JPS63313842A - Substrate for mounting semiconductor device and semiconductor device - Google Patents

Substrate for mounting semiconductor device and semiconductor device

Info

Publication number
JPS63313842A
JPS63313842A JP63103957A JP10395788A JPS63313842A JP S63313842 A JPS63313842 A JP S63313842A JP 63103957 A JP63103957 A JP 63103957A JP 10395788 A JP10395788 A JP 10395788A JP S63313842 A JPS63313842 A JP S63313842A
Authority
JP
Japan
Prior art keywords
sintered body
beryllium
semiconductor device
substrate
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63103957A
Other languages
Japanese (ja)
Other versions
JPH0470776B2 (en
Inventor
Yukio Takeda
竹田 幸男
Satoru Ogiwara
荻原 覚
Mitsuru Ura
浦 満
Kosuke Nakamura
浩介 中村
Tadamichi Asai
忠道 浅井
Tokio Ogoshi
大越 時夫
Yasuo Matsushita
松下 安男
Kunihiro Maeda
邦裕 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63103957A priority Critical patent/JPS63313842A/en
Publication of JPS63313842A publication Critical patent/JPS63313842A/en
Publication of JPH0470776B2 publication Critical patent/JPH0470776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To contrive the improvement of the heat conductivity of the title substrate by a method wherein a metal layer for connecting a semiconductor element and a wiring layer are formed on the substrate consisting of a sintered body containing Al nitride as its main component. CONSTITUTION:A substrate consisting of a sintered body containing Al nitride as its main component is used as a substrate, which has a metal layer for connecting a semiconductor element and a wiring layer and is used for mounting a semiconductor device. That is, the Al nitride sintered body is easily formed to become dense in a high degree and has a high heat conductivity. However, the sintered body has a characteristic of having a high electrical resistivity and a low thermal expansion coefficient in combination by adjusting its composition. Thereby, a superior effect can be obtained by using the sintered body for a substrate for electrical insulation of a semiconductor device.

Description

【発明の詳細な説明】 対する要請も大きく、使用する絶縁基板は熱放散性の良
い材料が要求されるようになってきている。
DETAILED DESCRIPTION OF THE INVENTION There are great demands for this, and the insulating substrate used is now required to be made of a material with good heat dissipation properties.

従来、こうした絶縁基板用材料としてはアルミナ焼結体
が使用でれているが、アルミナ基板は熱放散性があまシ
良くないので、こうした目的を達成するために1よ多熱
放散性の大きい絶縁基板材料の開発が求められていた。
Conventionally, alumina sintered bodies have been used as a material for such insulating substrates, but alumina substrates have poor heat dissipation properties, so in order to achieve this purpose, insulators with higher heat dissipation properties are used. There was a need to develop substrate materials.

こうした絶縁基板材料θ) としては (1)  電気絶縁性が大きいこと。Such insulating substrate material θ) as (1) High electrical insulation.

(2)熱伝導率が大きいこと。(2) High thermal conductivity.

(3)  熱膨張係数がシリコンの熱膨張係数に近いこ
と。
(3) The coefficient of thermal expansion is close to that of silicon.

(4)機械的強度が大きいこと。(4) High mechanical strength.

(5)誘電率が小さいこと。(5) Low dielectric constant.

などが要求される。etc. are required.

窒化アルミニウム焼結体はその熱膨張係数が約s x 
1 o−’/l:”で、アルミナ焼結体のそれの約7X
 10”/Uに比べて小さく、シリコンの熱膨張係数的
&3xlO”’/rに近い、また、曲げ強さが約50 
Kg /1xg ”以上を有し、アルミナ焼結体の約2
0 Kg /ws ”に比べ極めて高強度である。さら
に電気絶縁性にも優れている。
The thermal expansion coefficient of the aluminum nitride sintered body is approximately s x
1 o-'/l:'', about 7X that of the alumina sintered body
It is smaller than 10"/U, close to the thermal expansion coefficient of silicon &3xlO"'/r, and has a bending strength of about 50
Kg/1xg” or more, and the alumina sintered body has approximately 2
It has extremely high strength compared to "0 Kg/ws".It also has excellent electrical insulation properties.

従来公知である窒化アルミニウム焼結体の製造方法に祉
(1)反応焼結法、(2)常圧焼結法、(3)ホットプ
レス焼峙法がある。このうち反応焼結法は金属アルミニ
ウムの成形体を窒素ガス雰囲気中で窒化反応させながら
焼結させる方法である。反応焼結法では窒化反応が窒素
ガスの拡散律速であることから肉厚の製品の場合、中心
部に未反応金属が残ることと、多孔質であるため電気絶
縁材としては実用化されていない。常圧焼結法では窒化
アルミニウム粉末に酸化イツトリウムと希土類酸化物、
酸化イツトリウムと二酸化ケイ素、ニッケル、酸化カル
シウムなどの粉末を添加して混合したのち成形体として
焼成する方法が知られている。さらにホットプレス焼結
法では窒化アルミニウム粉末に酸化アルミニウム、酸化
イツトリウムと二酸化ケイ素ガどの粉末を添加して混合
したのち成形体とし、加圧下に加熱して焼結する方法で
ある。従来公知である常圧焼結法及びホットプレス焼結
法によれば緻密化した窒化アルミニウム焼結体を得るこ
とができ、焼結体は高強度で電気絶縁性及び低熱膨張係
数を有する。しかし、上記の方法で得た焼結体の熱伝導
率は小さく、通常0.07 Ca17m−(6)・C(
室温)であシ、大きいものでも0.1 Cat/鋸・刑
・Cである。これらの点から、窒化アルミニウム焼結体
よシ高熱伝導率を有するものが開発されると、大規模集
積回路などの絶縁基板材料とし板及び半導体装置を提供
するにある。
Conventionally known methods for producing aluminum nitride sintered bodies include (1) reaction sintering method, (2) pressureless sintering method, and (3) hot press sintering method. Among these methods, the reactive sintering method is a method in which a metal aluminum compact is sintered while undergoing a nitriding reaction in a nitrogen gas atmosphere. In the reactive sintering method, the nitriding reaction is rate-determined by the diffusion of nitrogen gas, so in the case of thick products, unreacted metal remains in the center, and because the product is porous, it has not been put to practical use as an electrical insulating material. . In the pressureless sintering method, yttrium oxide and rare earth oxides are added to aluminum nitride powder.
A method is known in which yttrium oxide and powders of silicon dioxide, nickel, calcium oxide, etc. are added and mixed and then fired to form a molded body. Furthermore, in the hot press sintering method, powders such as aluminum oxide, yttrium oxide, and silicon dioxide are added to aluminum nitride powder, mixed, formed into a compact, and then heated and sintered under pressure. According to the conventionally known pressureless sintering method and hot press sintering method, a densified aluminum nitride sintered body can be obtained, and the sintered body has high strength, electrical insulation properties, and a low coefficient of thermal expansion. However, the thermal conductivity of the sintered body obtained by the above method is low, usually 0.07 Ca17m-(6)・C(
room temperature), and even large ones are 0.1 Cat/Saw/Category/C. From these points, if aluminum nitride sintered bodies with higher thermal conductivity were developed, they would be useful as insulating substrate materials for large-scale integrated circuits and semiconductor devices.

半導体素子及び配線層を有し、これらがリード線頗・C
以上、室温における電気抵抗率1012Ω鋼以上室温か
ら3000における平均熱膨張係数6XIO”/C以下
、焼結体の理論密度の90%以上の密度を有する窒化ア
ルミニウム焼結体で、べ均粒径が20μm以下である窒
化アルミニウム粉末にベリリウム及びベリリウム含有物
質、好ましくはその化合物中のベリリウム量を好ましく
は0.05〜lOX量%を添加して混合した粉末を加圧
成形し、非酸化性雰囲気中で1600〜2000cの温
度で常圧焼結するか、16oo〜2000rの温度と1
00 Kg/cWt”以上の加圧下でホットプレスして
、そのものの理論密度の90%以上の密度を得るのに十
分な時間焼結することによって得ることができる。
It has a semiconductor element and a wiring layer, and these are lead wires.
As described above, the aluminum nitride sintered body has an electrical resistivity at room temperature of 1012 Ω steel or more, an average thermal expansion coefficient of 6 A powder obtained by adding beryllium and a beryllium-containing substance, preferably an amount of beryllium in the compound preferably from 0.05 to 100% by amount of beryllium in the compound, to aluminum nitride powder having a diameter of 20 μm or less is press-molded, and the mixture is press-molded in a non-oxidizing atmosphere. Pressureless sintering at a temperature of 1600~2000c, or sintering at a temperature of 16oo~2000r and 1
It can be obtained by hot pressing under pressure of 0.00 Kg/cWt" or more and sintering for a time sufficient to obtain a density of 90% or more of its theoretical density.

本発明において添加するベリリウム量はα05〜10重
量%が好ましい。緻密化した焼結体を得るには0.05
重量%以上が好ましく、焼結体の熱膨張係数を6 X 
10−”/C以下にするには10重量%以下が好ましい
。特に、シリコン半導体素子用の絶縁基板として使用す
る場合に好適である。
The amount of beryllium added in the present invention is preferably α05 to 10% by weight. 0.05 to obtain a densified sintered body
The coefficient of thermal expansion of the sintered body is preferably 6 x
In order to make it 10-''/C or less, it is preferably 10% by weight or less. It is particularly suitable when used as an insulating substrate for silicon semiconductor devices.

添加するベリリウムはベリリウム、硝酸ベリリウム、硫
酸ベリリウム、炭酸ベリリウム、リン酸ベリリウム、水
酸化ベリリウム、ハロゲン化ベリリウム、ベリリウムア
セチルアセトン、シュウ酸ベリリウム、炭化ベリリウム
、ホウ化ベリリウム、ケイ化ベリリウム、窒化ベリリウ
ム、酸化ベリリウム等のベリリウム化合物からなるベリ
リウム含有物質が用いられる。
The beryllium to be added is beryllium, beryllium nitrate, beryllium sulfate, beryllium carbonate, beryllium phosphate, beryllium hydroxide, beryllium halide, beryllium acetylacetone, beryllium oxalate, beryllium carbide, beryllium boride, beryllium silicide, beryllium nitride, beryllium oxide. A beryllium-containing substance consisting of a beryllium compound such as

窒化アルミニウム粉末は平均粒径が20μm以下、好ま
しくは104m以下の粒径が好ましboべIJ IJウ
ムまたはべIJ IJウム含有物質を添加混合した窒化
アルミニウム粉末成形体の焼結は非酸化性の雰囲気中で
行うことが好まし騒。酸化性雰囲気では窒化アルミニウ
ムが酸化するために所望の焼結体を得ることが困難にな
る。
The average particle size of the aluminum nitride powder is preferably 20 μm or less, preferably 104 μm or less. Sintering of the aluminum nitride powder compact containing bobeIJIJium or a material containing BetaIJIJium is performed using a non-oxidizing method. Preferably done in a noisy atmosphere. In an oxidizing atmosphere, aluminum nitride is oxidized, making it difficult to obtain a desired sintered body.

焼結温度は1600〜2000 C,好ましくは170
0〜1900Cが有効である。緻密な焼結体を得るには
1600C以上が好ましく、過燐酸を防止するには20
001:’以下が好ましい。焼結は常圧焼結法によって
も良いし、ホットプレス法によっても良い。もし、−軸
加圧式のホットプレス法で焼結体を製造する場合、収縮
は加圧軸方向にしか起らず、寸法精度が高く、常圧焼結
法による焼結体よりも高強度を有する焼結体を得ること
ができる。ホットプレス法では加圧する荷重の大きさは
使用するダイスの材質によって上限が決るが、100K
t/鐸!以上の荷重が加えられるものであれば所望の焼
結体を得ることができる。焼結時間は原料粉末の粒径、
ベリリウムまたはベリリウム含有物質の種類及び添加量
、温度、焼結時に加える荷重の有無及び大きさによシ最
適値が決る。一般的には原料粉末の粒径が小さく、温度
が高く、焼結時に荷重を加えた場合、特に加える荷重が
太き匹程短時間で緻密な焼結体が得られる。ベリリウム
またはベリリウム含有物質の種類及び添加量については
その種類及び添加量によシ多少の差がある。
Sintering temperature is 1600-2000C, preferably 170C
0 to 1900C is valid. The temperature is preferably 1600C or higher to obtain a dense sintered body, and 20C or higher to prevent superphosphoric acid.
001:' or less is preferable. The sintering may be performed by a pressureless sintering method or by a hot press method. If a sintered body is manufactured using the hot pressing method using negative-axis pressure, shrinkage will only occur in the axial direction of the press, resulting in higher dimensional accuracy and higher strength than the sintered body produced using the pressureless sintering method. A sintered body having the following properties can be obtained. In the hot press method, the upper limit of the applied load is determined by the material of the die used, but 100K
t/taku! If the above load can be applied, a desired sintered body can be obtained. The sintering time depends on the particle size of the raw powder,
The optimum value is determined by the type and amount of beryllium or beryllium-containing substance added, temperature, presence or absence and magnitude of load applied during sintering. In general, when the particle size of the raw material powder is small, the temperature is high, and a load is applied during sintering, a dense sintered body can be obtained in a shorter time, especially when the load is thicker. There are some differences in the type and amount of beryllium or beryllium-containing substances.

実肱例1 平均粒径が2μmの窒化アルミニウム粉末に平均粒径が
3μmの酸化べIJ IJウム粉末を0.03〜30重
量%添加し混合した。次いで該混合粉末を室温で100
0Kf/z”の圧力を加えて成形体とした。該成形体は
次に焼成炉中で減圧度lXl0−”〜I X 10−1
 torr中で焼結した。加熱は室温から1800t:
’まで約1hで昇温し、1800t:で0.5h保持し
たのち放冷した。上記によって製造した窒化アルミニウ
ム焼結体の特性と焼結体中のベリリウム含有量との関係
を第1図〜第4図に示す。
Practical Example 1 0.03 to 30% by weight of aluminum oxide powder with an average particle size of 3 μm was added to aluminum nitride powder with an average particle size of 2 μm and mixed. Then, the mixed powder was heated to 100% at room temperature.
A pressure of 0 Kf/z" was applied to form a molded body. The molded body was then placed in a firing furnace at a reduced pressure of lXl0-" to IX10-1.
Sintered in torr. Heating from room temperature to 1800t:
The temperature was raised to 1800 t in about 1 hour, maintained at 1800 t for 0.5 hours, and then allowed to cool. The relationship between the characteristics of the aluminum nitride sintered body produced as described above and the beryllium content in the sintered body is shown in FIGS. 1 to 4.

第1図〜第4図の結果よシ、窒化アルミニウム焼結体中
に含有されるベリリウムの量が0.05〜25重量%の
とき、0.3 cab/ cWl・8 ・C以上の高い
熱伝導率と1012Ω画以上の電気抵抗率が得られ、1
α5%以下で6×10″″″/C以下の低熱膨張係数を
有し、焼結体の理論密度の90%以上の密度を有する緻
密化した焼結体が得られる。
According to the results shown in Figures 1 to 4, when the amount of beryllium contained in the aluminum nitride sintered body is 0.05 to 25% by weight, a high heat of 0.3 cab/cWl・8・C or more is generated. Conductivity and electrical resistivity of 1012Ω or higher can be obtained, and 1
A densified sintered body having a low coefficient of thermal expansion of 6×10″″/C or less at α5% or less and a density of 90% or more of the theoretical density of the sintered body is obtained.

実砿例2 窒化アルミニウム粉末に対して酸化ベリリウム粉末を3
重量%添加した混合粉末から成形体を得て、焼結条件を
変えて真空中で焼結体を製造した。
Actual example 2 Beryllium oxide powder for aluminum nitride powder
A molded body was obtained from the mixed powder to which % by weight was added, and the sintered body was manufactured in vacuum by changing the sintering conditions.

第1表は焼結体の製造条件と得られる焼結体の相対密度
の関係を示す表である。得られた焼結体はその相対密度
を90%以上にした場合、いずれも0.4 Cat/副
・S−C以上の熱伝導率(室温)と、10口Ω・1以上
の電気抵抗率(室温)と、42〜4.3 X 10”/
rの熱膨張係数(室温〜aoorの平均値)を有した。
Table 1 is a table showing the relationship between the manufacturing conditions of the sintered body and the relative density of the obtained sintered body. When the relative density of the obtained sintered body is 90% or more, the thermal conductivity (room temperature) of 0.4 Cat/S-C or higher and the electrical resistivity of 10Ω/1 or higher are achieved. (room temperature) and 42 to 4.3 x 10”/
It had a coefficient of thermal expansion of r (average value from room temperature to aoor).

実験例3 窒化アルミニウム粉末に対して酸化ベリリウム粉末を3
重量%添加した混合粉末から成形体を得て、実、験@1
に記載した方法と同様にして焼結体を得た。この実施例
は焼結体の製造時の雰囲気をアルゴンガス、ヘリウムガ
ス、窒素ガス、水素ガスと種々変えたものである。得ら
れた焼結体はいずれも実験例1に記載した焼結体中のペ
リ17ウム含有量が1重量%のものと同様の性能を有し
た。
Experimental example 3 Beryllium oxide powder was added to aluminum nitride powder by 3
A molded body was obtained from the mixed powder to which wt% was added, and an actual experiment @1 was carried out.
A sintered body was obtained in the same manner as described in . In this example, the atmosphere during the production of the sintered body was varied among argon gas, helium gas, nitrogen gas, and hydrogen gas. All of the obtained sintered bodies had the same performance as the sintered body described in Experimental Example 1 in which the per-17ium content was 1% by weight.

実験例4 窒化アルミニウムに対して金属ベリリウムまたは硝駿ベ
リリウム、硫酸ベリリウム、炭酸ベリリウム、リン酸ベ
リリウム、水酸化ベリリウム、ハロゲン化ベリリウム、
ベリリウムアセチルアセトン、シュウ酸ベリリウム、戻
化ベリリウム、ホク化ベリリウム、ケイ化ベリリウム、
窒化ベリリウムの1種をベリリウムとして0.03〜1
0重量%添加して混合し、実験例1と同様にして焼結体
を製造した。得られた焼結体はベリリウムまたはベリリ
ウム含有化合物中のベリリウムを0.05%以上添加し
た場合には相対密度90%以上に緻密化され、実験何重
に記載した焼結体と同様の性能を第1表 第   2   表 示した。
Experimental Example 4 For aluminum nitride, beryllium metal or beryllium nitrate, beryllium sulfate, beryllium carbonate, beryllium phosphate, beryllium hydroxide, beryllium halide,
Beryllium acetylacetone, beryllium oxalate, reconstituted beryllium, beryllium chloride, beryllium silicide,
0.03 to 1 as beryllium, a type of beryllium nitride
0% by weight was added and mixed, and a sintered body was produced in the same manner as in Experimental Example 1. The obtained sintered body is densified to a relative density of 90% or more when beryllium or beryllium in a beryllium-containing compound is added in an amount of 0.05% or more, and has the same performance as the sintered body described in many experiments. Shown in Table 1, No. 2.

実験例5 平均粒径の異なる窒化アルミニウム粉末に酸化ベリリウ
ム粉末を3重量%添加して混合し、実験例1と同様にし
て焼結体を得た。第2表に示す如く、得られた焼結体の
相対密度は窒化アルミニウム粉末の平均粒径が204m
以下のとき90%以上を有する。相対密度が90%以上
に緻密化した焼結体は0.4 Cat/crIM・S 
−1:l’以上の熱伝導率(室温)、1o1!Ω・α以
上の電気抵抗率(室温)42〜4.3X10−・/Cの
熱膨張係数(室温〜300Cの平均値)を有した。
Experimental Example 5 A sintered body was obtained in the same manner as in Experimental Example 1 by adding and mixing 3% by weight of beryllium oxide powder to aluminum nitride powders having different average particle sizes. As shown in Table 2, the relative density of the obtained sintered body was determined by the average particle size of the aluminum nitride powder being 204 m.
It has 90% or more in the following cases. A sintered body whose relative density is 90% or more is 0.4 Cat/crIM・S
-1: Thermal conductivity (room temperature) of l' or more, 1o1! It had an electrical resistivity (room temperature) of Ω·α or more and a thermal expansion coefficient (average value from room temperature to 300 C) of 42 to 4.3×10−/C.

実施例 本発明の具体的な適用例として、実於例1で得たベリリ
ウム含有量が1重量%である電気絶縁性を有する窒化ア
ルミニウム焼結体を絶縁基板として用いた半導体パワー
モジュールについて説明する。第・5図は従来構造の組
立断面図である。導体4とヒート7/り6及びヒートク
ンクロと金属支持板8の間を有機絶縁物5及びアルミナ
基板7で絶縁し、またシリコン素子1とヒートシンク6
との熱膨張係数の差によるひずみを緩和するためにモリ
ブデンスペーサー3を介在させたものである。
EXAMPLE As a specific application example of the present invention, a semiconductor power module will be described in which the electrically insulating aluminum nitride sintered body obtained in Example 1 and having a beryllium content of 1% by weight is used as an insulating substrate. . FIG. 5 is an assembled sectional view of the conventional structure. An organic insulator 5 and an alumina substrate 7 are used to insulate between the conductor 4 and the heat 7/rear 6 and between the heat seal and the metal support plate 8, and between the silicon element 1 and the heat sink 6.
A molybdenum spacer 3 is interposed in order to alleviate the strain caused by the difference in thermal expansion coefficient between the two.

第6図は本発明の窒化アルミニウム焼結体を絶縁基板に
用いた半導体パワーそジ二−ルの組立所間図である。絶
縁基板15はシリコン素子11と直接ろう付1着されて
お少、本発明の焼結体を用いることによシ極めて簡単な
構造にすることができる。
FIG. 6 is an assembly diagram of a semiconductor power generator using the aluminum nitride sintered body of the present invention as an insulating substrate. The insulating substrate 15 is directly attached to the silicon element 11 by brazing, and by using the sintered body of the present invention, an extremely simple structure can be obtained.

上記半導体装置について−600で30分保持したのち
室温で5分保持し、さらに125Cに昇温しで30分保
持するヒートサイクル試験を行った。従来の半導体装置
(第5図)は20回のヒートサイクルで半田接続部9及
び10が疲労によυ破断が生じた。本発明の半導体装置
(第6図)は150回のヒートサイクルの後でも異常が
認めらは、高度に緻密化され易く、高熱伝導率を有する
A heat cycle test was conducted on the above semiconductor device by holding it at -600 for 30 minutes, then holding it at room temperature for 5 minutes, then raising the temperature to 125C and holding it for 30 minutes. In the conventional semiconductor device (FIG. 5), the solder joints 9 and 10 broke due to fatigue after 20 heat cycles. Although the semiconductor device of the present invention (FIG. 6) shows no abnormalities even after 150 heat cycles, it tends to be highly densified and has high thermal conductivity.

さらに組成を調整することによって高電気抵抗率及び低
熱膨張係数を併せ有するという特徴を持つ。
Furthermore, by adjusting the composition, it has the characteristics of having both high electrical resistivity and a low coefficient of thermal expansion.

従って、前述した如き半導体装置の電気絶縁用基板に用
いることによって優れた効果を得ることができる。更に
、本発明の焼結体は耐熱、耐酸化性や耐食性、耐薬品性
が要求される部材、耐熱衝撃性が要求される部材、高温
において高強度が要求される部材としても好適である。
Therefore, excellent effects can be obtained by using it as an electrically insulating substrate for a semiconductor device as described above. Further, the sintered body of the present invention is suitable as a member that requires heat resistance, oxidation resistance, corrosion resistance, and chemical resistance, a member that requires thermal shock resistance, and a member that requires high strength at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベリ17ウム含有量と焼結体の相対密度/IA
X の関係を示す図、第2図はベリリウム含有量と焼結体の
熱伝導率(室温ンの関係を示す図、第3図はぺlJ、l
Jウム含有量と焼結体の電気抵抗率(室温)の関係を示
す図、第4図はベリリウム含有量と熱膨張係数(室温〜
300C)の関係を示す図、第5図は従来のシリコン半
導体装置の組立断面図、第6図は本発明の焼結体を基板
に用すたシリコン半導体装置の組立断面図である。 l及び11・・・シリコン素子、2及び12・・・リー
ド線、3・・・モリブデンスペーサ、4及び13・・・
導体、5・・・有機絶縁物、6・・・ヒートシンク、7
・・・アルミナ基板、8・・・支持板、9.10及び1
4・・・半田、15・・・窒化アルミニウム焼結体基板
。 代理人ジF理士 小 川 pjj  男(/、)X/z
與9↓
Figure 1 shows beryl-17ium content and relative density of sintered body/IA
Figure 2 shows the relationship between the beryllium content and the thermal conductivity of the sintered body (room temperature), Figure 3 shows the relationship between
Figure 4 shows the relationship between the Jium content and the electrical resistivity (room temperature) of the sintered body.
300C), FIG. 5 is an assembled sectional view of a conventional silicon semiconductor device, and FIG. 6 is an assembled sectional view of a silicon semiconductor device using the sintered body of the present invention as a substrate. l and 11... silicon element, 2 and 12... lead wire, 3... molybdenum spacer, 4 and 13...
Conductor, 5... Organic insulator, 6... Heat sink, 7
...Alumina substrate, 8...Support plate, 9.10 and 1
4...Solder, 15...Aluminum nitride sintered body substrate. Agent JiF Physician Ogawa pjj Male (/,)X/z
與9↓

Claims (1)

【特許請求の範囲】 1、窒化アルミニウムを主成分とする焼結体基板に半導
体素子接続用金属層及び配線層が形成されていることを
特徴とする半導体装置板。 2、前記焼結体はベリリウム又はベリリウム含有物質を
ベリリウム量で0.05〜10重量%含有する特許請求
の範囲第1項に記載の半導体装置搭載用基板。 3、前記焼結体は室温の熱伝導率が0.3cal/cm
・s・℃以上及び室温から300℃における平均熱膨張
係数が6×10^−^6/℃以下である特許請求の範囲
第1又は2項に記載の半導体装置搭載用基板。 4、窒化アルミニウムを主成分とする焼結体基板上に半
導体素子及び配線層が設けられ、前記半導体素子と配線
層とがリード線によって電気的に接続されていることを
特徴とする半導体装置。 5、前記焼結体は室温の熱伝導率が0.3cal/cm
・s・℃以上及び室温から300℃における平均熱膨張
係数が6×10^−^6/℃以下である特許請求の範囲
第4項に記載の半導体装置。 6、前記焼結体はベリリウム又はベリリウム含有物質を
ベリリウム量で0.05〜10重量%含有する特許請求
の範囲第4又は5項に記載の半導体装置。
[Scope of Claims] 1. A semiconductor device board, characterized in that a metal layer for connecting semiconductor elements and a wiring layer are formed on a sintered substrate mainly composed of aluminum nitride. 2. The substrate for mounting a semiconductor device according to claim 1, wherein the sintered body contains beryllium or a beryllium-containing substance in an amount of 0.05 to 10% by weight. 3. The thermal conductivity of the sintered body at room temperature is 0.3 cal/cm.
- The substrate for mounting a semiconductor device according to claim 1 or 2, wherein the average coefficient of thermal expansion from s·°C or higher and from room temperature to 300°C is 6×10^-^6/°C or less. 4. A semiconductor device, characterized in that a semiconductor element and a wiring layer are provided on a sintered substrate mainly composed of aluminum nitride, and the semiconductor element and the wiring layer are electrically connected by a lead wire. 5. The thermal conductivity of the sintered body at room temperature is 0.3 cal/cm.
- The semiconductor device according to claim 4, wherein the average coefficient of thermal expansion from room temperature to 300°C is 6×10^-^6/°C or less. 6. The semiconductor device according to claim 4 or 5, wherein the sintered body contains beryllium or a beryllium-containing substance in an amount of 0.05 to 10% by weight.
JP63103957A 1988-04-28 1988-04-28 Substrate for mounting semiconductor device and semiconductor device Granted JPS63313842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103957A JPS63313842A (en) 1988-04-28 1988-04-28 Substrate for mounting semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103957A JPS63313842A (en) 1988-04-28 1988-04-28 Substrate for mounting semiconductor device and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56066376A Division JPS57181356A (en) 1981-04-30 1981-04-30 Sintered aluminum nitride body with high heat conductivity

Publications (2)

Publication Number Publication Date
JPS63313842A true JPS63313842A (en) 1988-12-21
JPH0470776B2 JPH0470776B2 (en) 1992-11-11

Family

ID=14367879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103957A Granted JPS63313842A (en) 1988-04-28 1988-04-28 Substrate for mounting semiconductor device and semiconductor device

Country Status (1)

Country Link
JP (1) JPS63313842A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102310A (en) * 1977-02-18 1978-09-06 Tokyo Shibaura Electric Co Heat conducting base plates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102310A (en) * 1977-02-18 1978-09-06 Tokyo Shibaura Electric Co Heat conducting base plates

Also Published As

Publication number Publication date
JPH0470776B2 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
US4585706A (en) Sintered aluminum nitride semi-conductor device
EP0028802B1 (en) Electrically insulating substrate and a method of making such a substrate
US4997798A (en) Process for producing aluminum nitride sintered body with high thermal conductivity
US4672046A (en) Sintered aluminum nitride body
JPH054950B2 (en)
JPS5832073A (en) Sintered body
JPS5832072A (en) Aluminum nitride sintered body and manufacture
JPS5831755B2 (en) Base for electrical insulation
JPS63313842A (en) Substrate for mounting semiconductor device and semiconductor device
JPS5969473A (en) Sintering silicon carbide powder composition
JPS5815953B2 (en) Board for electrical equipment
JPH0247856B2 (en)
JPS61146764A (en) Aluminum nitride sintered body and manufacture
JPH0522670B2 (en)
JPS6236988B2 (en)
JPS593436B2 (en) Charcoal-fired silicon powder composition for sintering
JPS631268B2 (en)
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JPS61205665A (en) Electrically insulating substrate and manufacture
JPH01188472A (en) Production of aluminum nitride sintered body
JPS6330372A (en) Manufacture of aluminum nitride sintered body
JPS6236989B2 (en)
JPH0627032B2 (en) Method for manufacturing aluminum nitride sintered body
JPS6342414B2 (en)
JPS61215263A (en) Aluminum nitride sintered body and manufacture