JPS6331410Y2 - - Google Patents

Info

Publication number
JPS6331410Y2
JPS6331410Y2 JP1980180979U JP18097980U JPS6331410Y2 JP S6331410 Y2 JPS6331410 Y2 JP S6331410Y2 JP 1980180979 U JP1980180979 U JP 1980180979U JP 18097980 U JP18097980 U JP 18097980U JP S6331410 Y2 JPS6331410 Y2 JP S6331410Y2
Authority
JP
Japan
Prior art keywords
curve
uniform
stabilizing
power transistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980180979U
Other languages
Japanese (ja)
Other versions
JPS57104544U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980180979U priority Critical patent/JPS6331410Y2/ja
Publication of JPS57104544U publication Critical patent/JPS57104544U/ja
Application granted granted Critical
Publication of JPS6331410Y2 publication Critical patent/JPS6331410Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【考案の詳細な説明】 本考案は、電力トランジスタを安定に動作させ
るための安定化抵抗を改良した電力トランジスタ
に関するものである。
DETAILED DESCRIPTION OF THE PRESENT DISCLOSURE The present invention relates to a power transistor having an improved stabilizing resistor for ensuring stable operation of the power transistor.

電力トランジスタは小信号トランジスタを電力
レベルに応じて、複数並列接続することにより実
現される。しかしトランジスタの並列接続は、本
質的に安定なものではなく、熱的擾乱があるとそ
れを助長する性質を持つている。そこで電力トラ
ンジスタを安定に動作させるために、エミツタに
安定化抵抗を入れることが行なわれている。
A power transistor is realized by connecting a plurality of small signal transistors in parallel depending on the power level. However, the parallel connection of transistors is not inherently stable, and has the property of aggravating thermal disturbances. Therefore, in order to operate the power transistor stably, a stabilizing resistor is inserted into the emitter.

第1図は一般的な電力トランジスタの等価回路
を示し、第2図は均一安定化抵抗を挿入した従来
型の電力トランジスタの構成平面図を示す。図に
於いて、1はエミツタ端子、2はベース端子、3
はコレクタ端子、4は電力トランジスタを構成す
る小信号トランジスタ、5は安定化抵抗である。
安定化抵抗5はすべてが均一抵抗値で同じ形状に
構成されている。安定化抵抗の値をRe、エミツ
タ電流をIeとすると、電圧降下ReIeによりフイー
ドバツクがかかる。抵抗値Reを大きくすればす
る程フイードバツク量が大きくなり、電力トラン
ジスタは安定にしかも均一な動作をする。
FIG. 1 shows an equivalent circuit of a general power transistor, and FIG. 2 shows a structural plan view of a conventional power transistor in which a uniform stabilizing resistor is inserted. In the figure, 1 is the emitter terminal, 2 is the base terminal, and 3 is the emitter terminal.
4 is a collector terminal, 4 is a small signal transistor constituting a power transistor, and 5 is a stabilizing resistor.
All of the stabilizing resistors 5 have uniform resistance values and the same shape. If the value of the stabilizing resistor is R e and the emitter current is I e , feedback is applied due to the voltage drop R e I e . The larger the resistance value R e is, the larger the amount of feedback becomes, and the power transistor operates more stably and uniformly.

しかし安定化抵抗の値を大きくすると損失が増
加することにより、特に高周波トランジスタでは
遮断周波数が低下し、電力利得も低下するので出
来るだけ小さな値の安定化抵抗で、均一に動作さ
せることが必要である。
However, increasing the value of the stabilizing resistor increases the loss, which lowers the cutoff frequency and lowers the power gain, especially in high-frequency transistors, so it is necessary to use the lowest possible value of the stabilizing resistor to ensure uniform operation. be.

本考案は均一な安定化抵抗のかわりに、2乗〜
3乗曲線状に安定化抵抗を配置することを特徴と
し、その目的は小さな損失で大きな安定化効果を
得ようとするもので、以下詳細に説明する。
In this invention, instead of a uniform stabilizing resistance, the square
It is characterized by arranging the stabilizing resistors in a cubic curve shape, and its purpose is to obtain a large stabilizing effect with small loss, which will be explained in detail below.

第3図は本考案の一実施例を示す不均一安定化
抵抗の分布曲線である。直線6は従来の均一抵
抗、曲線7は2.5乗曲線状の不均一安定化抵抗で
ある。第4図は本考案の一実施例の構成を示す平
面図である。第4図に於いては、不均一安定化抵
抗を抵抗5′の長さを変えることにより実現した
ものである。低抗値はシート抵抗を一定にする
と、巾と長さの関数なので、いずれかを可変する
ことにより実現できる。第5図はエミツタ巾
2μm、エミツタ間隔8μm、エミツタ1本当りの電
流平均5mA、エミツタ20本を有する900MHz帯で
飽和出力0.5Wの高周波電力トランジスタの表面
温度分布を示したものである。
FIG. 3 is a distribution curve of non-uniform stabilizing resistance showing an embodiment of the present invention. The straight line 6 is a conventional uniform resistance, and the curve 7 is a 2.5 power curve-shaped non-uniform stabilizing resistance. FIG. 4 is a plan view showing the configuration of an embodiment of the present invention. In FIG. 4, the non-uniform stabilizing resistance is realized by varying the length of the resistor 5'. Since a low resistance value is a function of the width and length when the sheet resistance is kept constant, it can be achieved by varying either of them. Figure 5 shows the emitsuta width.
This figure shows the surface temperature distribution of a high-frequency power transistor with a saturation output of 0.5 W in the 900 MHz band, which has an emitter pitch of 2 μm, an emitter spacing of 8 μm, an average current of 5 mA per emitter, and 20 emitters.

曲線8は均一抵抗15Ω、曲線9は中心部で15Ω
端部に向つて2.5乗曲線状、曲線10は2乗曲線
状に安定化抵抗を配置した時の表面温度分布であ
る。3乗曲線状に配置すると、温度分布は曲線9
に近いか、むしろ均一性の良い分布を示すが、過
渡的に流れる電流が大きくなる。この過渡電流は
3乗、4乗とするとさらに激しくなる。従つて過
渡電流を抑え、温度分布の均一性を得られる範囲
として2〜3乗が適当である。このように均一抵
抗を入れたものに比し、2.5乗曲線状に不均一抵
抗を入れた時の方が全体としての抵抗は小さいに
もかかわらず、表面温度分布は平坦になる。また
全体が均一に働らき損失が低減されたことにより
遮断周波数がのび、900MHzでC級動作させた時
の電力利得が均一抵抗挿入時の13.5dB程度から
13.8dB程度まで改善出来た。
Curve 8 has a uniform resistance of 15Ω, curve 9 has a central resistance of 15Ω
Curve 10 is the surface temperature distribution when the stabilizing resistor is arranged in a 2.5 power curve shape toward the end, and in a square shape. When arranged in a cubic curve, the temperature distribution will be as shown in curve 9.
It shows a distribution close to, or rather, good uniformity, but the current that flows transiently becomes large. This transient current becomes even more intense when raised to the third or fourth power. Therefore, the range of 2 to 3 is suitable for suppressing transient current and obtaining uniformity of temperature distribution. Compared to the case where a uniform resistor is inserted in this way, when a non-uniform resistor is inserted in the shape of a 2.5 power curve, the surface temperature distribution becomes flatter even though the overall resistance is smaller. In addition, the cut-off frequency is extended because the entire unit works uniformly and losses are reduced, and the power gain when operating in class C at 900 MHz increases from about 13.5 dB when a uniform resistor is inserted.
It was improved to about 13.8dB.

定電流を一定時間流した時の2次元熱解析を行
い、その温度条件で決まる電流分布をEbers−
Mollの式より求め、その条件で熱解析し、さら
にその時の電流分布を求めるという逐次近似法に
よる計算から、不均一安定化抵抗を入れることに
より小さな抵抗値で均一動作が得られること、お
よび抵抗値の分布を2乗〜3乗曲線状に配置する
ことによつて、安定化の効果が大きいことが導び
かれる。
A two-dimensional thermal analysis is performed when a constant current is passed for a certain period of time, and the current distribution determined by the temperature conditions is calculated using Ebers-
Calculation using the successive approximation method, which involves calculating from Moll's equation, performing thermal analysis under those conditions, and determining the current distribution at that time, shows that uniform operation can be obtained with a small resistance value by including a nonuniform stabilizing resistor, and that the resistance By arranging the value distribution in the shape of a square to cube curve, it is derived that the stabilizing effect is large.

第6図はエミツタ位置とエミツタ電流の間係に
ついての計算結果の一例を示したもので、曲線1
1が均一抵抗、曲線12が0.5乗、曲線13が1
乗、曲線14が2乗、曲線15が3乗曲線状に抵
抗を配置した時のエミツタ電流分布である。
Figure 6 shows an example of the calculation results for the relationship between the emitter position and the emitter current, with curve 1
1 is uniform resistance, curve 12 is 0.5 power, curve 13 is 1
Curve 14 is the emitter current distribution when resistors are arranged in a square shape, and curve 15 is a cube shape.

この結果2〜3乗曲線状に安定化抵抗を配置す
ることが効果的である事が得られ、第5図に示す
実験結果とも良く一致することが判明した。
As a result, it was found that it is effective to arrange the stabilizing resistors in the shape of a square-to-cubic curve, and it was found that this was in good agreement with the experimental results shown in FIG.

本考案は不均一な安定化抵抗を入れることによ
り、均一抵抗の場合よりも温度分布、電流分布を
均一にし、素子の特性の改善をはかることが出来
る。また本考案は直線状に配置された高周波電力
トランジスタや、低周波の電力トランジスタにも
利用出来る利点がある。
By inserting non-uniform stabilizing resistors in the present invention, it is possible to make the temperature distribution and current distribution more uniform than in the case of uniform resistors, and to improve the characteristics of the element. Furthermore, the present invention has the advantage that it can be used for high-frequency power transistors arranged in a straight line and low-frequency power transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な電力トランジスタの等価回路
図、第2図は従来の電力トランジスタの構成平面
図、第3図は不均一安定化抵抗の分布曲線図、第
4図は本考案の一実施例を示す電力トランジスタ
の構成平面図、第5図は電力トランジスタの表面
温度分布の実測図、第6図はエミツタ電流分布の
計算曲線図である。 1……エミツタ端子、2……ベース端子、4…
…小信号トランジスタ、5′……均一安定化抵抗。
Figure 1 is an equivalent circuit diagram of a general power transistor, Figure 2 is a configuration plan view of a conventional power transistor, Figure 3 is a distribution curve diagram of a non-uniform stabilizing resistor, and Figure 4 is an implementation of the present invention. FIG. 5 is a plan view of the structure of a power transistor showing an example, FIG. 5 is an actual measurement diagram of the surface temperature distribution of the power transistor, and FIG. 6 is a calculated curve diagram of the emitter current distribution. 1... Emitter terminal, 2... Base terminal, 4...
...Small signal transistor, 5'...uniform stabilizing resistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] くし形状に配列されたベース電極と、該ベース
電極間に配置され、一端は開放され他端はそれぞ
れ安定化抵抗を介して共通接続されたエミツタ電
極を有する電力トランジスタに於いて、前記複数
の安定化抵抗の値をその中心部で極大とし、端部
方向に2乗〜3乗曲線に従つて漸減せしめるよう
に構成することを特徴とする電力トランジスタ。
In a power transistor having base electrodes arranged in a comb shape and an emitter electrode disposed between the base electrodes, one end of which is open and the other end of which is connected in common via a stabilizing resistor, the plurality of stabilizers 1. A power transistor characterized in that the value of the resistance is maximized at the center and gradually decreases toward the ends according to a square-to-cube curve.
JP1980180979U 1980-12-18 1980-12-18 Expired JPS6331410Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980180979U JPS6331410Y2 (en) 1980-12-18 1980-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980180979U JPS6331410Y2 (en) 1980-12-18 1980-12-18

Publications (2)

Publication Number Publication Date
JPS57104544U JPS57104544U (en) 1982-06-28
JPS6331410Y2 true JPS6331410Y2 (en) 1988-08-22

Family

ID=29978055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980180979U Expired JPS6331410Y2 (en) 1980-12-18 1980-12-18

Country Status (1)

Country Link
JP (1) JPS6331410Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680169B2 (en) * 2016-09-28 2020-04-15 富士通株式会社 Semiconductor device and amplifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111326U (en) * 1974-07-12 1976-01-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298366U (en) * 1976-01-21 1977-07-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111326U (en) * 1974-07-12 1976-01-27

Also Published As

Publication number Publication date
JPS57104544U (en) 1982-06-28

Similar Documents

Publication Publication Date Title
SU528894A3 (en) Current amplifier
JPS6331410Y2 (en)
US7154339B2 (en) RF power amplifier
JPS61280560A (en) Method for measuring concentration of oxygen
CN110488903A (en) Temperature-compensating por circuit
JPS56116302A (en) Strip line filter using 1/2 wavelength resonance electrode
SU122771A1 (en) Ultrasonic piezoelectric transducer
CN109331337B (en) Amplitude-variable and pulse-width-variable symmetric pulse wave transcranial stimulation device and method
JPS607525Y2 (en) strip line filter
JPH087465Y2 (en) Highly stable constant current power supply
SU441520A1 (en) Voltage to current converter
SU1269211A1 (en) Low-resistant resistor
JPS582003Y2 (en) Thick film varistor device
JP3036228B2 (en) Timer circuit
JPS635433Y2 (en)
SU1185576A1 (en) Negative resistance converter
JPS5930630Y2 (en) Inverter output stabilization circuit
JPS5978601U (en) trimming resistance
JPS587684Y2 (en) piezoelectric oscillator
SU1259229A1 (en) Reference-voltage source
DE1930483A1 (en) Oscillator
JPS6112628B2 (en)
JPS62114313A (en) Variable gain amplifier
JPS6244524U (en)
PL106176B1 (en) OPPOSE FEEDBACK POWER AMPLIFIER END STAGE