエツチングのときに、メサストライプ部
以外のp型クラッド層の厚みを光のとじ込めには不十分
な厚みにまでエツチングするのでn型GaAs層8のあ
る部分では、このn型GaAs層8に光が吸収され、メ
サストライプ部にのみ光は導波される。このようにこの
構造では、電流狭窄機構と光導波機構が同時につくりつ
けられる。With this structure, current is blocked by the n-type GaAs layer 8 and is injected only into the mesa stripe portion. Furthermore, during etching to form the mesa stripe, the thickness of the p-type cladding layer other than the mesa stripe portion is etched to a thickness insufficient for confining light. Light is absorbed by the type GaAs layer 8 and guided only to the mesa stripe portion. In this way, in this structure, a current confinement mechanism and an optical waveguide mechanism are created at the same time.
(発明が解決しようとする問題)
上述の構造では、活性層3とn型GaAs層8の距離を
決定するメサストライプ形成時のエツチングは時間制御
型のエツチングである。このため、エツチング後のp型
クラッド層の厚みの制御性と再現性が悪く、素子のロフ
ト間での特性のバラツキが大きいという問題があった。(Problems to be Solved by the Invention) In the above structure, the etching at the time of forming the mesa stripe, which determines the distance between the active layer 3 and the n-type GaAs layer 8, is time-controlled etching. For this reason, the controllability and reproducibility of the thickness of the p-type cladding layer after etching is poor, and there is a problem in that the characteristics vary widely among the lofts of the device.
本発明の目的は、この問題点を解決した半導体レーザ装
置を提供することにある。An object of the present invention is to provide a semiconductor laser device that solves this problem.
(問題点を解決するための手段)
この発明は、第1導電型GaAs基板上に、この基板に
格子整合する
(AlxGa1 −x)wInl−wp(o≦x≦0.
3.W〜0.51)からなる活性層と、この活性層を挾
む
(AlyGa1−y)wInl−wP(x + 0.4
≦y)からなるクラッド層により形成されたダブルヘテ
ロ構造を設け、前記基板と反対側の第2導電型クラッド
層上に両側を(AlyGal −y)wInl−wPで
挟まれた時の量子準位が、活性層の発振エネルギーより
も大きくなる膜厚の第2導電型(AlxGa1 −z)
wInl −wP(z≦y−0,4)層と、この層上に
設けられたメサストライプ状の第2導電型(AlyGa
t−y)wInt−wPクラッド層と、このメサストラ
イプ状のクラッド層以外の部分に第1導電型のGaAs
JWを設けたことを特徴とする。(Means for Solving the Problems) The present invention provides a GaAs substrate of a first conductivity type, which is lattice matched to (AlxGa1-x)wInl-wp(o≦x≦0.
3. W ~ 0.51) and (AlyGa1-y) wInl-wP (x + 0.4
The quantum level when a double heterostructure formed by a cladding layer consisting of is the second conductivity type (AlxGa1-z) with a film thickness larger than the oscillation energy of the active layer.
wInl-wP (z≦y-0,4) layer and a mesa stripe-shaped second conductivity type (AlyGa
t-y) wInt-wP cladding layer and a portion other than this mesa stripe-shaped cladding layer is made of GaAs of the first conductivity type.
It is characterized by having a JW.
(作用)
上述の本発明の構成を用いると、電流狭窄については従
来構造と同一機構であり、光導波についても、p型(A
lyGal−y)wInl−wPで挾みこんだ(A12
Ga1−z鶏In1−wP層が、バルクでは、活性層の
発光を吸収する組成でも、本発明では、膜厚を準位が量
子化し、その量子準位が活性層の発振エネルギーよりも
大きくなる厚みに規定しであるので活性層からの光は、
この層では吸収されず、メサ状のクラッド層にしみ出し
、従来構造と同一機構で横モードが制御される。また
(AlzGax −x)wInl−wP(W〜0.51
)混晶はXに0.4以上の差があれば、塩酸系のエツチ
ング液によりXが大きい組成の結晶をXの小さい組成の
結晶に比べ30倍以上速くエツチングできる。このため
、本構造の製作過程では、メサストライプ形成時に、メ
サストライプ部以外の場所のp型クラッドのエツチング
を、かなりの時間幅をもって上部と下部のp型クラッド
層の間で止めることができる。このため、MOVPEな
どの膜厚制御性に優れた成長法を用いれば、ロフト間で
特性のバラツキの小さな素子が再現性よく得られる。(Function) When the configuration of the present invention described above is used, the current confinement mechanism is the same as the conventional structure, and the optical waveguide is also p-type (A
lyGal-y) wInl-wP (A12
Even if the Ga1-zIn1-wP layer in bulk has a composition that absorbs the light emitted from the active layer, in the present invention, the film thickness is quantized by the level, and the quantum level becomes larger than the oscillation energy of the active layer. Since the thickness is specified, the light from the active layer is
It is not absorbed in this layer, but seeps into the mesa-shaped cladding layer, and the transverse mode is controlled by the same mechanism as the conventional structure. Also, (AlzGax -x)wInl-wP(W~0.51
) For mixed crystals, if there is a difference in X of 0.4 or more, a hydrochloric acid-based etching solution can etch a crystal with a large composition of X more than 30 times faster than a crystal with a composition with a small composition of X. Therefore, in the manufacturing process of this structure, during the formation of mesa stripes, etching of the p-type cladding at locations other than the mesa stripe portions can be stopped between the upper and lower p-type cladding layers for a considerable period of time. Therefore, by using a growth method with excellent film thickness controllability, such as MOVPE, an element with small variations in characteristics between lofts can be obtained with good reproducibility.
(実施例)
以下、本発明の実施例を図面を用いて説明する。第1図
は、本発明の実施例を示す半導体レーザ装置の断面図で
あり、第2図はこの半導体レーザ装置の製作工程図であ
る。(Example) Hereinafter, an example of the present invention will be described using the drawings. FIG. 1 is a sectional view of a semiconductor laser device showing an embodiment of the present invention, and FIG. 2 is a manufacturing process diagram of this semiconductor laser device.
まず1回目の成長で、n型GaAs基板1(S:ドープ
、n=2X 10181018a上に、n型(Alo、
5Gao、s)o、5xIno、4sPクラッド層2(
n= I X 1018cm−3;厚み1.2pm)、
GaInP活性層3(アンドープ;厚み0.111m)
、下部p型(Alo、5Gao、s)o、5IIno、
49Pクラッド層4(p=5X1017cm−’;厚み
O,:%m)、p”I GaInP層5(p=1刈01
8cm−340人)、上部p型(Alo、5Gao、s
)o、5xIno、49Pクラッド層6(p==5X1
017cm−3;厚みlpm)、p型GaAsキャップ
層7(p=2X1018cm= ;厚み0.5pm)を
順次成長形式した(第2図(a))。成長には、減圧M
OVPE法を用い成長条件は、温度700°C1圧カフ
0Torr、 V/III=200、キャリアガス(H
z)の全流量15(1/m1n)とした。原料にはトリ
メチルインジウム(TMI:(CHa)aIn)、トリ
エチルガリウム(TEG:(C2Hs)aGa)、トリ
メチルアルミニウム(TMA:(CHa)sAl)、ア
ルシン(AsHa)、ホスフィン(PHa) 、p型ド
ーパント:ジメチル亜鉛(DMZ:(CHs)2Zn)
、n型ドーパント:セレン化水素(H2Se)を用いた
。こうして成長したウェアにフォトリソグラフィにより
ストライブ状の5i02マスク10を形成した(第2図
(b))。次にこの5i0210を用いてリン酸系のエ
ツチング液によりp型GaAsキャップ層7をメサ状に
エツチングした。つづいて、(Alo、5Gao、s)
o、5IIno、oPに対するエツチングレートが60
0OA/min 、 GaInPに対するエツチングレ
ートが5OA/minである塩酸系のエツチング液によ
り、上部p型(Alo、5Gao、s)o、5xIno
、49Pクラッド層6をメサ状にエツチングした(第2
図(C))。そして5i02マスク10をつけたままM
OVPEにより2回目の成長を行ないn型GaAs層8
を成長した(第2図(d))。次に5i02マスク10
をエツチングで除去しく第2図(e))、MOVPEに
より3回目の成長を行ってP型GaAsコンタクト層9
を成長した(第2図(f))。2回目、3回目の成長条
件は上述の1回目の成長と同一である。最後にp、n両
電極を形成して、キャピテイ長250pmにへき関し、
個々のチップに分離した。First, in the first growth, n-type (Alo,
5Gao, s)o, 5xIno, 4sP cladding layer 2 (
n=I x 1018cm-3; thickness 1.2pm),
GaInP active layer 3 (undoped; thickness 0.111 m)
, lower p-type (Alo, 5Gao, s) o, 5IIno,
49P cladding layer 4 (p=5X1017cm-'; thickness O,:%m), p"I GaInP layer 5 (p=1 01
8cm-340 people), upper p-type (Alo, 5Gao, s
)o, 5xIno, 49P cladding layer 6 (p==5X1
017 cm-3; thickness lpm) and a p-type GaAs cap layer 7 (p=2×1018 cm=; thickness 0.5 pm) (FIG. 2(a)). For growth, reduced pressure M
The growth conditions using the OVPE method were a temperature of 700°C, a pressure cuff of 0 Torr, V/III = 200, and a carrier gas (H
The total flow rate of z) was set to 15 (1/m1n). Raw materials include trimethylindium (TMI: (CHa)aIn), triethylgallium (TEG: (CHa)aGa), trimethylaluminum (TMA: (CHa)sAl), arsine (AsHa), phosphine (PHa), p-type dopant: Dimethylzinc (DMZ: (CHs)2Zn)
, n-type dopant: hydrogen selenide (H2Se) was used. A striped 5i02 mask 10 was formed on the thus grown ware by photolithography (FIG. 2(b)). Next, using this 5i0210, the p-type GaAs cap layer 7 was etched into a mesa shape using a phosphoric acid-based etching solution. Continuing, (Alo, 5Gao, s)
Etching rate for o, 5IIno, oP is 60
Upper p-type (Alo, 5Gao, s)o, 5xIno
, the 49P cladding layer 6 was etched into a mesa shape (second
Figure (C)). And M with 5i02 mask 10 on
A second growth is performed by OVPE to form an n-type GaAs layer 8.
(Fig. 2(d)). Next 5i02 mask 10
In order to remove the contact layer 9 by etching (Fig. 2(e)), a third growth is performed by MOVPE to form a P-type GaAs contact layer 9.
(Fig. 2(f)). The growth conditions for the second and third times are the same as those for the first growth described above. Finally, both p and n electrodes are formed and the capacitance length is 250 pm.
Separated into individual chips.
上述の方法により作製した本発明のレーザウェハ30ツ
トと、従来のレーザウェハ30ツトから得られた素子(
各ロットにつき30個)の基本横モード発振での最大光
出力の平均値を表1に示す。Elements obtained from 30 laser wafers of the present invention produced by the above method and 30 conventional laser wafers (
Table 1 shows the average value of the maximum optical output in fundamental transverse mode oscillation of 30 pieces for each lot.
表1かられかるように、本発明を用いると、活性層と光
を吸収するGaAs層の距離を設計値通りにつくりつけ
ることができ、ロット間の特性のバラツキを小さくおさ
えることができる。As can be seen from Table 1, by using the present invention, the distance between the active layer and the light-absorbing GaAs layer can be made as designed, and variations in properties between lots can be suppressed.
以上述べた実施例では、活性層をGaInP、クラッド
層を(Alo、5Gao、s)o、5xIno、49P
としたが、発振波長を変える(短波長にする)には、本
発明の要件を満たす範囲で活性層のA1組成を増やせば
よい。また、実施例では、3層のクラッド層を共に同一
組成としたが、レーザに求める特性により変化させても
良い。In the embodiments described above, the active layer is GaInP and the cladding layer is (Alo, 5Gao, s)o, 5xIno, 49P.
However, in order to change the oscillation wavelength (make it shorter), the A1 composition of the active layer may be increased within a range that satisfies the requirements of the present invention. Further, in the embodiment, the composition of the three cladding layers is the same, but the composition may be changed depending on the characteristics desired for the laser.
(発明の効果)
このように本発明により、成長ロット間の特性のバラツ
キの小さな基本横モード制御AIGaInP系半導体レ
ーザ装置を得ることができる。(Effects of the Invention) As described above, according to the present invention, it is possible to obtain a fundamental transverse mode control AIGaInP semiconductor laser device with small variations in characteristics between growth lots.
Claims (1)
(Al_xGa_1_−_x)_wIn_1_−_wP
(0≦x≦0.3、W〜0.51)からなる活性層と、
この活性層を挟む (Al_yGa_1_−_y)_wIn_1_−_wP
(x+0.4≦y)からなるクラッド層により型成され
たダブルヘテロ構造を設け、前記基板と反対側の第2導
電型クラッド層上に両側を(Al_yGa_1_−_y
)_wIn_1_−_wPで挟まれた時の量子準位が、
活性層の発振エネルギーよりも大きくなる膜厚の第2導
電型(Al_zGa_1_−_z)_wIn_1_−_
wP(z≦y−0.4)層と、この層上に設けられたメ
サストライプ状の第2導電型(Al_yGa_1_−_
y)_wIn_1_−_wPクラッド層と、このメサス
トライプ状のクラッド層以外の部分に第1導電型のGa
As層を設けたことを特徴とする半導体レーザ装置。[Claims] On a first conductivity type GaAs substrate, (Al_xGa_1_-_x)_wIn_1_-_wP is lattice-matched to this substrate.
(0≦x≦0.3, W~0.51);
Sandwiching this active layer (Al_yGa_1_-_y)_wIn_1_-_wP
A double heterostructure formed by a cladding layer consisting of (x+0.4≦y) is provided, and both sides are (Al_yGa_1_−_y
)_wIn_1_−_wP, the quantum level is
The second conductivity type (Al_zGa_1_-_z)_wIn_1_-_ has a film thickness larger than the oscillation energy of the active layer.
wP (z≦y-0.4) layer and a mesa stripe-shaped second conductivity type (Al_yGa_1_-_
y) _wIn_1_-_wP cladding layer and a portion other than this mesa stripe-shaped cladding layer with Ga of the first conductivity type.
A semiconductor laser device characterized by providing an As layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62151824A JP2758597B2 (en) | 1987-06-17 | 1987-06-17 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62151824A JP2758597B2 (en) | 1987-06-17 | 1987-06-17 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63314882A true JPS63314882A (en) | 1988-12-22 |
JP2758597B2 JP2758597B2 (en) | 1998-05-28 |
Family
ID=15527117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62151824A Expired - Lifetime JP2758597B2 (en) | 1987-06-17 | 1987-06-17 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2758597B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5161167A (en) * | 1990-06-21 | 1992-11-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing visible light |
US7084433B2 (en) | 2002-03-08 | 2006-08-01 | Sharp Kabushiki Kaisha | Semiconductor laser device capable of maintaining the operation current low and method of manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6343387A (en) * | 1986-08-08 | 1988-02-24 | Toshiba Corp | Semiconductor laser device and manufacture thereof |
-
1987
- 1987-06-17 JP JP62151824A patent/JP2758597B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6343387A (en) * | 1986-08-08 | 1988-02-24 | Toshiba Corp | Semiconductor laser device and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5161167A (en) * | 1990-06-21 | 1992-11-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing visible light |
US7084433B2 (en) | 2002-03-08 | 2006-08-01 | Sharp Kabushiki Kaisha | Semiconductor laser device capable of maintaining the operation current low and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2758597B2 (en) | 1998-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002057406A (en) | Edge non-injection type semiconductor laser and its manufacturing method | |
JPH06350189A (en) | Semiconductor laser | |
JP2980302B2 (en) | Semiconductor laser | |
JP2721185B2 (en) | Rib waveguide type light emitting semiconductor device | |
JP2564813B2 (en) | A (1) GaInP semiconductor light emitting device | |
JPS63314882A (en) | Semiconductor laser device | |
JPH0258883A (en) | Semiconductor laser device | |
JPWO2004027950A1 (en) | Semiconductor laser | |
JP2865160B2 (en) | Manufacturing method of semiconductor laser | |
JP2973215B2 (en) | Semiconductor laser device | |
JP2550725B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH05145170A (en) | Plane emission laser | |
JPS6334993A (en) | Semiconductor laser device | |
JP2699662B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH03185889A (en) | Semiconductor laser element and manufacture thereof | |
JPH0658988B2 (en) | Semiconductor laser device | |
JP2871295B2 (en) | Surface type optical semiconductor device | |
JPS6317586A (en) | Semiconductor laser | |
JPH01300582A (en) | Semiconductor laser device | |
JP2001230490A (en) | Manufacturing method for semiconductor laser | |
JPH01179489A (en) | Semiconductor laser device | |
JPH07176830A (en) | Manufacture of semiconductor light-emitting element | |
JPH0537071A (en) | Surface emitting laser | |
JPH04106991A (en) | Semiconductor laser | |
JPH02172288A (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080313 Year of fee payment: 10 |