JPS6236989B2 - - Google Patents

Info

Publication number
JPS6236989B2
JPS6236989B2 JP57019640A JP1964082A JPS6236989B2 JP S6236989 B2 JPS6236989 B2 JP S6236989B2 JP 57019640 A JP57019640 A JP 57019640A JP 1964082 A JP1964082 A JP 1964082A JP S6236989 B2 JPS6236989 B2 JP S6236989B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
weight
thermal conductivity
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57019640A
Other languages
Japanese (ja)
Other versions
JPS57166368A (en
Inventor
Yukio Takeda
Kosuke Nakamura
Yasuo Matsushita
Tokio Oogoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57019640A priority Critical patent/JPS57166368A/en
Publication of JPS57166368A publication Critical patent/JPS57166368A/en
Publication of JPS6236989B2 publication Critical patent/JPS6236989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な高熱伝導性の炭化ケイ素焼結体
に関する。 近年、半導体工業の進歩は目ざましく、大規模
集積回路等に使用される絶縁基板には半導体チツ
プ等の回路構成要素が増々高密度に搭載形成され
るようになつてきた。さらに大容量、小型化に対
する要請も大きくなり、使用する絶縁基板は熱放
散性の良い材料が要求されるようになつてきた。
従来、こうした絶縁基板用材料としてはアルミナ
焼結体が使用されているが、アルミナ基板は熱放
散性があまり良くないのでこうした目的を達成す
るためには、より熱放散の大きい絶縁基板の開発
が要請されるようになつてきた。絶縁基板材料と
しては、 (1) 電気絶縁性が大きいこと、 (2) 熱伝導率が大きいこと、 (3) 熱膨張係数がシリコンの熱膨張係数に近いこ
と、 (4) 機械的強度が大きいこと、 などが要求される。 ところで炭化ケイ素焼結体は、その熱膨張係数
が約4×10-6/℃で、アルミナのそれの約8×
10-6/℃に比べて小さく、シリコンの熱膨張係数
約3.3×10-6/℃に近い。また機械強度も曲げ強
さで50Kg/mm2以上を有し、アルミナのそれの約20
Kg/mm2に比べると極めて高強度であることが知ら
れている。炭化ケイ素焼結体の熱伝導率は0.1〜
0.3cal/cm・sec・℃でアルミナの約3倍以上の
値を有する。これらの点から、炭化ケイ素は電気
絶縁性の大きいものが開発されると、大規模集積
回路などの絶縁基板用材料として極めて有用であ
る。 炭化ケイ素は炭素とケイ素から成る−族化
合物半導体である。このため、電気絶縁性を有す
る高密度焼結体を得ることは困難と考えられてお
り、事実、こうしたものはこれまで見当らなかつ
た。 炭化ケイ素は共有結合性の大きい化合物である
ため、硬く強靭で、1500℃以上の高温でも耐酸化
性、耐食性に優れた安定な物質であることは良く
知られているが、この強い共有結合性のため高密
度焼結が困難な材料であつた。 そこで高密度炭化ケイ素焼結体を得るために種
種の焼結助剤が用いられてきた。 例えば、アルミニウムや鉄を添加してホツトプ
レスすることにより、炭化ケイ素の理論密度の98
%の密度を有する焼結体が得られることが知られ
ている〔Alliegro et al.J.Am.Ceram.Soc.、39
386〜389(1956)〕。また、ホウ素と炭素を用い
て、ホツトプレス法または無加圧法で高密度の焼
結体を得る方法が知られている(特開昭49−
99308号)。これらはいずれもガスタービン用部品
等の耐熱構造材を提供することを目的とするもの
である。これらの焼結助剤を用いた炭化ケイ素焼
結体の熱伝導率の値はいずれも0.4cal/cm・
sec・℃以下である。 また、炭化ケイ素にBeを添加して焼結したも
のが、特開昭53−67711号、特開昭55−32796号公
報およびその対応米国特許第4172109号に示され
ているが、これは原料の炭化ケイ素粉末中に0.5
〜5重量%の過剰炭素を含むものを用いて焼結し
た高強度材料に関するもので、とくにこうした過
剰炭素はその焼結体の熱伝導性を著しく損うこと
を発明者らは見い出し、本発明に致つた。 本発明の目的は熱伝導率の大きい炭化ケイ素焼
結体を提供するにある。 本発明は、酸化ベリリウムがベリリウム量で
0.1〜3.5重量%、アルミニウム0.1重量%以下、ホ
ウ素0.1重量%以下、遊離炭素0.4重量%以下およ
び残部が実質的に炭化ケイ素から成る炭化ケイ素
焼結体にある。 不純物として、アルミニウム0.1重量%以下及
びホウ素0.1重量%以下とすることにより、さら
に0.6cal/cm・sec・℃以上の熱伝導率を得るこ
とができる。 焼結体の密度を理論密度の90%以上とすること
が好ましい。 本発明の焼結体は、焼成状態で炭化ケイ素を主
成分とし、これにベリリウム0.1〜3.5重量%を含
み、室温における熱伝導率が0.4cal/cm・sec・
℃以上になるように不純物を所定量に規制した炭
化ケイ素粉末に、酸化ベリリウムを添加した混合
粉末を高密度に焼成することによつて得られる。
特に、高温で加圧焼成するホツトプレス法が好ま
しい。 ベリリウム量が0.1重量%より少ないと室温で
0.4cal/cm・sec・℃以上の熱伝導率を得ること
ができない。 一方3.5重量%より多いと焼結体の熱膨張係数
が4×10-6℃よりも大きくなり、とくに、シリコ
ン半導体素子用の支持体として使用する場合など
に問題となる。 上記ベリリウムはBeOとして添加する。添加は
炭化ケイ素粉末にBeO粉末を混合する。このとき
BeOとしては約0.5〜14重量%添加することによ
り焼結体中に0.1〜3.5重量%含ませることができ
る。但し焼結時の雰囲気、温度によつて多小変
る。 本発明において重要なことは、炭化ケイ素粉末
中に0.4重量%を越える遊離炭素を含まないこと
である。0.4重量%を越える遊離炭素は熱伝導率
を著しく低下させる。 本発明において使用する上記酸化ベリリウムお
よび炭化ケイ素微粉末は、好ましくは平均10μ
m、更に好ましくは2μm以下の粒径がよい。焼
結体中にはアルミニウム、ホウ素が所定量以上含
まれないことが望ましいが、両者とも0.1重量%
以下の含有量であれば0.6cal/cm・sec・℃以上
の高熱伝導率が得られる。アルミニウム及びホウ
素が上記より多く含まれると熱伝導率が0.6cal/
cm・sec・℃より小さくなつてしまう。 また、熱伝導率が0.5cal/cm・sec・℃以上の
ものを得たいときは、炭化ケイ素はその主成分が
α型SiCである粉末を用いて焼結するのが良い。 酸化ベリリウムを含有する炭化ケイ素粉末の焼
結は非酸化性雰囲気がよい。酸化雰囲気では炭化
ケイ素粉末表面が酸化し高密度な焼結体が得られ
にくい。 好ましい焼結温度は1850〜2500℃、更に好まし
くは1900〜2300℃である。温度が1850℃より低い
場合には高密度な焼結体が得られにくい。2500℃
より高い場合には炭化ケイ素の昇華が激しく、焼
結体は過焼成になり、緻密な磁器が得られにく
い。焼結時に試料を高圧で加圧するホツトプレス
法では、加圧する荷重は使用するダイスの材質に
よる。黒鉛製のダイスでは約700Kg/cm2まで圧力
を加えることができる。 しかし、こうした大きな圧力を加えなくとも高
密度な焼結体を得ることができる。通常の圧力は
100〜300Kg/cm2である。またサブミクロンの粒径
を有する炭化ケイ素粉末を使用することにより、
ホツトプレスしないでも緻密(理論値90%)な焼
結体を得ることができる。焼結時間は原料粉末の
粒径、温度、焼結時に加える荷重により最適値が
決められる。一般的には原料粉末の粒径が小さ
く、温度が高く、焼結時に加える荷重が大きいほ
ど短時間で高密度の焼結体が得られる。 実施例 1 平均粒径2μm遊離炭素約0.2重量%、アルミ
ニウム約0.02重量%、ホウ素痕跡の炭化ケイ素粉
末に粒径10μm以下の酸化ベリリウム粉末を0.1
〜20重量%添加し混合した。次いで混合粉末を室
温で1000Kg/cm2の圧力を加えて成形体とした。成
形体は1.60〜1.67g/cm3の密度(炭化ケイ素の理
論密度の50〜52%の相対密度)を有する。次に成
型体を黒鉛製のダイスに入れ、減圧度1×10-5
1×10-3torr中でホツトプレス法により焼結し
た。焼結圧力は300Kg/cm2で、加熱は室温から
2000℃まで約2hで昇温し、2000℃で1h保持した
のち加熱電源を切つて放冷した。圧力は温度が
1500℃以下になつてから解除した。上記によつて
製造した炭化ケイ素焼結体の特性とベリリウムの
含有量との関係を第1図〜第4図に示す。 第1図〜第3図の結果より、炭化ケイ素焼結体
に含有するベリリウムの量が0.1〜3.5重量%の範
囲の場合に高密度で高熱伝導率、高電気抵抗率、
低熱膨張係数(4×10-6/℃以下)を併せ有する
焼結体が得られる。 実施例 2 実施例1と同じ炭化ケイ素粉末に対し酸化ベリ
リウム粉末を4重量%添加した混合粉末をホツト
プレス法により焼結体を得た。このときの焼結体
に含まれるベリリウムの含有量は約1重量%であ
つた。本実施例においてはホツトプレス条件を変
えて焼結体を作製した。第1表は得られた焼結体
の特性とホツトプレス条件との関係を示すもの
で、温度1850〜2500℃、圧力100Kg/cm2以上で焼
結することにより、理論密度の90%以上、
0.4cal/cm・sec・℃以上の熱伝導率、1011Ωcm以
上の電気抵抗率および3.3×10-6/℃の熱膨張係
数の焼結体を得た。
The present invention relates to a novel silicon carbide sintered body with high thermal conductivity. In recent years, the semiconductor industry has made remarkable progress, and circuit components such as semiconductor chips are increasingly mounted on insulating substrates used in large-scale integrated circuits and the like at an increasingly high density. Furthermore, there is a growing demand for larger capacity and smaller size, and the insulating substrate used is now required to be made of a material with good heat dissipation properties.
Conventionally, alumina sintered bodies have been used as the material for such insulating substrates, but alumina substrates do not have very good heat dissipation, so in order to achieve this purpose, it is necessary to develop an insulating substrate with higher heat dissipation. It has started to be requested. As an insulating substrate material, it has (1) high electrical insulation, (2) high thermal conductivity, (3) thermal expansion coefficient close to that of silicon, and (4) high mechanical strength. The following are required. By the way, the thermal expansion coefficient of silicon carbide sintered body is about 4×10 -6 /℃, which is about 8× that of alumina.
10 -6 /°C, and close to the thermal expansion coefficient of silicon, approximately 3.3×10 -6 /°C. It also has a mechanical strength of over 50Kg/mm2 in terms of bending strength, which is about 20% higher than that of alumina.
It is known to have extremely high strength compared to Kg/mm 2 . Thermal conductivity of silicon carbide sintered body is 0.1~
It has a value of 0.3 cal/cm・sec・℃, which is about three times higher than that of alumina. From these points, if silicon carbide with high electrical insulation properties is developed, it will be extremely useful as a material for insulating substrates such as large-scale integrated circuits. Silicon carbide is a - group compound semiconductor consisting of carbon and silicon. For this reason, it is considered difficult to obtain a high-density sintered body having electrical insulation properties, and in fact, such a body has not been found to date. Because silicon carbide is a compound with strong covalent bonds, it is well known that it is hard and strong, and is a stable substance with excellent oxidation and corrosion resistance even at high temperatures of 1500°C or higher. Therefore, it was a difficult material to sinter at high density. Therefore, various sintering aids have been used to obtain high-density silicon carbide sintered bodies. For example, by adding aluminum or iron and hot pressing, silicon carbide has a theoretical density of 98%.
% [Alliegro et al. J. Am. Ceram. Soc., 39 ,
386-389 (1956)]. In addition, a method is known that uses boron and carbon to obtain a high-density sintered body using a hot press method or a non-pressure method (Japanese Unexamined Patent Application Publication No. 49-118).
No. 99308). All of these are intended to provide heat-resistant structural materials such as gas turbine parts. The thermal conductivity of silicon carbide sintered bodies using these sintering aids is 0.4 cal/cm・
sec・℃ or less. In addition, silicon carbide with Be added and sintered is shown in JP-A-53-67711, JP-A-55-32796, and their corresponding U.S. Pat. No. 4,172,109; 0.5 in silicon carbide powder
The present invention relates to a high-strength material sintered using a material containing up to 5% by weight of excess carbon. I got it. An object of the present invention is to provide a silicon carbide sintered body with high thermal conductivity. In the present invention, beryllium oxide has a beryllium content.
The silicon carbide sintered body is comprised essentially of 0.1 to 3.5% by weight, 0.1% by weight or less of aluminum, 0.1% by weight or less of boron, 0.4% by weight or less of free carbon, and the remainder essentially silicon carbide. By controlling the impurities to be 0.1% by weight or less of aluminum and 0.1% by weight or less of boron, it is possible to further obtain a thermal conductivity of 0.6 cal/cm·sec·°C or more. It is preferable that the density of the sintered body is 90% or more of the theoretical density. The sintered body of the present invention contains silicon carbide as a main component in the fired state, contains 0.1 to 3.5% by weight of beryllium, and has a thermal conductivity of 0.4 cal/cm・sec・
It is obtained by firing a mixed powder of silicon carbide powder containing impurities controlled to a predetermined amount above .degree. C. and beryllium oxide to a high density.
In particular, a hot press method in which pressure firing is performed at a high temperature is preferred. If the amount of beryllium is less than 0.1% by weight, at room temperature
It is not possible to obtain a thermal conductivity of 0.4 cal/cm・sec・℃ or higher. On the other hand, if the amount exceeds 3.5% by weight, the coefficient of thermal expansion of the sintered body becomes greater than 4×10 −6 ° C., which poses a problem particularly when used as a support for silicon semiconductor devices. The above beryllium is added as BeO. Addition involves mixing BeO powder into silicon carbide powder. At this time
By adding about 0.5 to 14% by weight of BeO, it can be contained in the sintered body in an amount of 0.1 to 3.5% by weight. However, it varies slightly depending on the atmosphere and temperature during sintering. What is important in the present invention is that the silicon carbide powder does not contain more than 0.4% by weight of free carbon. More than 0.4% by weight of free carbon significantly reduces thermal conductivity. The beryllium oxide and silicon carbide fine powders used in the present invention preferably have an average of 10μ
The particle size is preferably 2 μm or less, more preferably 2 μm or less. It is desirable that the sintered body does not contain more than a specified amount of aluminum and boron, but both are 0.1% by weight.
If the content is below, a high thermal conductivity of 0.6 cal/cm・sec・℃ or more can be obtained. If more aluminum and boron are contained than above, the thermal conductivity will be 0.6cal/
It becomes smaller than cm・sec・℃. Furthermore, when it is desired to obtain a thermal conductivity of 0.5 cal/cm·sec·°C or higher, it is preferable to sinter silicon carbide using a powder whose main component is α-type SiC. Sintering of silicon carbide powder containing beryllium oxide is preferably performed in a non-oxidizing atmosphere. In an oxidizing atmosphere, the surface of silicon carbide powder is oxidized, making it difficult to obtain a high-density sintered body. The preferred sintering temperature is 1850-2500°C, more preferably 1900-2300°C. If the temperature is lower than 1850°C, it is difficult to obtain a high-density sintered body. 2500℃
If the temperature is higher, the sublimation of silicon carbide will be intense, the sintered body will be overfired, and it will be difficult to obtain dense porcelain. In the hot press method, which presses the sample under high pressure during sintering, the pressurizing load depends on the material of the die used. Graphite dies can apply pressure up to approximately 700 kg/cm 2 . However, a high-density sintered body can be obtained without applying such a large pressure. The normal pressure is
It is 100-300Kg/ cm2 . In addition, by using silicon carbide powder with submicron particle size,
A dense sintered body (90% of the theoretical value) can be obtained without hot pressing. The optimum value of the sintering time is determined by the particle size of the raw powder, the temperature, and the load applied during sintering. Generally, the smaller the particle size of the raw material powder, the higher the temperature, and the greater the load applied during sintering, the faster a high-density sintered body can be obtained. Example 1 0.1% beryllium oxide powder with a particle size of 10 μm or less is added to silicon carbide powder with an average particle size of 2 μm, about 0.2% by weight of free carbon, about 0.02% by weight of aluminum, and traces of boron.
~20% by weight was added and mixed. Next, a pressure of 1000 Kg/cm 2 was applied to the mixed powder at room temperature to form a compact. The shaped body has a density of 1.60-1.67 g/cm 3 (relative density of 50-52% of the theoretical density of silicon carbide). Next, the molded body is placed in a graphite die and the degree of vacuum is 1×10 -5 ~
Sintering was performed by hot pressing in 1×10 −3 torr. The sintering pressure is 300Kg/ cm2 , and heating starts from room temperature.
The temperature was raised to 2000°C in about 2 hours, held at 2000°C for 1 hour, and then the heating power was turned off and allowed to cool. pressure is temperature
It was lifted after the temperature dropped below 1500℃. The relationship between the characteristics of the silicon carbide sintered body produced as described above and the beryllium content is shown in FIGS. 1 to 4. From the results shown in Figures 1 to 3, when the amount of beryllium contained in the silicon carbide sintered body is in the range of 0.1 to 3.5% by weight, it has high density, high thermal conductivity, high electrical resistivity,
A sintered body having a low coefficient of thermal expansion (4×10 -6 /°C or less) can be obtained. Example 2 A mixed powder obtained by adding 4% by weight of beryllium oxide powder to the same silicon carbide powder as in Example 1 was used to obtain a sintered body by hot pressing. The content of beryllium contained in the sintered body at this time was about 1% by weight. In this example, sintered bodies were produced by changing hot pressing conditions. Table 1 shows the relationship between the properties of the obtained sintered body and the hot pressing conditions. By sintering at a temperature of 1850 to 2500°C and a pressure of 100 kg/cm 2 or more, it has a density of 90% or more of the theoretical density.
A sintered body with a thermal conductivity of 0.4 cal/cm·sec·°C or higher, an electrical resistivity of 10 11 Ωcm or higher, and a thermal expansion coefficient of 3.3×10 -6 /°C was obtained.

【表】【table】

【表】 第4図は実施例1及び2より相対密度と熱伝導
率の関係を示す線図である。図に示す如く、熱伝
導率は相対密度を90%以上とすることにより
0.4cal/cm・sec・℃以上の値が得られる。図中
の%はベリリウム含有量である。 実施例 3 実施例1と同じ炭化ケイ素粉末を使用し、炭化
ケイ素の焼結体は実施例1と同様に、酸化ベリリ
ウムの添加量を3重量%とし、焼結時の雰囲気を
アルゴンガス、ヘリウムガスおよび窒素ガスを使
用し製造した。得られた焼結体中のベリリウムの
含有量は0.9重量%であつた。その特性は実施例
1のベリリウム含有量1重量%の焼結体とほぼ同
じであつた。 実施例 4 平均粒径が0.2〜2.0μmの実施例1の炭化ケイ
素粉末に酸化ベリリウムを2重量%添加して混合
したのち、実施例1と同様にしてホツトプレス法
により焼結体を製造した。第2表は炭化ケイ素原
料粉末の平均粒径と得られた焼結体の相対密度の
関係である。焼結体は炭化ケイ素原料粉末の平均
粒径が10μm以下であれば相対密度95%以上に緻
密化する。また、相対密度が95%以上に緻密化し
た焼結体は実施例1のベリリウム含有量0.4重量
%の場合と同様な特性を示した。炭化ケイ素原料
粉末の平均粒径が10μmより大きく、緻密化が十
分進行しなかつた焼結体では熱伝導率が0.2cal/
cm・sec・℃以下、機械的強度が10Kg/mm2以下と
小さい値であつた。
[Table] FIG. 4 is a diagram showing the relationship between relative density and thermal conductivity from Examples 1 and 2. As shown in the figure, the thermal conductivity can be improved by setting the relative density to 90% or more.
A value of 0.4cal/cm・sec・℃ or more can be obtained. % in the figure is beryllium content. Example 3 The same silicon carbide powder as in Example 1 was used, and the sintered body of silicon carbide was made in the same manner as in Example 1, with the amount of beryllium oxide added being 3% by weight, and the atmosphere during sintering being argon gas and helium. Manufactured using gas and nitrogen gas. The content of beryllium in the obtained sintered body was 0.9% by weight. Its properties were almost the same as those of the sintered body of Example 1 with a beryllium content of 1% by weight. Example 4 After adding and mixing 2% by weight of beryllium oxide to the silicon carbide powder of Example 1 having an average particle size of 0.2 to 2.0 μm, a sintered body was produced by hot pressing in the same manner as in Example 1. Table 2 shows the relationship between the average particle size of the silicon carbide raw material powder and the relative density of the obtained sintered body. If the average particle size of the silicon carbide raw material powder is 10 μm or less, the sintered body will be densified to a relative density of 95% or more. Further, the sintered body whose relative density was densified to 95% or more showed characteristics similar to those of Example 1 with a beryllium content of 0.4% by weight. In a sintered body in which the average particle size of the silicon carbide raw material powder is larger than 10 μm and densification has not progressed sufficiently, the thermal conductivity is 0.2 cal/
The mechanical strength was 10 Kg/mm 2 or less, which was a small value.

【表】 実施例 5 実施例1と同じ炭化ケイ素粉末に酸化ベリリウ
ム粉末を2重量%添加し、さらに不純物としてカ
ーボンブラツク(粒径0.1μm以下の微粉末)を
炭化ケイ素に対して0.3〜1重量%添加して混合
粉末とし、ホツトプレス法により焼結体を得た。
第3表はカーボンブラツクの添加量と該焼結体の
特性との関係を示し、カーボンブラツクの添加量
が0.5重量%を越えると、熱伝導率が急激に低下
し、電気抵抗率106Ω・cmとなる。
[Table] Example 5 2% by weight of beryllium oxide powder was added to the same silicon carbide powder as in Example 1, and carbon black (fine powder with a particle size of 0.1 μm or less) was added as an impurity by 0.3 to 1 weight per silicon carbide. % was added to form a mixed powder, and a sintered body was obtained by hot pressing.
Table 3 shows the relationship between the amount of carbon black added and the characteristics of the sintered body. When the amount of carbon black added exceeds 0.5% by weight, the thermal conductivity decreases rapidly and the electrical resistivity decreases to 10 6 Ω.・It becomes cm.

【表】 実施例 6 本実施例においては実施例5において不純物と
して添加したカーボンブラツクに換えて窒化アル
ミニウム粉末(粒径2μm以下の微粉末)を炭化
ケイ素に添加して混合粉末とした。第4表はアル
ミニウムの含有量と該焼結体の特性との関係を示
し、アルミニウムの含有量が0.1重量%より多く
なると熱伝導率が0.6cal/cm・sec・℃以下及び
電気抵抗率が著しく小さくなる。
[Table] Example 6 In this example, in place of the carbon black added as an impurity in Example 5, aluminum nitride powder (fine powder with a particle size of 2 μm or less) was added to silicon carbide to prepare a mixed powder. Table 4 shows the relationship between the aluminum content and the properties of the sintered body. When the aluminum content exceeds 0.1% by weight, the thermal conductivity decreases to 0.6 cal/cm・sec・℃ and the electrical resistivity decreases. becomes significantly smaller.

【表】 実施例 7 本実施例においては実施例5において不純物と
して添加したカーボンブラツクに換えて窒化ホウ
素粉末(粒径5μm以下の微粉末)を炭化ケイ素
に添加して混合粉末とした。第5表はホウ素の含
有量と該焼結体の特性との関係を示し、ホウ素の
含有量が0.1重量%より多くなると熱伝導率が著
しく小さくなる。
[Table] Example 7 In this example, in place of the carbon black added as an impurity in Example 5, boron nitride powder (fine powder with a particle size of 5 μm or less) was added to silicon carbide to prepare a mixed powder. Table 5 shows the relationship between the boron content and the properties of the sintered body. When the boron content exceeds 0.1% by weight, the thermal conductivity decreases significantly.

【表】 第5図は、実施例5、6及び7についてC、
Al及びB含有量と熱伝導率との関係をまとめて
表わした線図である。図に示す如く、C、Al及
びBのいずれも熱伝導率を顕著に低めることが明
白である。 比較例 1 炭化ケイ素粉末に添加剤を加えないで実施例1
と同様にしてホツトプレス法により焼結体を得
た。該焼結体の特性は第7表に示す通りで、緻密
化していないため、熱伝導率、電気抵抗率、機械
的強度のいずれの値も小さい。
[Table] Figure 5 shows C for Examples 5, 6 and 7.
FIG. 2 is a diagram summarizing the relationship between Al and B contents and thermal conductivity. As shown in the figure, it is clear that C, Al, and B all significantly lower the thermal conductivity. Comparative Example 1 Example 1 without adding additives to silicon carbide powder
A sintered body was obtained by the hot pressing method in the same manner as above. The properties of the sintered body are as shown in Table 7, and since it is not densified, the values of thermal conductivity, electrical resistivity, and mechanical strength are all small.

【表】 熱伝導率、電気抵抗率は室温で測定
熱膨張係数は室温〜300℃の平均値
比較例 2 炭化ケイ素粉末に添加剤として酸化アルミニウ
ムを2重量%添加混合した。混合粉末は実施例1
と同様にして成形体としたのち、ホツトプレス法
により焼結体を得た。焼結体の特性は第8表に示
す通りで、十分に緻密化し、機械的強度は大きい
が、熱伝導率、電気抵抗率はいずれも小さい値を
示している。また、炭化アルミニウム、窒化アル
ミニウム、リン酸アルミニウムを添加剤として使
用した場合にも第8表に示したものと同様な特性
を示した。
[Table] Thermal conductivity and electrical resistivity were measured at room temperature. Thermal expansion coefficient was an average value between room temperature and 300°C. Comparative Example 2 2% by weight of aluminum oxide was added and mixed as an additive to silicon carbide powder. Mixed powder is Example 1
After forming a molded body in the same manner as above, a sintered body was obtained by hot pressing. The properties of the sintered body are shown in Table 8, and it is sufficiently densified and has high mechanical strength, but its thermal conductivity and electrical resistivity are both low. Furthermore, properties similar to those shown in Table 8 were also exhibited when aluminum carbide, aluminum nitride, and aluminum phosphate were used as additives.

【表】 熱伝導率、電気抵抗率は室温で測定
熱膨張係数は室温〜300℃の平均値
実施例 9 本発明の焼結体からなる電気絶縁基板の具体的
な適用例として、実施例1で得たベリリウム含有
量が0.5重量%の炭化ケイ素焼結体を基板として
用いた半導体パワーモジユールで説明する。第7
図は従来構造の組立断面図である。導体4とヒー
トシンク6及びヒートシンク6と金属支持板8の
間を有機絶縁物5及びアルミナ基板7絶縁し、ま
たシリコン素子1とヒートシンク6との熱膨張係
数の差によるひずみを緩和するためにスペーサ3
を介在させてある。第6図は本発明になる絶縁基
板を用いたモジユールの組立断面図である。基板
15はシリコン素子11と直接ろう付されてお
り、非常に簡単な構造を有する。 上記半導体装置を−60℃で30分保持したのち室
温にして5分保持し、さらに125℃に昇温して30
分保持するヒートサイクルを加えた。従来法にな
る半導体装置(第7図)は20回のヒートサイクル
で基板にクラツクが発生するとともにハンダ付箇
所にはがれが生じた。本発明になる半導体装置
(第8図)は150回のヒートサイクル後でも異常が
認められなかつた。 本発明による炭化ケイ素焼結体は緻密化してお
り、高熱伝導率、高電気抵抗率および低熱膨張係
数を有するという特徴を有する。従つて前述した
如く、半導体装置の基板、耐熱、耐酸化性が要求
される部材、耐熱衝撃性が要求される部材、高温
において高強度が要求される部材として好適であ
る。
[Table] Thermal conductivity and electrical resistivity are measured at room temperature.Thermal expansion coefficient is the average value between room temperature and 300°C.Example 9 As a specific application example of the electrically insulating substrate made of the sintered body of the present invention, Example 1 A semiconductor power module using the silicon carbide sintered body with a beryllium content of 0.5% by weight as a substrate will be explained. 7th
The figure is an assembled sectional view of a conventional structure. A spacer 3 is provided to insulate the organic insulator 5 and the alumina substrate 7 between the conductor 4 and the heat sink 6, and between the heat sink 6 and the metal support plate 8, and to alleviate the strain caused by the difference in thermal expansion coefficient between the silicon element 1 and the heat sink 6.
is interposed. FIG. 6 is an assembled sectional view of a module using an insulating substrate according to the present invention. The substrate 15 is directly brazed to the silicon element 11 and has a very simple structure. The above semiconductor device was kept at -60℃ for 30 minutes, then brought to room temperature and kept for 5 minutes, and then heated to 125℃ for 30 minutes.
A heat cycle was applied for a minute hold. In the conventional semiconductor device (Figure 7), cracks appeared on the board after 20 heat cycles, and peeling occurred at the soldered areas. No abnormality was observed in the semiconductor device according to the present invention (FIG. 8) even after 150 heat cycles. The silicon carbide sintered body according to the present invention is characterized by being dense and having high thermal conductivity, high electrical resistivity, and low coefficient of thermal expansion. Therefore, as described above, it is suitable as a substrate for a semiconductor device, a member that requires heat resistance and oxidation resistance, a member that requires thermal shock resistance, and a member that requires high strength at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベリリウム含有量と焼結体の相対密度
との関係を示す図、第2図はベリリウム含有量と
焼結体の室温における熱伝導率との関係を示す
図、第3図はベリリウム含有量と焼結体の室温に
おける電気抵抗率との関係を示す図、第4図はベ
リリウム含有量と焼結体の室温〜300℃における
熱膨張係数の平均値との関係を示す図、第5図は
相対密度と熱伝導率との関係を示す線図、第6図
は熱伝導率と不純物量との関係を示す線図、第7
図は従来のシリコン半導体装置の組立断面図、第
8図は本発明のシリコン半導体装置の断面図であ
る。 1および11……シリコン素子、2および12
……アルミニウムリード線、3……モリブデンス
ペーサ、4および13……導体、5……有機絶縁
物、6……ヒートシンク、7……アルミナ基板、
8……支持板、9,10および14……半田、1
5……炭化ケイ素焼結体基板。
Figure 1 shows the relationship between the beryllium content and the relative density of the sintered body, Figure 2 shows the relationship between the beryllium content and the thermal conductivity of the sintered body at room temperature, and Figure 3 shows the relationship between the beryllium content and the thermal conductivity of the sintered body at room temperature. Figure 4 shows the relationship between the beryllium content and the electrical resistivity of the sintered body at room temperature. Figure 5 is a diagram showing the relationship between relative density and thermal conductivity, Figure 6 is a diagram showing the relationship between thermal conductivity and amount of impurities, and Figure 7 is a diagram showing the relationship between thermal conductivity and the amount of impurities.
The figure is an assembled sectional view of a conventional silicon semiconductor device, and FIG. 8 is a sectional view of a silicon semiconductor device of the present invention. 1 and 11...silicon element, 2 and 12
... Aluminum lead wire, 3 ... Molybdenum spacer, 4 and 13 ... Conductor, 5 ... Organic insulator, 6 ... Heat sink, 7 ... Alumina substrate,
8... Support plate, 9, 10 and 14... Solder, 1
5...Silicon carbide sintered body substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化ベリリウムがベリリウム量で0.1〜3.5重
量%、アルミニウム0.1重量%以下、ホウ素0.1重
量%以下、遊離炭素0.4重量%以下および残部が
実質的に炭化ケイ素から成ることを特徴とする高
熱伝導性炭化ケイ素焼結体。
1. High thermal conductivity carbonization characterized by beryllium oxide consisting of 0.1 to 3.5% by weight of beryllium, 0.1% by weight or less of aluminum, 0.1% by weight or less of boron, 0.4% by weight or less of free carbon, and the balance substantially consisting of silicon carbide. Silicon sintered body.
JP57019640A 1982-02-12 1982-02-12 High heat conductivity silicon carbide sintered body Granted JPS57166368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019640A JPS57166368A (en) 1982-02-12 1982-02-12 High heat conductivity silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019640A JPS57166368A (en) 1982-02-12 1982-02-12 High heat conductivity silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS57166368A JPS57166368A (en) 1982-10-13
JPS6236989B2 true JPS6236989B2 (en) 1987-08-10

Family

ID=12004817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019640A Granted JPS57166368A (en) 1982-02-12 1982-02-12 High heat conductivity silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS57166368A (en)

Also Published As

Publication number Publication date
JPS57166368A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US4370421A (en) Electrically insulating substrate and a method of making such a substrate
US4540673A (en) Sintered aluminum nitride and semi-conductor device using the same
JPS63156075A (en) High heat conductivity electric insulation aluminum nitride sintered body and manufacture
JPS5832073A (en) Sintered body
JPS6337065B2 (en)
JPS638261A (en) Electric insulating substance material from polycrystal silicon carbide and manufacture of same by isostatic thermalcompression
JPS6236989B2 (en)
JPS5969473A (en) Sintering silicon carbide powder composition
JPS5815953B2 (en) Board for electrical equipment
JPS6236988B2 (en)
JP2677748B2 (en) Ceramics copper circuit board
JPS631268B2 (en)
JPH0247856B2 (en)
JPH0313190B2 (en)
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JPH0515668B2 (en)
JPS593436B2 (en) Charcoal-fired silicon powder composition for sintering
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JPS6036376A (en) Silicon carbide resistor material and manufacture
JPS6252181A (en) Manufacture of aluminum nitride sintered body
JPH0522670B2 (en)
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPS6025389B2 (en) Electrically insulating silicon carbide powder composition
JPS60239366A (en) Manufacture of aluminum nitride sintered body
JPH1112039A (en) Production of aluminum nitride-based sintered material for high heat-irradiating lid