JPS63313067A - Reagent for measuring antigen - Google Patents

Reagent for measuring antigen

Info

Publication number
JPS63313067A
JPS63313067A JP62149324A JP14932487A JPS63313067A JP S63313067 A JPS63313067 A JP S63313067A JP 62149324 A JP62149324 A JP 62149324A JP 14932487 A JP14932487 A JP 14932487A JP S63313067 A JPS63313067 A JP S63313067A
Authority
JP
Japan
Prior art keywords
antigen
antibody
labeled antibody
igg
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62149324A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyanagi
重夫 青柳
Miyoko Kusumi
美代子 久住
Akira Matsuyuki
松行 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62149324A priority Critical patent/JPS63313067A/en
Priority to DE3787834T priority patent/DE3787834T3/en
Priority to KR1019870006204A priority patent/KR960016337B1/en
Priority to EP87108799A priority patent/EP0249983B2/en
Publication of JPS63313067A publication Critical patent/JPS63313067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To decrease a non-specific adsorption rate by conjugating glucose oxidase GOD which is a labeling body with the remaining antigen conjugated part Fab' of immunoglobulin (IgG) from which a crystallized section Fc is disconnected and using the same as a labeled antibody. CONSTITUTION:The IgG obtd. from the serum of an animal dosed with the antigen is adsorbed to a solid phase to prepare a solid phase antibody and the antigen is specifically adsorbed to this solid phase antibody; further the labeling body is conjugated to the IgG to prepare the labeled antibody. The adsorption quantity of the antigen is indirectly determined by adsorbing the labeled antibody prepd. in such a manner specifically to the antigen adsorbed to the solid phase antibody and investigating the quantity of the labeling body. Namely, the IgG conjugated with the two Fab' to the Fc is first obtd. from the serum of a rabbit. The IgG is cut as shown by an alternate long and short dash line to remove the FC and to obtain the Fab'. The Fab' conjugated with, for example, GOD is used as the labeled antibody. The IgG which is obtd. from the serum of a goat dosed with the antigen and is adsorbed to the solid phase is used as the solid phase antibody. The non-specific adsorption rate of the labeled antibody to the solid phase antibody is thereby lowered.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、抗原抗体反応を利用した免疫学的測定法に用
いられる抗原の測定試薬に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an antigen measurement reagent used in an immunoassay method using an antigen-antibody reaction.

B1発明の概要 本発明は免疫学的測定法のうちのサンドイツチ法に用い
られる測定試薬において、 標識抗体として、ウサギの血清から得た免疫グロブリン
のうちの結晶化部位を切離した残りの抗原結合部位を用
い、固相抗体としてヤギの血清から得た免疫グロブリン
を用いることによって、標識抗体の固相抗体に対する非
特異的吸着の量を抑え、これにより測定感度を向上させ
、良好な再現性が得られるようにしたものである。
B1 Summary of the Invention The present invention provides a measurement reagent for use in the Sand-Deutsche method, which is an immunoassay method, in which the remaining antigen-binding site of immunoglobulin obtained from rabbit serum is removed from the crystallized site and used as a labeled antibody. By using immunoglobulin obtained from goat serum as the solid-phase antibody, the amount of nonspecific adsorption of the labeled antibody to the solid-phase antibody is suppressed, thereby improving measurement sensitivity and achieving good reproducibility. It was designed so that

C1従来の技術 抗原抗体反応は、抗原と抗体とが特異的に結合するとい
う特徴と、可成り低い濃度であっても反応が起こるとい
う特徴とを備えており、こうした特徴を利用することに
より抗原や抗体の微債測定が可能である。このような測
定法は免疫学的測定法と呼ばれ、大別して競合法と非競
合法とに分けられる。競合法の代表例としては第1抗体
固相法が挙げられ、また非競合法の代表例としてはサン
ドイツチ法が挙げられる。ここに本発明はサンドイツチ
法を対象としており、以下にサンドイツチ法の具体的内
容及び従来技術の欠点について述べろ。
C1 Conventional technology Antigen-antibody reactions have the characteristics that antigens and antibodies specifically bind and that the reaction occurs even at fairly low concentrations. It is possible to measure small quantities of antibodies. Such assay methods are called immunoassay methods and are broadly divided into competitive methods and non-competitive methods. A representative example of a competitive method is the first antibody solid phase method, and a representative example of a non-competitive method is the Sand-Deutsch method. The present invention is directed to the Sanderutsch method, and the specific contents of the Sanderutsch method and the shortcomings of the prior art will be described below.

先ず抗原、例えば癌胎児性抗原(CEA)をウサギに定
期的に皮下注射により投入し、このウサギの血清から前
記抗原にもとづいて生じた免疫グロブリンを得、これを
例えばポリスチレンボールよりなる固相に吸着させて固
相抗体を調製する。
First, an antigen, such as carcinoembryonic antigen (CEA), is periodically injected subcutaneously into a rabbit, and the immunoglobulin generated based on the antigen is obtained from the rabbit's serum, which is then transferred to a solid phase made of, for example, a polystyrene ball. Prepare solid-phase antibodies by adsorption.

一方前記免疫グロブリンに標識体、例えばグルコースオ
キシダーゼ(以下rGODJという。)を結合さ仕て標
識抗体を調製する。ここで人体内の前記抗原の量を調べ
るためには、先ず測定対象となる抗原を固相抗体に接触
させろと、抗原は固相抗体に特異的に吸着される。次い
でこれに標識抗体を作用させろと、標識抗体は抗原に特
異的に吸着される。即ち抗原は同相抗体と標識抗体に挾
まれた状態になる。次いで標識抗体のCODの量を測定
する。この測定は、CODにグルコースを作用させて過
酸化水素を発生させ、この過酸化水素にルミノールを作
用させて発光量を調べるいわゆる化学発光法により行わ
れ、抗原の固相抗体への吸着量はCODの測定量から間
接的に求まる。
On the other hand, a labeled antibody, such as glucose oxidase (hereinafter referred to as rGODJ), is bound to the immunoglobulin to prepare a labeled antibody. In order to investigate the amount of the antigen in the human body, first, the antigen to be measured is brought into contact with a solid-phase antibody, and the antigen is specifically adsorbed to the solid-phase antibody. Next, when a labeled antibody is applied to this, the labeled antibody is specifically adsorbed to the antigen. That is, the antigen is sandwiched between the in-phase antibody and the labeled antibody. Then, the amount of COD of the labeled antibody is measured. This measurement is performed by the so-called chemiluminescence method, in which hydrogen peroxide is generated by the action of glucose on the COD, and the amount of luminescence is measured by the action of luminol on the hydrogen peroxide. It can be determined indirectly from the measured amount of COD.

こうした免疫学的測定法に用いられる試薬としては、標
識抗体及び固相抗体をいずれもウサギの血清にもとづい
て調製したウサギ標識抗体−ウサギ同相抗体、あるいは
いずれもヤギの血清にもとづいて調製したヤギ標識抗体
−ヤギ固相抗体等が従来用いられていた。
Reagents used in these immunoassays include rabbit-labeled antibody-rabbit homologous antibody, both labeled antibodies and solid-phase antibodies, prepared based on rabbit serum, or goat antibodies, both prepared based on goat serum. Labeled antibodies--goat solid-phase antibodies, etc. have been conventionally used.

D1発明が解決しようとする問題点 ところで、サンドイツチ法の測定原理からすれば、標識
抗体の固相抗体への直接吸着量は0であることか理想で
あるが、実際には標識抗体の一部は同相抗体へ非特異的
に吸着されてしまう。測定感度及び再現性を良くするた
めには、この非特異的な吸1をできるだけ低く抑えるこ
とが重要である。
D1 Problems to be Solved by the Invention By the way, considering the measurement principle of the sandwich method, it is ideal that the amount of labeled antibody directly adsorbed to the solid-phase antibody should be zero, but in reality, some of the labeled antibody will be non-specifically adsorbed to the same phase antibody. In order to improve measurement sensitivity and reproducibility, it is important to keep this non-specific absorption as low as possible.

従来の測定試薬について非特異的吸着率をみろと、ウサ
ギの場合ではおよそ4.8xlO−’〜36.8X10
−”%、ヤギの場合ではおよそ7.1xlO−” 〜1
6.0xlO−’%と可成り高い値になっている。なお
非特異的吸着率とは標識抗体の総量に対する非特異的吸
着量の割合である。こうした事情から動物種の組み合わ
せを検討したところ、標識抗体及び固相抗体を夫々ウサ
ギ及びヤギの直情にもとづいて調製したウサギ標識抗体
−ヤギ同相抗体よりなる試薬を用いれば、非特異的吸着
率を1.5X10−2〜1.7X10−2%程度に抑え
られることが判明した。
Looking at the non-specific adsorption rate of conventional measurement reagents, in the case of rabbits it is approximately 4.8xlO-' to 36.8x10
−”%, approximately 7.1×lO−” for goats ~1
The value is quite high at 6.0xlO-'%. Note that the nonspecific adsorption rate is the ratio of the amount of nonspecific adsorption to the total amount of labeled antibody. Considering these circumstances, we investigated the combination of animal species and found that if we use a reagent consisting of a rabbit-labeled antibody and a goat homologous antibody, which were prepared based on the intuition of rabbits and goats, respectively, the non-specific adsorption rate could be reduced. It was found that it could be suppressed to about 1.5X10-2 to 1.7X10-2%.

しかしながらこの場合でも十分な測定感度を得ろことが
できず、信頼性す高い測定を行うためには更に非特異的
吸着率を低く抑えることが要求される。本発明はこうし
た要求に応えるためになされたちのであり、その目的は
上記の非特異的吸着率の低い測定試薬を提供することに
ある。
However, even in this case, sufficient measurement sensitivity cannot be obtained, and in order to perform highly reliable measurements, it is required to further suppress the nonspecific adsorption rate. The present invention was made in response to these demands, and its purpose is to provide a measurement reagent with a low nonspecific adsorption rate.

E6問題点を解決するための手段 本発明では、先ず抗原を投入したウサギの血清から免疫
グロブリン(以下rIgGjという)を得る。このIg
Gは第1図に示すように結晶化部位(以下「FC」とい
う)に2つの抗原結合部(以下rFab’Jという)が
結合してなるものである。ここにFcは抗原との結合力
がなく、低温で結晶化する性質をもった部位であり、F
ab′は、抗原が特異的吸着されろ部分を先端部に備え
た部位である。そしてIgGを一点鎖線で示すように切
断することによりFcを取り除いてFab’を得、この
Fab’に例えばCOD (グルコースオキシダーゼ)
を結合したしのを標識抗体として用いる。また固相抗体
としては、抗原を投入したヤギの血清から得られノこI
gGを固相に吸着したものを用いる。
Means for Solving E6 Problems In the present invention, first, immunoglobulin (hereinafter referred to as rIgGj) is obtained from the serum of a rabbit to which an antigen has been input. This Ig
As shown in FIG. 1, G is formed by binding two antigen-binding sites (hereinafter referred to as rFab'J) to a crystallization site (hereinafter referred to as "FC"). Here, Fc is a region that has no binding strength with antigens and has the property of crystallizing at low temperatures.
ab' is a site with a portion at its tip to which an antigen can be specifically adsorbed. Then, IgG is cleaved as shown by the dashed line to remove Fc to obtain Fab', and this Fab' has, for example, COD (glucose oxidase).
used as a labeled antibody. In addition, solid-phase antibodies are obtained from goat serum injected with antigens.
gG adsorbed onto a solid phase is used.

F、実施例 (1)実施例1 抗原であろα−フェトプロティン(以下「、八FPjと
いう)をウサギに定期的に皮下注射し、このウサギの血
清にもとづいて得たFPLb’にCODを結合したもの
を標識抗体として用いると共に、AFPを定期的にヤギ
に皮下注射し、このヤギの血清にもとづいて得たIgG
をポリスチレンボールに吸着したものを固相抗体として
用いる。なおAFPは肝癌の診断に用いられている。
F. Example (1) Example 1 The antigen α-fetoprotein (hereinafter referred to as ``FPj'') was regularly subcutaneously injected into rabbits, and COD was bound to FPLb' obtained based on the serum of the rabbits. AFP was used as a labeled antibody, and AFP was regularly injected subcutaneously into a goat, and IgG obtained based on the goat serum was used.
is adsorbed onto a polystyrene ball and used as a solid phase antibody. Note that AFP is used for diagnosis of liver cancer.

以下に実施例1の調製法について説明する。The preparation method of Example 1 will be explained below.

(a)IgGの調製 ウサギの血清2災σを採取してこれに飽和硫安2!1i
2を一滴ずつ滴下し、温度4℃で2〜3時間ゆっくりと
撹拌する。これにより得られた白濁状の反応液を遠沈管
に入れて3000rpmの回転数で15分間遠心分離し
、次いで上澄液を捨てて、沈澱物に0.005肩oQ/
QEDTAを含む0.1肋θ/Qのリン酸緩衝液(pH
6,0)2alを加えて溶解する。その後溶解した液を
、前記混合液で+衡化した商品名セファクリル300の
カラム(ix9C)cm、ファルマシア製)に6 MO
,/ hourの速度で通して溶出させ、試験管に11
1Qずつ分取する。続いて分取した液体のうちのIgG
の吸光度に相当ずろ吸光度280nmの部分を集めて、
TgGを得る。
(a) Preparation of IgG Rabbit serum 2!1i was collected and saturated with ammonium sulfate 2!1i
2 was added drop by drop, and the mixture was slowly stirred at a temperature of 4°C for 2 to 3 hours. The resulting cloudy reaction solution was put into a centrifuge tube and centrifuged at 3000 rpm for 15 minutes, then the supernatant was discarded and the precipitate was mixed with 0.005 oQ/
Phosphate buffer (pH
6,0) Add and dissolve 2al. Thereafter, the dissolved solution was added to a column (ix9C) cm (trade name: Sephacryl 300, manufactured by Pharmacia), which had been equilibrated with the above mixed solution, to 6 MO
,/hour to elute and place 11 in the test tube.
Aliquot 1Q each. IgG in the liquid that was subsequently collected
Collect the portion with an absorbance of 280 nm that corresponds to the absorbance of
Obtain TgG.

(b)Fab′の調製 上記の(a)で調製した(gGを、0.(1(15mo
(1/Qの塩化ナトリウムを含む0.07moQ/Qの
酢酸緩衝液(p II 4 、0 )によって温度4℃
で18時間透析し、得られたIgGにIgG  ペプシ
ンの重量比り月00,3となるようにペブノン溶液を0
 、1 m(!!]11え、温度37°Cの恒温槽内に
て18時間振盪させろ。その後この溶液を、O1尻oQ
/Qのリン酸緩衝液(p l−(7、5)でキ衡化した
商品名セファクリル200のカラム(IX90crx、
ファルマシア製)に6m12/hourの速度で通して
溶出させ、溶出液を試験管に1次eずつ分取する。続い
て分取した液体のうちのP(ah’)*の吸光度に相当
する吸光度280nxの部分を集めてF(2Lb’)、
を得る。このF(ab’)yとは2個のFab’の結合
体である。更に得られたF(ab’)tに0 、 I 
MoQ/ Qメルカプトエチルアミンを0.05xC加
えて温度37℃で90分間反応させ、Fab’同士の結
合を切断する。しかる後にこの反応液を商品名セファデ
ックスG25のカラム(IX30c肩、ファルマシア製
)に6xQ/hourの速度で通すことに上り脱塩処理
を行い、その溶出液を試験管に13112ずつ分取する
ことによりFab’の濃縮液が得られる。
(b) Preparation of Fab' The (gG prepared in (a) above) was
(0.07 moQ/Q acetate buffer (p II 4 , 0) containing 1/Q sodium chloride at a temperature of 4°C.
Dialysis was carried out for 18 hours, and a pevenone solution was added to the obtained IgG so that the weight ratio of IgG pepsin was 00.3.
, 1 m (!!) 11. Shake for 18 hours in a constant temperature bath at a temperature of 37°C. Then, add this solution to O1 but oQ.
A column (IX90crx, trade name: Sephacryl 200,
(manufactured by Pharmacia) at a rate of 6 m12/hour, and the eluate is fractionated into test tubes. Next, a portion of the fractionated liquid with an absorbance of 280nx corresponding to the absorbance of P(ah')* is collected to obtain F(2Lb'),
get. This F(ab')y is a conjugate of two Fab's. Furthermore, the obtained F(ab')t is 0, I
MoQ/Q mercaptoethylamine is added at 0.05xC and reacted at a temperature of 37°C for 90 minutes to cleave the bonds between Fab'. Thereafter, this reaction solution was desalted by passing it through a column of trade name Sephadex G25 (IX30c shoulder, manufactured by Pharmacia) at a rate of 6xQ/hour, and the eluate was fractionated into test tubes in 13112 portions. A concentrated solution of Fab' is obtained.

(c)マレイミドCODの調製 0 、 I MoQ/ (lのリン酸緩衝液を0.3t
nQずつ入れた試験管を4本用意し、各々にCODを約
3mgずつ入れ、更にサクシニミジル−4−マレイミド
ブチレイト(GMBS)を、CODとGMBSのモル比
がl:50となるように添加する。こうして得られた溶
液を、0 、1 xoQ/ Qのリン酸緩衝液で平衡化
した商品名セファデックスG25のカラム(IX30C
I、ファルマシア製)に12MQ/h o u rの速
度で通して脱塩処理し、その溶出液を試験管に1iQず
つ分取してマレイミドCODを得る。
(c) Preparation of maleimide COD 0, I MoQ/(l of phosphate buffer with 0.3t
Prepare four test tubes containing nQ each, add approximately 3 mg of COD to each, and add succinimidyl-4-maleimidobutyrate (GMBS) so that the molar ratio of COD and GMBS is 1:50. . The solution obtained in this way was applied to a column (IX30C
I, manufactured by Pharmacia) at a rate of 12 MQ/hour for desalting treatment, and the eluate was fractionated into test tubes in 1 iQ portions to obtain maleimide COD.

(d)標識抗体の調製 上記の(c)で得たマレイミドCODと上記の(b)で
得たFab’とを等モルずつ混和して、温度30℃で1
時間静置後、温度4℃で1晩放置する。そしてこの溶液
を、0.005屑oQ/QのEDTAを含む0 、1 
yxoQ/ 12のリン酸緩衝液(pH6,5)で平衡
化した商品名セファクリル300のカラム(I X 9
0 am、ファルマシア製)に6xQ/ h o u 
rの速度で通して溶出させ、その溶出液を試験管に1M
Qずつ分取してFab’にCODが結合した標識抗体を
得る。そしてこの標識抗体に0.1%のNaN5.0.
1%のウシ血清アルブミン(BSA)となるように添加
し、温度4℃で保存する。
(d) Preparation of labeled antibody The maleimide COD obtained in (c) above and the Fab' obtained in (b) above were mixed in equal moles, and at a temperature of 30°C, 1
After standing for a period of time, it is left to stand overnight at a temperature of 4°C. Then, this solution was mixed with 0,1
Sephacryl 300 column (I
0 am, Pharmacia) to 6xQ/h o u
The eluate was poured into a test tube at a rate of 1M.
A labeled antibody in which COD is bound to Fab' is obtained by fractionating each Q amount. Then, this labeled antibody was added with 0.1% NaN5.0.
Add 1% bovine serum albumin (BSA) and store at 4°C.

(e)固相抗体の調製 ヤギの血清にもとづいて、上記の(a)における調製と
同様にしてIgGを得、0 、 l JI9/肩QのI
gGを含む0 、111012/ Qのリン酸緩衝液(
pH7,5)に固相となる直径6 、5 *xのポリス
チレンボール(以下rPBJという)を浸漬して温度4
℃でl晩装置した。その後ポリスチレンボールを0 、
1 txoQ/σのリン酸緩衝液(pH7,5)で3回
洗浄し、続いて0 、13!012/ QのNaCl2
.0.1%BSA及び0.1%N a N sを含む0
 、 Ol moQ/Qリン酸緩衝液(pH7,0)で
3回洗浄した後、PBを当該混合液に浸漬して温度4℃
で保存する。
(e) Preparation of solid-phase antibody Based on goat serum, IgG was obtained in the same manner as in (a) above, and 0, l JI9/Shoulder Q I
0,111012/Q phosphate buffer containing gG (
A polystyrene ball (hereinafter referred to as rPBJ) with a diameter of 6.5*x, which becomes a solid phase, is immersed in a solution (pH 7.5) at a temperature of 4.
Incubate overnight at ℃. Then add 0 polystyrene balls,
Washed three times with phosphate buffer (pH 7,5) at 1 txoQ/σ, followed by 0, 13!012/Q NaCl2
.. 0 containing 0.1% BSA and 0.1% NaNs
After washing three times with OlmoQ/Q phosphate buffer (pH 7,0), PB was immersed in the mixture at a temperature of 4°C.
Save with .

こうしてIgGによりコーティングされたPB。PB thus coated with IgG.

即ち同相抗体が得られる。That is, a homologous antibody is obtained.

(2)実施例2 抗原として癌胎児性抗原(以下rcEAJという)を用
いた他は実施例1と全く同様にして標識抗体−固相抗体
の組み合わせを得た。なおCEAは主に大腸癌の診断に
用いられている。
(2) Example 2 A labeled antibody-solid phase antibody combination was obtained in exactly the same manner as in Example 1, except that carcinoembryonic antigen (hereinafter referred to as rcEAJ) was used as the antigen. Note that CEA is mainly used for diagnosis of colorectal cancer.

G、比較例 (1)比較例1 抗原としてのAFPをウサギに定期的に皮下注射し、こ
のウサギの血清にもとづいて得たIgGにCODを結合
したものを標識抗体として用いると共に、固相抗体とし
ては実施例1と同様のものを用いた。
G. Comparative Example (1) Comparative Example 1 AFP as an antigen was periodically injected subcutaneously into a rabbit, and IgG obtained based on the rabbit serum and conjugated with COD was used as a labeled antibody, and a solid phase antibody The same material as in Example 1 was used.

ここで標識抗体の調製について説明すると、上記の(a
)項にて得られたIgGを0.O05mo(xQのED
TAを含む0 、1 txo(1/ Qのリン酸緩衝液
(pH6,0)2xf2に加え、この液とS−アセチル
メルカプトこはく酸とを、S−アセチルメルカプトこは
く酸とIgGとがモル比で300 : 1となるように
D M F (N −dixetylforxa尻1d
e)に添加して溶解し、室温で30分間撹拌する。次い
でこの溶液を0 、1 xoQ/Qのトリス−塩酸(p
H7,0)0 、1 xQ、0 、1 肩oQ/ (!
のEDTA (pH7,0)0、・02II112及び
1 mob、/ρのヒドロキンアミン水溶液(p t(
7、0) O、I mQの混合液に添加して温度30°
Cで4分間反応さけ、その後この反応液を、0.005
io(!/12EDTAを含む0 、1 moQ/ 1
2のリン酸緩衝液(p H6、0)で平衡化した商品名
セファデックス025のカラム(1x30cx、ファル
マシア製)に12xQ/h o u rの速度で通すこ
とに上り脱塩処理を行い、溶出液を試験管にlz&ずつ
分取することによりSII基の結合した[gGを得、こ
れを集めて水冷中のコロジオンバックで濃縮する。こう
して得られたSH−IgGと上記の(c)項で得られた
マレイミドCODとを等モル混合し、上記の(d)項で
述べた調製法と同様にしてSI(−IgGにマレイミド
CODが結合した標識抗体を得る。
Here, to explain the preparation of labeled antibodies, the above (a)
) The IgG obtained in section 0. O05mo (xQ's ED
Add 0,1 txo (1/Q phosphate buffer (pH 6,0) 2xf2 containing TA, and add this solution and S-acetylmercaptosuccinic acid at a molar ratio of S-acetylmercaptosuccinic acid to IgG. D M F (N-dixetylforxa buttocks 1d
Add to e), dissolve and stir at room temperature for 30 minutes. This solution was then diluted with 0,1 xoQ/Q Tris-HCl (p
H7, 0) 0, 1 xQ, 0, 1 Shoulder oQ/ (!
EDTA (pH 7,0) 0, 02II112 and 1 mob, /ρ hydroquinamine aqueous solution (pt(
7,0) Add to the mixture of O, I mQ and keep at a temperature of 30°.
C for 4 minutes, and then the reaction solution was diluted with 0.005
io(!/12 including EDTA 0,1 moQ/1
The sample was desalted by passing it through a Sephadex 025 column (1x30cx, manufactured by Pharmacia) equilibrated with phosphate buffer (pH 6, 0) at a rate of 12xQ/hour, and eluted. SII group-bound [gG is obtained by dividing the solution into test tubes in portions of lz&, which is collected and concentrated in a water-cooled collodion bag. The SH-IgG thus obtained and the maleimide COD obtained in section (c) above were mixed in equimolar amounts, and the same molar method as described in section (d) above was used to prepare SI (-IgG with maleimide COD). Obtain bound labeled antibody.

(2)比較例2 標識抗俸−固相抗体の動物種の組み合わせをウサギ−ウ
サギとした他は実施例1と全く同様にして標識抗体−固
相抗体の組み合わせを得た。
(2) Comparative Example 2 A labeled antibody-solid phase antibody combination was obtained in exactly the same manner as in Example 1, except that the animal species combination for the labeled anti-salt-solid phase antibody was rabbit-rabbit.

(3)比較例3 標識抗体−固相抗体の動物種の組み合わせをヤギ−ヤギ
とした他は実施例1と全く同様にして標識抗体−固相抗
体の組み合わせを得た。
(3) Comparative Example 3 A combination of labeled antibody and solid phase antibody was obtained in exactly the same manner as in Example 1, except that the animal species combination of the labeled antibody and solid phase antibody was goat-goat.

(4)比較例4〜6 比較例1〜3について抗原としてAFPの代わりにCE
Aを用いた標識抗体−固相抗体の組み合わせを夫々比較
例4〜6とする。
(4) Comparative Examples 4 to 6 CE was used instead of AFP as the antigen for Comparative Examples 1 to 3.
The labeled antibody-solid phase antibody combinations using A are designated as Comparative Examples 4 to 6, respectively.

以上のようにして得られた実施例及び比較例の各側にお
ける標識抗体−固相抗体の組み合わせを表1に示す。
Table 1 shows the labeled antibody-solid phase antibody combinations on each side of the Examples and Comparative Examples obtained as described above.

表  1 H,比較試験 (1)非特異的吸着 実施例1.2及び比較例1〜6を、標識抗体の同相抗体
に対する非特異的吸着について比較した。
Table 1H, Comparative Test (1) Non-Specific Adsorption Examples 1.2 and Comparative Examples 1-6 were compared for non-specific adsorption of labeled antibodies to in-phase antibodies.

操作手順は次のとおりである。The operating procedure is as follows.

先ず標識抗体を、0.1ioc/(のN a Cff液
、0.1%のBSA及び0.1%のNaN3を含む0 
、01 txo(1/Qリン酸緩衝液(pH7,0)C
以下この混合液を「A液」という)で100倍に希釈し
た液を0 、1 mQ採取し、これにA液を0 、2 
ff(l加えた溶液に固相抗体を浸漬して、室温で1晩
静置する。その後固相抗体を取出してA液により3回洗
浄し、新しい試験管に移し変える。次いでこの試験管に
0 、5 m’oQ/ Qのグルコースを含む0.01
moQ/Qの酢酸緩衝液(pH5,1)を゛0,31添
加して温度37℃で2時間静置する。しかる後にこの溶
液の0.1xσをサンプリングし、2X10−’moQ
/Qのルミノールを含む0.2肩oQ/Qの炭酸緩衝液
(pH9,8)を0.5次C加え、更に6X10−31
1oQ/(lのフェリシアン化カリ水溶液0 、5 m
Qを添加して15秒待った後30秒間の発光量を積算す
る。この発光量は固相抗体に非特異的吸着された標識抗
体の量X1に対応する。一方標識抗体の総ff1x、は
予め判っているので、非特異的吸着率は(X +/ X
 2)X 100として算出される。こうして得られた
実験結果を表2に示す。
First, the labeled antibody was dissolved in 0.1 ioc/(0.1 ioc) of Na Cff solution containing 0.1% BSA and 0.1% NaN3.
, 01 txo (1/Q phosphate buffer (pH 7,0) C
Hereinafter, this mixed solution is referred to as "Liquid A") 100 times diluted with 0.1 mQ of the solution, and 0.2 mQ of Solution A was added to this.
Immerse the solid-phase antibody in the solution containing ff(l) and let it stand overnight at room temperature.Then, take out the solid-phase antibody, wash it three times with Solution A, and transfer it to a new test tube. 0.01 containing glucose of 0,5 m'oQ/Q
MoQ/Q acetate buffer (pH 5.1) was added at a concentration of 0.31, and the mixture was allowed to stand at a temperature of 37° C. for 2 hours. Thereafter, 0.1xσ of this solution was sampled and 2X10-'moQ
Add 0.5 °C of carbonate buffer (pH 9,8) of 0.2 oQ/Q containing luminol of /Q, and further add 6X10-31
1oQ/(l of potassium ferricyanide aqueous solution 0,5 m
After adding Q and waiting 15 seconds, the amount of luminescence for 30 seconds is integrated. This amount of luminescence corresponds to the amount X1 of labeled antibody nonspecifically adsorbed to the solid phase antibody. On the other hand, since the total ff1x of labeled antibodies is known in advance, the nonspecific adsorption rate is (X +/X
2) Calculated as x 100. The experimental results thus obtained are shown in Table 2.

表  2 表2から判るように標識抗体−固相抗体の組み合わせが
ウサギ由来Fab’−ヤギ由来IgG(実施例1,2)
の場合には、ウサギ由来1gG−ヤギ由来1gG(比較
例1,4)に比較して非特異的吸着率が著しく小さい。
Table 2 As can be seen from Table 2, the combination of labeled antibody and solid-phase antibody was rabbit-derived Fab'-goat-derived IgG (Examples 1 and 2)
In the case of 1gG derived from rabbit - 1gG derived from goat (Comparative Examples 1 and 4), the nonspecific adsorption rate is significantly lower.

′また標識抗体としてFab’を用いても、標識抗体及
び同相抗体の動物種の組み合わ仕がウサギ−ウサギ(比
較例2゜5)、ヤギ−ヤギ(比較例3.6)である場合
には、非特異的吸着率はウサギ由来1gG−ヤギ由来1
gGの組み合わせと同程度である。従って標識抗体とし
てFab’を用いたことのみならず、動物種の組み合わ
せも非特異的吸着に大きな影響を及ぼすと考えられる。
'Also, even if Fab' is used as the labeled antibody, if the animal species combination of the labeled antibody and in-phase antibody is rabbit-rabbit (Comparative Example 2.5) or goat-goat (Comparative Example 3.6), , the non-specific adsorption rate is 1 gG from rabbit - 1 gG from goat.
It is comparable to the gG combination. Therefore, it is thought that not only the use of Fab' as a labeled antibody but also the combination of animal species has a large effect on nonspecific adsorption.

(2)抗原の測定範囲及び検出限界 実施例1.2及び比較例1〜6を、抗原の測定範囲及び
検出限界について比較した。検出限界はF検定(n=1
0)にもとづいて測定した。操作手順は次のとおりであ
る。なお抗原がCEAの場合についても全く同様である
(2) Antigen measurement range and detection limit Example 1.2 and Comparative Examples 1 to 6 were compared with respect to antigen measurement range and detection limit. The detection limit was determined using the F test (n=1
0). The operating procedure is as follows. The same applies when the antigen is CEA.

抗原AFPにもとづいて得られた固相抗体を、上記のA
液で希釈したAFPの標準液0 、 I RQにA液0
.’2rQを添加した溶液中に浸漬し、室温で6時間静
置する。その後固相抗体を取り出してA液により3回洗
浄し、抗原AFPに乙とづいて得られた標識抗体をA液
で最適希釈倍率に希釈した溶液0 、1 mQとA液0
.2xσとの混合液に、洗浄後の固相抗体を浸漬して室
温で1晩静置する。そして固相抗体をA液で3回洗浄し
てから新しい試験管に移し変え、この試験管に0.5m
12/12のグルコースを含む0 、01 moQ/Q
の酢酸緩衝液(p H5、1)を0.3mQ添加して温
度37℃で2時間静置する。
The solid-phase antibody obtained based on the antigen AFP was
AFP standard solution diluted with solution 0, A solution 0 for IRQ
.. '2rQ is added to the solution and left to stand at room temperature for 6 hours. After that, the solid-phase antibody was taken out and washed three times with solution A, and the labeled antibody obtained based on the antigen AFP was diluted with solution A to the optimal dilution ratio.
.. The washed solid-phase antibody is immersed in the mixture with 2xσ and left overnight at room temperature. Then, wash the solid-phase antibody three times with solution A, transfer it to a new test tube, and add 0.5 m
0,01 moQ/Q with 12/12 glucose
0.3 mQ of acetate buffer (pH 5, 1) was added, and the mixture was left standing at a temperature of 37°C for 2 hours.

しかる後にこの溶液の0 、1 mQをサンプリングし
、2x 10−7moQ、/ (!のルミノールを含む
0 、2 moQ/ρの炭酸援衝液(p H9、8)を
0 、5 mQ加え、更に6 X 10−”yoQ/ 
Qのフェリシアン化カリ水溶液0.5xQを添加して1
5秒待った後30秒間の発光量を積算する。この発光量
は固相抗体に捉えられたAFPに吸着された標識抗体の
量、即ちAFPの量に対応する。
Thereafter, 0.1 mQ of this solution was sampled, 0.5 mQ of 0.2 moQ/ρ carbonate buffer solution (pH 9,8) containing 2x 10-7 moQ,/(! of luminol) was added, and a further 6 mQ was added. X 10-”yoQ/
Add 0.5x Q of potassium ferricyanide aqueous solution to 1
After waiting 5 seconds, the amount of light emitted for 30 seconds is accumulated. The amount of luminescence corresponds to the amount of labeled antibody adsorbed to AFP captured by the solid-phase antibody, that is, the amount of AFP.

こうして得られた測定範囲の結果を表3に示し、検出限
界の結果を表4に示す。
The results of the measurement range thus obtained are shown in Table 3, and the results of the detection limit are shown in Table 4.

表  3 表4 表39表4から判るように標識抗体−固相抗体の組み合
わせがウサギ由来Fab’−ヤギ由来IgGの場合には
非特異的吸着率が小さいことから、標識抗体としてIg
Gを用いた場合、あるいは標識抗体としてFab’を用
いかつ動物種の組み合わせがウサギ−ウサギ、ヤギ−ヤ
ギである場合よりも、測定範囲及び検出限界のいずれに
ついても改許される。
Table 3 Table 4 Table 39 As can be seen from Table 4, when the combination of labeled antibody and solid-phase antibody is rabbit-derived Fab'-goat-derived IgG, the nonspecific adsorption rate is low, so Ig
Both the measurement range and the detection limit are more permissible than when G is used, or when Fab' is used as the labeled antibody and the animal species are rabbit-rabbit or goat-goat.

(3)再現性 上記の(2)にて求めた比較例2の検出限界における同
時再現性及び日差再現性を実施例1と比較例1〜3とに
ついて調べると共に、比較例6の検出限界における同時
再現性及び日差再現性を実施例2と比較例4〜6とにつ
いて調べた。ここで同時再現性とは連続して測定した場
合の再現性であり、また日差再現性とは測定日が異なる
場合の再現性である。再現性については平均値上標準偏
差と変動係数とにより評価した。実施例1と比較例1〜
3との再現性試験については抗原としてAFPを用い、
また実施例2と比較例4〜6との再現性試験については
抗原としてCEAを用いた。
(3) Reproducibility The simultaneous reproducibility and day-to-day reproducibility of the detection limit of Comparative Example 2 determined in (2) above were investigated for Example 1 and Comparative Examples 1 to 3, and the detection limit of Comparative Example 6 was The simultaneous reproducibility and day-to-day reproducibility of Example 2 and Comparative Examples 4 to 6 were investigated. Simultaneous reproducibility here refers to reproducibility when measurements are performed continuously, and day-to-day reproducibility refers to reproducibility when measurements are performed on different days. Reproducibility was evaluated using the standard deviation above the mean and the coefficient of variation. Example 1 and Comparative Example 1~
For the reproducibility test with 3, AFP was used as the antigen,
Furthermore, for the reproducibility tests of Example 2 and Comparative Examples 4 to 6, CEA was used as the antigen.

結果を夫々表51表6に示す。The results are shown in Table 51 and Table 6, respectively.

表  5 表  6 表51表6から判るように同時再現性及び日差再現性の
いずれについても、ウサギ由来Fab’−ヤギ由来Ig
Gの組み合わせの方かウサギ由来Pab’−ウサギ由来
1gG及びヤギ由来Fab’−ヤギ由来1gGのいずれ
の組み合わせよりも良好である。
Table 5 Table 6 As can be seen from Table 51 and Table 6, rabbit-derived Fab'-goat-derived Ig
The combination of G is better than either the combination of rabbit-derived Pab'-rabbit-derived 1gG and goat-derived Fab'-goat-derived 1gG.

以上の実施例では抗原としてAFPまたはC,EAを用
いているが、他の抗原、例えばヒト胎盤性ゴナドトロピ
ン、インシュリン、IgE、α、−ミクログロブリン等
を用いても同様の結果を得た。
Although AFP or C,EA was used as the antigen in the above examples, similar results were obtained using other antigens such as human placental gonadotropin, insulin, IgE, α,-microglobulin, etc.

更に本発明では、Fab’に結合する標識体としてCO
Dの代わりに他の酵素、例えば西洋ワサビペルオキシダ
ーゼ、β−D−ガラクトシターゼ。
Furthermore, in the present invention, CO is used as a label that binds to Fab'.
Other enzymes instead of D, such as horseradish peroxidase, β-D-galactosidase.

グルコース−6−リン酸脱水素酵素、アルカリホスファ
ターゼ等を用いてもよい。また標識体としては、酵素を
用いる代わりに蛍光物質(fluores−ceini
sothiocyanate、 tetramethy
lrhodaminejso−thiocyanate
等)、化学発光物質(aminoethyleL−hy
lisoluminol、 aminobutylet
hylisoluminoLaminopentyle
thylisoluminol、aminohexyl
ethylisoluminol等)、あるいは放射性
同位元素(3H。
Glucose-6-phosphate dehydrogenase, alkaline phosphatase, etc. may also be used. In addition, instead of using enzymes as labels, fluorescent substances (fluores-ceini
sothiocyanate, tetramethy
lrhodamine so-thiocyanate
etc.), chemiluminescent substances (aminoethyleL-hy
lisoluminol, aminobutylet
hylisoluminoLaminopentyle
thylisoluminol, aminohexyl
ethylisoluminol, etc.), or radioactive isotopes (3H.

14C、3tp 、 +15 I 、 +31 f等)
を用いてもよい。
14C, 3tp, +15I, +31f, etc.)
may also be used.

10発明の効果 以上のように本発明によれば、IgGのうちのFcを切
離した残りのFab’に標識体を結合したものを標識抗
体として用いると共に、標識抗体と固相抗体とにおける
動物種の組み合わせも非特異的吸着に大きな影響を与え
ることに着眼して、その組み合わせをヤギ(固相抗体)
−ウザギ(標識抗体)としているため、実施例及び比較
例の比較試験結果から判るように、標識抗体の固相抗体
に対する非特異的吸着率を低く抑えることができ、これ
によって抗体の測定範囲の拡大、検出限界の向上を図る
ことができ、良好な再現性を得ることができる。
10. Effects of the Invention As described above, according to the present invention, a labeled antibody is used as a labeled antibody to the remaining Fab' from which Fc has been separated from IgG, and the animal species in the labeled antibody and the solid-phase antibody are Focusing on the fact that the combination of
- Since the labeled antibody is used as a labeled antibody, the nonspecific adsorption rate of the labeled antibody to the solid-phase antibody can be suppressed to a low level, as seen from the comparative test results of Examples and Comparative Examples. Enlargement and detection limits can be improved, and good reproducibility can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は免疫グロブリンを示す構造図で・ある。 第1図 叱褒グロフηン0講逅図 Figure 1 is a structural diagram showing immunoglobulin. Figure 1 Reward Groff ηn0 lecture drawing

Claims (1)

【特許請求の範囲】 抗原を投入した動物の血清から得られた免疫グロブリン
を固相に吸着させて固相抗体を調製し、この固相抗体に
前記抗原を特異的に吸着させ、更に前記免疫グロブリン
に標識体を結合してなる標識抗体を、前記固相抗体に吸
着されている抗原に特異的に吸着させ、前記標識体の量
を調べることによって間接的に前記抗原の吸着量を求め
る免疫学的測定方法に用いる抗原の測定試薬において、
前記抗原を投入したウサギの血清から免疫グロブリンを
得、このうちの結晶化部位を切離した残りの抗原結合部
位に標識体を結合して成る標識抗体と、 前記抗原を投入したヤギの血清から得られた免疫グロブ
リンを固相に吸着して成る固相抗体との組み合わせから
成る抗原の測定試薬。
[Scope of Claims] A solid-phase antibody is prepared by adsorbing immunoglobulin obtained from the serum of an animal injected with an antigen to a solid phase, and the antigen is specifically adsorbed to the solid-phase antibody. Immunization in which a labeled antibody formed by binding a labeled substance to globulin is specifically adsorbed to the antigen adsorbed on the solid-phase antibody, and the amount of the antigen adsorbed is indirectly determined by checking the amount of the labeled substance. In the antigen measurement reagent used in the chemical measurement method,
An immunoglobulin is obtained from the serum of a rabbit to which the antigen has been injected, and a labeled antibody is obtained by cutting off the crystallization site and binding a label to the remaining antigen-binding site, and a labeled antibody obtained from the serum of a goat to which the antigen has been injected. An antigen measurement reagent consisting of a combination of a solid-phase antibody made by adsorbing immunoglobulin on a solid phase.
JP62149324A 1986-06-20 1987-06-16 Reagent for measuring antigen Pending JPS63313067A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62149324A JPS63313067A (en) 1987-06-16 1987-06-16 Reagent for measuring antigen
DE3787834T DE3787834T3 (en) 1986-06-20 1987-06-19 Reagent kit for use in sandwich immunoassays.
KR1019870006204A KR960016337B1 (en) 1986-06-20 1987-06-19 Reagent kit for use in sandwich immunoassay
EP87108799A EP0249983B2 (en) 1986-06-20 1987-06-19 Reagent kit for use in sandwich immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149324A JPS63313067A (en) 1987-06-16 1987-06-16 Reagent for measuring antigen

Publications (1)

Publication Number Publication Date
JPS63313067A true JPS63313067A (en) 1988-12-21

Family

ID=15472623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149324A Pending JPS63313067A (en) 1986-06-20 1987-06-16 Reagent for measuring antigen

Country Status (1)

Country Link
JP (1) JPS63313067A (en)

Similar Documents

Publication Publication Date Title
JP3104999B2 (en) Antibody detection method
US4624930A (en) Immunochemical process
US4670383A (en) Immune-chemical measurement process for haptens and proteins
US4686181A (en) Specific binding assay employing anti-G6PDH as label
JPWO2008012944A1 (en) Aggregation inhibition measurement method and aggregation inhibition measurement reagent
JPH06506058A (en) Separation method
JPS60218071A (en) Solid-phase support composite body having chromogen responding function for detecting antibody, antigen, receptor or ligand
EP0104926A2 (en) Assay processes and materials therefor
Alpha et al. Sensitive amplified immunoenzymometric assays (IEMA) for human insulin and intact proinsulin
JP2613109B2 (en) Methods for measuring class-specific antibodies to antigens and suitable reagents therefor
EP2309265B1 (en) Method of assaying complex and kit to be used therefor
JP3032293B2 (en) Liquid phase immunoassays
Hiroyuki et al. An enzyme immunoassay system for measurement of serum insulin
JPS63313067A (en) Reagent for measuring antigen
JP2001337092A (en) Immunological measuring method and reagent for measurement
JPS6228666A (en) Method of detecting antigen and antibody in biological sample and substrate for detection
JPH03503566A (en) Immunoassay using monoclonal antibodies against natural binding proteins
JPS58149700A (en) Composite containing peroxidase, its preparation and reagent
JPS63313068A (en) Reagent for measuring antigen
JP2651438B2 (en) Enzyme-labeled antibody-sensitized latex and enzyme immunoassay using the same
JPH0466871A (en) High sensitive immunoassay
JP2688943B2 (en) Method for measuring substances in samples
JPH0399266A (en) Method of immunologically detecting univalent object to be analyzed
JPS6082966A (en) Assay of antigen
Cook et al. Monoclonal antibodies in diagnostic immunoassays