JPS63314445A - Energy absorption factor measuring apparatus - Google Patents

Energy absorption factor measuring apparatus

Info

Publication number
JPS63314445A
JPS63314445A JP62149113A JP14911387A JPS63314445A JP S63314445 A JPS63314445 A JP S63314445A JP 62149113 A JP62149113 A JP 62149113A JP 14911387 A JP14911387 A JP 14911387A JP S63314445 A JPS63314445 A JP S63314445A
Authority
JP
Japan
Prior art keywords
sample
energy absorption
absorption rate
power meter
meter head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62149113A
Other languages
Japanese (ja)
Inventor
Keiji Ehata
惠司 江畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62149113A priority Critical patent/JPS63314445A/en
Publication of JPS63314445A publication Critical patent/JPS63314445A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a measuring apparatus which can determine a correct energy absorption factor easily, by using an integrating sphere as power meter head. CONSTITUTION:Laser light 1 irradiates a sample 2 held by a sample holder 10 and a part thereof is absorbed as absorption energy while passing through the sample 2. This energy absorbed reaches the side of the sample 2 with a balance between a heat value transmitted through the sample 2 and that escaped in the perimeter thereof to be measured with a thermocouple 3 set here as temperature change of the sample 2. On the other hand, the laser light transmit ted through the sample 2 is incident into an integrating sphere 11 through an aperture 13 thereof 11 used as power meter head, received with a target 12 to measure a transmission output while diffused and reflected in multiplicity repeatedly within the sphere 11 to be attenuated completely. A measuring signal with the thermocouple 3 and the target 12 is inputted into a data logger 5 and an energy absorption factor of the sample 2 is calculated to be recorded on a recorder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ用光学部品、その他各種製品のエネル
ギ吸収率測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an energy absorption rate measuring device for laser optical components and various other products.

〔従来の技術〕[Conventional technology]

従来は、第2図囚に示すように、レーザ光1を測定対象
(サンプル)2に照射し、該サンプル2に吸収されるエ
ネルギによって上昇する該サンプル2の温度変化率、あ
るいはレーザ光1を遮断する際のサンプル2の温度変化
率を熱電対1’lJ、tば、φ・(Llmの銅−フンス
タンタン)3で検知し、またサンプ/L/2を透過した
レーザ光による出、力をパワーメータヘッド4で測定し
、これらの検知信号、測定信号をデータロガ5に入力し
て、下に示すニュートンの熱平衡式を用いてサンプル2
のエネルギ吸収率αを算定していた。
Conventionally, as shown in FIG. The rate of temperature change of sample 2 at the time of interruption was detected by thermocouple 1'lJ, tb, φ. is measured with the power meter head 4, these detection signals and measurement signals are input to the data logger 5, and sample 2 is measured using Newton's thermal equilibrium equation shown below.
The energy absorption rate α was calculated.

T (a)レーザ照射時二Cm−=PA−h(T−Tφ)t T (b) V−ザ遮断時=〇口l−1=h(T−Tφ)(
it ここで、T:温度、t:時間。
T (a) During laser irradiation 2 Cm-=PA-h(T-Tφ)t T (b) When V-laser is cut off=〇口l-1=h(T-Tφ)(
it where T: temperature, t: time.

C:サンプルの比熱。C: Specific heat of sample.

m:サンプルの質址。m: Pawn of sample.

Tφ:サンプルの周囲温度。Tφ: ambient temperature of the sample.

h:サンプルの熱伝達係数。h: Heat transfer coefficient of sample.

PA:サンプルに吸収されるレーザ 光エネルギ (e、) (b)式よシ となシ、レーザ光のサンプル透過光出力をP。とすると
、 PA エネルギ吸収率α==−X100 となり、N個の平均エネルギ吸収率αは、±(αの分散
)(%) と算出される。
PA: Laser light energy absorbed by the sample (e,) According to equation (b), the sample-transmitted light output of the laser light is P. Then, PA energy absorption rate α==-X100, and the N average energy absorption rate α is calculated as ±(dispersion of α) (%).

なお、第2図(4)において、6はデータロガ5で算出
されたエネルギ吸収率αを記録するためのレコーダであ
り、またレーザ光1は図示省略のレーザ光源から照射さ
れ、レーザ光1の遮断は図示省略のシャッタによシ行わ
れる。
In addition, in FIG. 2 (4), 6 is a recorder for recording the energy absorption rate α calculated by the data logger 5, and the laser beam 1 is irradiated from a laser light source (not shown), and the laser beam 1 is blocked. This is performed by a shutter (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記の従来技術においては、サンプル2を通
過したレーザ光1は、パワーメータヘッド4で処理され
るが、該パワーメータヘッド4はレーザ光1の反射を小
さくするため、第2図囚のa部の拡大図である第2図の
)に示すように、表面に溝加工が施され、またアルマイ
ト処理(黒染め)が施されていた。
By the way, in the above-mentioned conventional technology, the laser beam 1 that has passed through the sample 2 is processed by the power meter head 4, but in order to reduce the reflection of the laser beam 1, the power meter head 4 is configured as shown in FIG. As shown in Figure 2), which is an enlarged view of part a, the surface was grooved and anodized (black dyed).

しかし、パワーメータヘッド4はレーザ光1を完全に吸
収するものではなく、5〜10%程度の反射率を持ち、
しかも第2図の)のような溝加工が施されているため、
パワ−メータヘッド40角度をどのように調節しても、
散乱反射光7が生じていた。この反射光7の一部は再び
サンプ/I/2を照射し、前記ニュートンの熱平衡式に
よるサンプルのエネルギ吸収率の測定精度を著しく低下
させていた。
However, the power meter head 4 does not completely absorb the laser beam 1, but has a reflectance of about 5 to 10%.
Moreover, because it has grooves as shown in Figure 2),
No matter how you adjust the power meter head 40 angle,
Scattered reflected light 7 was generated. A part of this reflected light 7 irradiated the sump/I/2 again, significantly reducing the accuracy of measuring the energy absorption rate of the sample using Newton's thermal equilibrium equation.

上記の反射光7の影響を小さくするため、従来は、第2
図囚に示すように遮蔽板(中心に開口を有する円板)8
を設置し、反射光7を遮断していた。しかし、サンプl
v2はそれぞれ異なる焦点距離を有するレンズである場
合が多く、このような場合、サンプ/L/2透過後のレ
ーザ光1をパワーメータヘッド4に導くために各サンプ
ル2の焦点距離に適したコリメータレンズ?の設置を行
わねばならず、セツティングに多大の時間を要していた
In order to reduce the influence of the above reflected light 7, conventionally, the second
As shown in the figure, a shielding plate (a circular plate with an opening in the center) 8
was installed to block reflected light 7. However, the sample l
V2 are often lenses with different focal lengths, and in such cases, a collimator suitable for the focal length of each sample 2 is used to guide the laser beam 1 after passing through the sump/L/2 to the power meter head 4. lens? This required a great deal of time to set up.

本発明は、このような問題を解決し、正確なエネルギ吸
収率を容易に求めることのできるエネルギ吸収率測定装
置を提案するものである。
The present invention solves these problems and proposes an energy absorption rate measuring device that can easily determine an accurate energy absorption rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題を従来のパワーメータヘッドの代シ
に金属球(積分球)を用い、透過後のレーザ光を該球内
に導き、該球内部にてレーザ光を散乱  減衰させサン
プルへの反射光をなくすことによシ解決するものである
The present invention solves the above problem by using a metal sphere (integrating sphere) in place of the conventional power meter head, guiding the transmitted laser beam into the sphere, scattering and attenuating the laser beam inside the sphere, and directing it to the sample. This is solved by eliminating the reflected light.

すなわち本発明は、レーザ光源、シャッタ、測定対象の
端部へ取付けられる熱電対、測定対象の透過光を受け該
透過光による出力を測定するパワーメーターヘッド、前
記P89L対ト/<ワーメータヘッドからの信号を入力
するデータロガ、該データロガで得られたエネルギ吸収
率を記録するレコーダを備えたエネルギ吸収率測定装置
において、前記パワーメータヘッドとして積分球を用い
ることを特徴とするエネルギ吸収率測定装置に関するも
のである。
That is, the present invention includes a laser light source, a shutter, a thermocouple attached to the end of the object to be measured, a power meter head that receives transmitted light from the object to be measured and measures the output due to the transmitted light, and a power meter head from the P89L power meter head. The present invention relates to an energy absorption rate measuring device comprising a data logger that inputs a signal, and a recorder that records the energy absorption rate obtained by the data logger, wherein an integrating sphere is used as the power meter head. It is something.

本発明における積分球としては、概略球形の中空状のも
ので、内面に金、銀、銅、アルミニワム等の赤外光を反
射する材料を蒸着、メッキ等により塗工したものが使用
される。また、この積分球は、測定対象(サンプ/L/
)透過光を該積分球内部VC導<アパーチャと、該アパ
ーチャから入4.1シた光を受けてこの透過光による出
方を測定すると共に該光を拡散反射させるための円錐形
のターゲットとを有し、該ターゲットの表面は上記材料
と同材料にて塗工処理されている。
The integrating sphere used in the present invention is a hollow, approximately spherical sphere whose inner surface is coated with a material that reflects infrared light, such as gold, silver, copper, or aluminum, by vapor deposition, plating, or the like. Also, this integrating sphere can be used to measure objects (sump/L/
) A VC aperture for guiding the transmitted light inside the integrating sphere, and a conical target for receiving the light entering from the aperture, measuring the output of the transmitted light, and diffusing and reflecting the light. The surface of the target is coated with the same material as above.

更に、本発明では測定対象をZ軸上を移動させる手段、
例えばサンプルホルダを移動させるレール等を設けるこ
とができる。
Furthermore, in the present invention, means for moving the measurement target on the Z axis,
For example, a rail or the like for moving the sample holder can be provided.

〔作用〕[Effect]

本発明では、サンプル透過後のレーザ光はアパーチャか
ら積分球内部に入射し、該球内のターゲットで受光され
、該光による出力が測定させると共に、拡散され、該球
内で多重反射を繰返し、完全に減衰される。従って、サ
ンプルの温度雰囲気を安定に保ち、エネルギ吸収率の測
定精度を向上させることができる。
In the present invention, the laser beam after passing through the sample enters the interior of the integrating sphere from the aperture, is received by a target within the sphere, and the output of the light is measured and diffused, and undergoes multiple reflections within the sphere, fully attenuated. Therefore, the temperature atmosphere of the sample can be kept stable, and the measurement accuracy of energy absorption rate can be improved.

また本発明によれば、種々の焦点距離のレンズを測定対
象とする場合、該測定対象透過後のレーザ光を積分球へ
導くためKは、単に該測定対象をZ軸方向に移動させる
だけで充分であシ、従来の遮蔽板とコリメータレンズを
使用する場合に比し、セツティング時間を大幅に短縮す
ることができる。
Furthermore, according to the present invention, when lenses with various focal lengths are to be measured, K can be adjusted by simply moving the measuring object in the Z-axis direction in order to guide the laser beam that has passed through the measuring object to the integrating sphere. This is sufficient, and the setting time can be significantly reduced compared to the case of using a conventional shielding plate and collimator lens.

〔実施例〕〔Example〕

第1図は本発明装置の一実施態様例を示す図である。 FIG. 1 is a diagram showing an embodiment of the apparatus of the present invention.

第1図において、V−ザ光1はサンプルホルダ10に保
持された測定対象(サンプA/)2に照射され、該サン
プル2を通過する間に一部が吸収エネルギとして吸収さ
れる。
In FIG. 1, V-the light 1 is irradiated onto a measurement object (sump A/) 2 held in a sample holder 10, and while passing through the sample 2, a portion is absorbed as absorbed energy.

この吸収エネμギは、サンプル2を伝わる熱量と周囲へ
逃げる。A%量との平衡にょシサンプル2の側面に到達
し、ここにセットされた熱電対3でサンプル2の温度変
化として測定される。
This absorbed energy μ is the amount of heat transmitted through the sample 2 and escapes to the surroundings. Equilibrium with the A% amount reaches the side of the sample 2, and the temperature change of the sample 2 is measured by the thermocouple 3 set there.

一方、サンプル2を透過したレーザ光は、積分球11の
アパーチャ13から該環11内へ入射し、ターゲット1
2に受光されて、透過出力が測定されると共に拡散し、
該環11内で図示するように多重反射を繰返して完全に
減衰する。
On the other hand, the laser beam that has passed through the sample 2 enters the ring 11 through the aperture 13 of the integrating sphere 11, and enters the target 1.
2, the transmitted power is measured, and the light is diffused.
As shown in the figure, multiple reflections are repeated within the ring 11 to completely attenuate the light.

上記の熱電対3とこのターゲット12での測定信号は前
記した従来の場合と同様にデータロガ5(図示省略)へ
入力され、前記のニュートンの熱平衡式に従ってサンプ
ル2のエネルギ吸収率αが算出され、レコーダ(図示省
略)に記録される。
The measurement signals from the thermocouple 3 and this target 12 are input to the data logger 5 (not shown) in the same manner as in the conventional case, and the energy absorption rate α of the sample 2 is calculated according to Newton's thermal equilibrium equation. It is recorded on a recorder (not shown).

また、第1図中の14は2軸レールであシ、サンプル2
がレンズである場合、その焦点距離に適するようサンプ
ルホルダ1oを該レール14上を矢印方向に移動させる
In addition, 14 in Fig. 1 is a two-axis rail, and sample 2
When is a lens, the sample holder 1o is moved in the direction of the arrow on the rail 14 to suit its focal length.

〔具体例〕〔Concrete example〕

第1図の態様により、φ15、soowのCO2レーザ
光を用いサンプルのエネルギ吸収率を測定した。その結
果を第5図囚に示す(本発明例)。
According to the embodiment shown in FIG. 1, the energy absorption rate of the sample was measured using a CO2 laser beam having a diameter of 15 mm and so on. The results are shown in Figure 5 (example of the present invention).

比較のため、上記と同じレーザ光にて上記と同じサンプ
ルのエネルギ吸収率を第2図囚、(ト))の態様で測定
し、この結果を第3図の)に示す(比較例)。
For comparison, the energy absorption rate of the same sample as above was measured using the same laser beam as above in the manner shown in (g)) in Fig. 2, and the results are shown in (g) in Fig. 3 (comparative example).

第5図(4)、■)から明らかなように、本発明例では
温度曲線はなめらかで、散乱反射光の影響がなく、吸収
率αもα20±α01%と精度が向上しているのに対し
、従来例では散乱反射光によりレーザ照射・遮断時に温
度の急な変化が見られ、吸収率αはα20士l]、1%
程度であり、信頼度が低かった。
As is clear from Fig. 5 (4), ■), in the example of the present invention, the temperature curve is smooth, there is no influence of scattered reflected light, and the absorption rate α is α20 ± α01%, which improves the accuracy. On the other hand, in the conventional example, a sudden change in temperature was observed when the laser was irradiated and cut off due to scattered reflected light, and the absorption rate α was 1%
The reliability was low.

また、第1図及び第2図(4)、(B)の態様で、上記
と同じV−ザ光にて、上記と同じサンプルのエネルギ吸
収率を日々測定した結果を、第4図(ロ)(本発明例)
と第4図の)(従来例)とに示す。
In addition, the results of daily measurement of the energy absorption rate of the same sample as above using the same V-za light in the manner shown in Fig. 1 and Fig. 2 (4) and (B) are shown in Fig. 4 (Ro). ) (Example of the present invention)
and (conventional example) in Fig. 4.

第4図(A、) 、 (B)から明らかなように、本発
明例では散乱反射光の影響がなく、サンプルのエネルギ
吸収率のルミ]定値は安定している(σ=±α01%)
のに対し、比較例では散乱反射光の影響がコリメータレ
ンズや遮蔽板のセット位置あるいはパワーメータヘッド
の角度によシ大きく変化し、またこれらのセット位置や
角度の管理が困難であり、測定毎にサンプルのエネルギ
吸収率の測定値が変化していた(σ=(L1%)。
As is clear from Fig. 4 (A,) and (B), in the example of the present invention, there is no influence of scattered reflected light, and the constant value of the energy absorption rate of the sample is stable (σ = ± α01%).
On the other hand, in the comparative example, the influence of scattered reflected light changes greatly depending on the set position of the collimator lens and shielding plate, or the angle of the power meter head, and it is difficult to manage these set positions and angles, making it difficult for each measurement. The measured value of the energy absorption rate of the sample was changing (σ=(L1%)).

〔発明の効果〕〔Effect of the invention〕

本発明装置によれば、測定対象のエネルギ吸収率の測定
精度を高めることができるばかシでなく、測定機器や測
定対象のセツティング時間を短縮することができる。G
e、 Si、 Zn5e、 CdTe。
According to the apparatus of the present invention, it is not only possible to improve the measurement accuracy of the energy absorption rate of the object to be measured, but also to shorten the time required to set up the measuring equipment and the object to be measured. G
e, Si, Zn5e, CdTe.

InSb、 GaAs、 GaP等の半導体やNaC1
,KOA、KBr等のアルカリハライド系、 kt、 
Cu、 Mo  等の金属を用いたCo、 co、、 
I!、YAG等の赤外レーザ用光学部品(窓1部分反射
鏡、偏光板、全反射鏡等)の重要特性であるエネルギ吸
収率測定装置として効果的である。
Semiconductors such as InSb, GaAs, GaP and NaCl
, KOA, KBr and other alkali halides, kt,
Co, co, using metals such as Cu, Mo, etc.
I! It is effective as a device for measuring energy absorption rate, which is an important characteristic of optical components for infrared lasers such as , YAG, etc. (window partial reflection mirror, polarizing plate, total reflection mirror, etc.).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施態様例を示す図、第2図(
ト)は従来技術を示す図、第2図の)は第2図囚のa部
の拡大図、第3図(ト)、@及び第4図(4)、 CB
)は本発明の具体例及び比較例で得られた結果を示す図
表で、第3図(ト)及び第4図囚が本発明例を、第3図
(B)及び第4図の)が比較例を示している。
FIG. 1 is a diagram showing an example of an embodiment of the device of the present invention, and FIG. 2 (
g) is a diagram showing the prior art, Fig. 2) is an enlarged view of part a of Fig. 2, Fig. 3 (g), @, and Fig. 4 (4), CB
) is a chart showing the results obtained in specific examples of the present invention and comparative examples, where Figures 3 (G) and 4 (G) show the results of the present invention, and Figures 3 (B) and 4) A comparative example is shown.

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ光源、シャッタ、測定対象の端部へ取付け
られる熱電対、測定対象の透過光を受け該透過光による
出力を測定するパワーメーターヘッド、前記熱電対とパ
ワーメータヘッドからの信号を入力するデータロガ、該
データロガで得られたエネルギ吸収率を記録するレコー
ダを備えたエネルギ吸収率測定装置において、前記パワ
ーメータヘッドとして積分球を用いることを特徴とする
エネルギ吸収率測定装置。
(1) A laser light source, a shutter, a thermocouple attached to the end of the object to be measured, a power meter head that receives transmitted light from the object and measures the output of the transmitted light, and inputs signals from the thermocouple and power meter head. What is claimed is: 1. An energy absorption rate measuring device comprising a data logger that records the energy absorption rate obtained by the data logger and a recorder that records the energy absorption rate obtained by the data logger, characterized in that an integrating sphere is used as the power meter head.
(2)積分球は、概略球形の中空状で、測定対象の透過
光を内部に導くためのアパーチャと、内部に導かれた透
過光を受ける円錐形のターゲットを備えたものである特
許請求の範囲(1)に記載のエネルギ吸収率測定装置。
(2) The integrating sphere is approximately spherical and hollow, and is equipped with an aperture for guiding the transmitted light of the measurement object into the interior, and a conical target that receives the transmitted light guided inside. The energy absorption rate measuring device according to range (1).
(3)積分球は、その内面に赤外光を反射する材料を塗
工したものである特許請求の範囲(1)又は(2)に記
載のエネルギ吸収率測定装置。
(3) The energy absorption rate measuring device according to claim (1) or (2), wherein the integrating sphere has an inner surface coated with a material that reflects infrared light.
(4)測定対象をZ軸上を移動させる手段を備えた特許
請求の範囲(1)、(2)又は(3)に記載のエネルギ
吸収率測定装置。
(4) The energy absorption rate measuring device according to claim (1), (2) or (3), comprising means for moving the measurement target on the Z-axis.
JP62149113A 1987-06-17 1987-06-17 Energy absorption factor measuring apparatus Pending JPS63314445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149113A JPS63314445A (en) 1987-06-17 1987-06-17 Energy absorption factor measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149113A JPS63314445A (en) 1987-06-17 1987-06-17 Energy absorption factor measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63314445A true JPS63314445A (en) 1988-12-22

Family

ID=15467995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149113A Pending JPS63314445A (en) 1987-06-17 1987-06-17 Energy absorption factor measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63314445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760890A (en) * 1995-07-13 1998-06-02 Byk-Gardner Gmbh Device for measuring optical characteristic quantities of transparent materials
WO2020226552A1 (en) * 2019-05-07 2020-11-12 Scienta Omicron Ab Holding device for a sample and a system for heating a sample using such a holding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760890A (en) * 1995-07-13 1998-06-02 Byk-Gardner Gmbh Device for measuring optical characteristic quantities of transparent materials
WO2020226552A1 (en) * 2019-05-07 2020-11-12 Scienta Omicron Ab Holding device for a sample and a system for heating a sample using such a holding device

Similar Documents

Publication Publication Date Title
US4848897A (en) Ophthalmological diagnosis apparatus
CN110095416B (en) Metal molten pool laser absorption rate distribution on-line measuring system and method
EP0759154B1 (en) Radiation beam position sensor
JPH07229840A (en) Method and apparatus for optical measurement
Noguchi et al. Temperature and emissivity measurement at 0.65 μ with a solar furnace
JPS63314445A (en) Energy absorption factor measuring apparatus
CN109813536A (en) A kind of infrared optical system external stray light test device and test method
US3675029A (en) Methods and means for measuring the velocities of localized portions of flowing media
US4676652A (en) Multiple pass optical system
CN209432410U (en) A kind of infrared optical system external stray light test device
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
Scheele Scattering from infrared transparent materials
WO2000031514A1 (en) Instrument for measuring light scattering
JP3296224B2 (en) Object emissivity measurement method and temperature measurement device
JPH0288929A (en) Infrared optical device
GB2095505A (en) Automatic focusing
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
JPH01265134A (en) Measuring instrument for energy absorption factor of condensing lens
US20190277701A1 (en) Measurement device and measurement method for measuring temperature and emissivity of a measured surface
JPH0513454B2 (en)
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
RU2046303C1 (en) Optical pyrometer
JP3039569B2 (en) Prism for total internal reflection measurement
JPH0510872A (en) Micro infrared rays atr measuring device
Ershov et al. Setup for measuring the threshold energy of infrared radiation