JPS63313018A - Fluidic flowmeter - Google Patents

Fluidic flowmeter

Info

Publication number
JPS63313018A
JPS63313018A JP14949287A JP14949287A JPS63313018A JP S63313018 A JPS63313018 A JP S63313018A JP 14949287 A JP14949287 A JP 14949287A JP 14949287 A JP14949287 A JP 14949287A JP S63313018 A JPS63313018 A JP S63313018A
Authority
JP
Japan
Prior art keywords
partition walls
nozzle
target
flow rate
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14949287A
Other languages
Japanese (ja)
Other versions
JPH083432B2 (en
Inventor
Makoto Okabayashi
岡林 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP14949287A priority Critical patent/JPH083432B2/en
Priority to DE8888109456T priority patent/DE3867720D1/en
Priority to EP19880109456 priority patent/EP0295623B1/en
Priority to CA 569571 priority patent/CA1322470C/en
Priority to US07/207,749 priority patent/US4854176A/en
Publication of JPS63313018A publication Critical patent/JPS63313018A/en
Publication of JPH083432B2 publication Critical patent/JPH083432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators

Abstract

PURPOSE:To measure an accurate flow rate irrespectively of the flow rate while widening a measured flow rate range by providing columnar outer peripheral surfaces on a couple of partition walls which partition a duct expanded part, control nozzles, and feedback flow passages. CONSTITUTION:The columnar outer peripheral surfaces are provided on the couple of partition walls 8a and 8b which partition the duct expanded part 5, control nozzles 6a and 6b, and feedback passages 7a and 7b. A surface 12a which faces an injection nozzle 3 is arranged between X and Y lines connecting the outer peripheral surface centers of those partition walls and the tips on the nozzle sides to each other. Then a pressure sensor 14 is arranged which performs detection within ranges encircled with straight lines (n) that are parallel to the injection center P on the side of the nozzle 3 in the center direction view of the partition walls 8a and 8b and pass the opening end parts of the nozzle 3, straight lines (n) which contact the partition walls 8a and 8b on target sides, the straight lines Y, and wall surfaces A connecting with the nozzle 3. Thus, the shapes of both partition walls and the position of the target are only changed to accurately measure a small flow rate and a large flow rate, thereby expanding the usage of a fluidic flowmeter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、管路縮小部、噴出ノズル及び管路拡大部をそ
の順に流動方向に連ねて形成し、前記噴出ノズルと管路
拡大部の境界部に、一対の制御ノズルを、前記噴出ノズ
ルの噴出方向に対してほぼ直角方向に向かって、かつ、
相対向して形成し、前記両制御ノズル夫々と前記管路拡
大部の下流側を接続する一対の帰還流路を形成し、前記
管路拡大部における流動方向切換安定化のためのターゲ
ットを設け、管路縮小部に連なる噴出ノズルからの噴流
が管路拡大部の一方の傾斜面に沿う状態で安定する現象
、及び、制御ノズルから交互に流体を吹出すことにより
噴出ノズルからの噴流が管路拡大部の両頭斜面を交互に
沿って流れる現象を利用して、流量を測定するように、
噴出ノズルからの噴流の流動方向変化に起因する圧力変
化を検出する圧力センサーを設けたフルイデイック流量
計に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is characterized in that a conduit constriction section, a jet nozzle, and a conduit enlarged section are formed in sequence in the flow direction, and the jet nozzle and the conduit enlarged section are connected in this order. a pair of control nozzles at the boundary in a direction substantially perpendicular to the jetting direction of the jetting nozzle, and
A pair of return channels are formed to face each other and connect each of the control nozzles to the downstream side of the enlarged pipe section, and a target is provided for stabilizing switching of flow direction in the enlarged pipe section. , a phenomenon in which the jet flow from the jet nozzle connected to the pipe constriction section is stabilized along one slope of the pipe expansion section, and a phenomenon in which the jet flow from the jet nozzle is stabilized along one slope of the pipe expansion section, and the jet flow from the jet nozzle is The flow rate is measured by taking advantage of the phenomenon in which the flow alternates along the double-headed slope of the road widening section.
The present invention relates to a fluidic flowmeter equipped with a pressure sensor that detects a pressure change caused by a change in the flow direction of a jet flow from a jet nozzle.

〔従来の技術〕[Conventional technology]

従来、第4図に示すように、管路拡大部(5)と制御ノ
ズル(6a) 、 (6b)と帰還流路(7a) 、 
(7b)を区画形成する一対の隔壁(17a) 、 (
17b)を翼形に形成し、管路拡大部(5)内で下流側
にターゲット(12)を配置し、圧力センサー(14)
を帰還流路(7a) 、 (7b)の内部を対象とする
ように配置していた。
Conventionally, as shown in FIG. 4, a conduit enlarged part (5), control nozzles (6a), (6b), and a return flow path (7a),
(7b) A pair of partition walls (17a), (
17b) is formed into an airfoil shape, a target (12) is arranged on the downstream side within the conduit expansion part (5), and a pressure sensor (14) is formed.
were arranged so as to target the interior of the return channels (7a) and (7b).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、測定流量範囲を大きくすると、微小流量の測定
における誤差が大きく、一層の改良の余地があった。
However, when the measurement flow rate range is widened, the error in measuring minute flow rates becomes large, and there is room for further improvement.

本発明の目的は、簡単な隔壁形状の改良とターゲットの
配置の改良と圧力センサーによる検出対象域の改良でも
って、測定流量範囲を十分に大きくしながら、流量いか
んにかかわらず正確に流量測定できるようにする点にあ
る。
The purpose of the present invention is to make it possible to accurately measure the flow rate regardless of the flow rate while sufficiently widening the measurement flow rate range by simply improving the shape of the partition wall, improving the target placement, and improving the detection target area by the pressure sensor. The point is to make it so.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴構成は、管路拡大部と制御ノズルと帰還流
路を区画形成する一対の隔壁に、円柱状又はほぼ円柱状
の外周面を備えさせ、前記両隔壁の外周面中心どうしを
結ぶ直線と、前記両隔壁の前記制御ノズル側の先端どう
しを結ぶ直線との間に、前記管路拡大部における流動方
向切換安定化のためのターゲットの前記噴出ノズル側に
向かう面を配置し、前記隔壁の中心方向視において、前
記噴出ノズルの噴出中心と平行で、その噴出ノズルの開
口端部を通る直線と前記隔壁に前記ターゲット側で接す
る直線、及び、前記両隔壁の外周面にわたる直線と、前
記噴出ノズルに連なる壁面によって囲まれた範囲を検出
対象とするように前記圧力センサーを配置したことにあ
り、その作用効果は次の通りである。
A characteristic configuration of the present invention is that a pair of partition walls defining a conduit expansion section, a control nozzle, and a return flow path are provided with a cylindrical or substantially cylindrical outer peripheral surface, and the centers of the outer peripheral surfaces of the two partition walls are connected to each other. A surface of a target for stabilizing flow direction switching in the conduit enlarged portion facing toward the ejection nozzle is disposed between the straight line and a straight line connecting the tips of the two partition walls on the control nozzle side, and When viewed in the direction toward the center of the partition wall, a straight line that is parallel to the jet center of the jet nozzle and passes through the opening end of the jet nozzle, a straight line that touches the partition wall on the target side, and a straight line that spans the outer peripheral surfaces of both the partition walls; The pressure sensor is arranged so as to detect an area surrounded by a wall connected to the jet nozzle, and its effects are as follows.

〔作 用〕[For production]

つまり、先ず、両隔壁をいかなる形状にし、かつ、ター
ゲットをどこに配置すれば、流量測定範囲を小さくでき
るかを実験で調べた結果、次の事実が判明した。
That is, first, as a result of conducting an experiment to determine what shape the two partition walls should be made and where the target should be placed in order to reduce the flow rate measurement range, the following facts were found.

第1図に示すように、両隔壁(8a) 、 (8b)に
円柱状又はほぼ円柱状の外周面を備えさせると共に、外
周面中心どうしを結ぶ直線(X)と両隔壁(8a) 、
 (8b)の先端どうしを結ぶ直線(Y)の間〔両面線
(X) 、 (Y)を含む〕に、ターゲット(12)の
噴出ノズル(3)側の面(12a)を配置することによ
って、第5図に示すように、最大流量(30001/h
)からそのzoの微小流!(1501/h)の広範囲を
、誤差が±2%以下になる状態で正確に測定できること
が判った。
As shown in FIG. 1, both the partition walls (8a) and (8b) are provided with a cylindrical or nearly cylindrical outer peripheral surface, and a straight line (X) connecting the centers of the outer peripheral surfaces and both the partition walls (8a),
By arranging the surface (12a) of the target (12) on the jet nozzle (3) side between the straight line (Y) connecting the tips of (8b) [including the double-sided lines (X) and (Y)], , as shown in Figure 5, the maximum flow rate (30001/h
) from that zo microflow! It was found that a wide range of (1501/h) could be accurately measured with an error of ±2% or less.

他方、第4図に示した従来技術において、同様の流量範
囲(3000〜150 f /h)における誤差は、第
6図に示すように微小流量域(150〜300 f /
h)で最大10%以上のもの大きなものになり、第5図
と第6図の比較によって明らかなように、本発明によれ
ば、流量測定範囲を大きくしながら、微小流量であって
も測定を正確に行えるのである。
On the other hand, in the prior art shown in FIG. 4, the error in the same flow rate range (3000 to 150 f/h) is smaller than the error in the minute flow rate range (150 to 300 f/h) as shown in FIG.
h) becomes larger by up to 10% or more, and as is clear from the comparison between Figures 5 and 6, according to the present invention, it is possible to measure even minute flow rates while enlarging the flow rate measurement range. can be done accurately.

次に、第1図ないし第3図のように両隔壁(8a) 、
 (8b)の形状改良とターゲット(12)の配置改良
を施した上で、圧力センサーによる圧力検出対象域をい
ずれにすれば流量測定を一層正確に行えるかを実験で調
べた結果、次の事実が判明した。
Next, as shown in FIGS. 1 to 3, both partition walls (8a),
After improving the shape of (8b) and improving the placement of target (12), we conducted an experiment to determine which area the pressure sensor should detect in order to more accurately measure the flow rate, and found the following facts: There was found.

第1図に示すように、隔壁(8a) 、 (8b)の中
心方向視において、噴出ノズル(3)の噴出中心(P)
と平行で、噴出ノズル(3)の開口端部を通る直線(m
)と隔壁(8a) 、 (8b)にターゲット(12)
側で接する直線(n)、及び、両隔壁(8a) 、 (
8b)の外周面にわたる直線(Y)と、噴出ノズル(3
)に連なる壁面(A)によって囲まれた範囲を検出対象
とするように圧力センサー(14)を配置したところ、
圧力センサー(14)からの波形信号は、微小流量時に
は第7図に示すように、かつ、大流量時には第10図に
示すようになった。
As shown in FIG. 1, when viewed from the center direction of the partition walls (8a) and (8b), the ejection center (P) of the ejection nozzle (3)
A straight line (m
) and the target (12) on the bulkhead (8a) and (8b)
Straight line (n) touching on the side and both partition walls (8a), (
8b) and the straight line (Y) spanning the outer peripheral surface of the jet nozzle (3
) The pressure sensor (14) was placed so that the detection target was the area surrounded by the wall (A) connected to the wall (A).
The waveform signal from the pressure sensor (14) was as shown in FIG. 7 when the flow rate was small, and as shown in FIG. 10 when the flow rate was large.

そして、第2図に示すように、圧力センサー(14)を
帰還流路(7a) 、 (7b)内で制御ノズル(6a
)。
As shown in FIG.
).

(6b)の近くに配置したところ、圧力センサー(14
)からの波形信号は微小流量時には第8図に示すように
、かつ、大流量時には第11図に示すようになった。
(6b), the pressure sensor (14
) was as shown in FIG. 8 at a minute flow rate, and as shown in FIG. 11 at a large flow rate.

また、第3図に示すように、圧力センサー(14)を帰
還流路(7a) 、(7b)内の中間部付近に配置した
ところ、圧力センサー(14)からの波形信号は微小流
量時には第9図に示すように、かつ、大流量時には第1
2図に示すようになった。
In addition, as shown in Fig. 3, when the pressure sensor (14) is placed near the middle part of the return flow paths (7a) and (7b), the waveform signal from the pressure sensor (14) becomes smaller when the flow rate is small. As shown in Figure 9, the first
The result is shown in Figure 2.

第7図ないし第12図の比較によって明らかなように、
第1図に示す本発明の圧力検出対象域にすれば、第2図
や第3図の圧力検出対象域にする場合より、微小流量時
及び大流量時のいずれにおいても、振巾の大きい整った
波形信号が圧力センサー(14)で得られ、一段と精度
の良い流量測定を行えるのである。
As is clear from the comparison of Figures 7 to 12,
If the pressure detection target area of the present invention shown in FIG. The resulting waveform signal is obtained by the pressure sensor (14), making it possible to measure the flow rate with even higher accuracy.

〔発明の効果〕〔Effect of the invention〕

その結果、単に両隔壁の形状とターゲットの位置を変更
すると共に、圧力検出対象域を選定、するだけの極めて
簡単な改造でもって、微小流量及び大流量の測定を極め
て正確に行えるようになり、フルイデイック流量計の用
途拡大を図れるようになった。
As a result, by simply changing the shape of both bulkheads and the position of the target, as well as selecting the area to be detected for pressure, it is possible to measure minute flow rates and large flow rates extremely accurately. It is now possible to expand the applications of fluidic flowmeters.

〔実施例〕〔Example〕

次に第1図により実施例を示す。 Next, an example will be shown with reference to FIG.

管(1)内に管路縮小部(2)及び噴出ノズル(3)を
形成する一対の第1流路形成部材(4a) 、 (4b
)を、管中心軸芯(P)に対して対称的に配置し、管路
縮小部(2)の作用で噴出ノズル(3)に流体を円滑に
導くと共に、噴出ノズル(3)から管中心軸芯(P)を
噴出中心として流体を噴出するように構成し、管路拡大
部(5)、一対の制御ノズル(6a) 、 (6b)、
及び、管路拡大部(5)の下流側と制御ノズル(6a)
 、 (6b)を各別に連通ずる一対の帰還流路(7a
) 、 (7b)を区画形成する一対の隔壁(8a) 
、 (8b)を管中心軸芯(P)に対して対称的に配置
し、一対の制御ノズル(6a) 、 (6b)を、噴出
ノズル(3)の噴出方向に対してほぼ直角方向に向かわ
せると共に相対向させである。一対の隔壁(9a) 、
 (9b)との協働で一対の排出路(10a) 、 (
10b)を形成する隔壁(11)を、管路拡大部(5)
の下流側を遮断する状態で設け、再排出路(10a) 
、 (10b)の入口を再帰還流路(7a) 、 (7
b)の入口側に各別に連通させである。
A pair of first flow path forming members (4a) and (4b) that form a conduit constriction section (2) and a jet nozzle (3) in the pipe (1).
) are arranged symmetrically with respect to the pipe center axis (P), and the fluid is smoothly guided to the jet nozzle (3) by the action of the pipe constriction part (2), and the fluid is guided from the jet nozzle (3) to the pipe center. It is configured to eject fluid with the axis (P) as the ejection center, and includes a conduit enlarged portion (5), a pair of control nozzles (6a), (6b),
And the downstream side of the conduit expansion part (5) and the control nozzle (6a)
, (6b) are connected to each other separately.
), a pair of partition walls (8a) forming partitions (7b)
, (8b) are arranged symmetrically with respect to the tube center axis (P), and the pair of control nozzles (6a), (6b) are oriented approximately perpendicular to the jetting direction of the jetting nozzle (3). They both dodge and face each other. A pair of partition walls (9a),
In cooperation with (9b), a pair of discharge channels (10a), (
The partition wall (11) forming the pipe enlarged part (5)
A re-discharge channel (10a) is provided so as to block the downstream side of the
, (10b) are connected to the re-feedback channel (7a), (7
(b) Each is connected to the inlet side separately.

つまり、噴出ノズル(3)からの流体噴出が開始される
と、コアンダ効果によって噴出流体は一方の隔壁(8a
)に沿って流れ、そのためにその隔壁(8a)側に位置
する制御ノズル(6a)に帰還流路(7a)から大きな
流体エネルギーが付与されて、噴出流体が反対側の隔壁
(8b)に沿って流れるようになり、今度は反対側の制
御ノズル(6b)からの流体エネルギーによって噴出流
体が初めに沿った隔壁(8a)に再び沿って流れるよう
になり、このようにして、噴出ノズル(3)からの流体
が隔壁(8a) 、 (8b)に対して交互に沿うよう
に構成し、もって、噴出流体量が増大する程短周期で、
かつ、定量的相関のある状態で噴出流体の流動方向が変
化するように構成しである。
In other words, when fluid ejection from the ejection nozzle (3) starts, the ejected fluid flows to one partition wall (8a) due to the Coanda effect.
), and therefore large fluid energy is applied from the return flow path (7a) to the control nozzle (6a) located on the partition wall (8a) side, and the ejected fluid flows along the partition wall (8b) on the opposite side. The fluid energy from the opposite control nozzle (6b) causes the jet fluid to flow again along the partition wall (8a) along which it started, and in this way the jet nozzle (3 ) so that the fluid flows along the partition walls (8a) and (8b) alternately, so that as the amount of fluid ejected increases, the period becomes shorter,
Further, the flow direction of the ejected fluid is configured to change in a state where there is a quantitative correlation.

両隔壁(8a) 、 (8b)を円柱状又はほぼ円柱状
に形成すると共に、管路拡大部(5)における流動方向
切換安定化のためのターゲラl−(12)を、両隔壁(
8a) 、 (8b)の外周面中心どうしを結ぶ直線(
X)と、両隔壁(8a) 、 (8b)の制御ノズル(
6a) 、 (6b)側の先端どうしを結ぶ直線(Y)
との間に、噴出ノズル(3)側に向かう面(12a)が
位置する状態で設け、測定流量範囲を例えば都市ガスの
家庭用ガスメータとして必要な150〜30001 /
hというように大にしながら、流量測定における誤差を
例えば都市ガスの家庭用ガスメータの検定公差内にでき
るように構成しである。
Both the partition walls (8a) and (8b) are formed into a columnar shape or a substantially cylindrical shape, and a target layer (12) for stabilizing the switching of the flow direction in the conduit enlarged part (5) is attached to both the partition walls (8a) and (8b).
A straight line connecting the centers of the outer peripheral surfaces of 8a) and (8b) (
X) and the control nozzles (
Straight line (Y) connecting the tips of 6a) and (6b) sides
The surface (12a) facing the jet nozzle (3) side is located between the two and the measured flow rate range is 150 to 30001/2, which is necessary for a household gas meter for city gas.
h, and the error in flow rate measurement can be kept within the verification tolerance of, for example, a household gas meter for city gas.

隔壁(8a) 、 (8b)の中心方向視において、噴
出ノズル(3)の噴出中心(P)と平行で、その噴出ノ
ズル(3)の開口端部を通る直線(m)と隔壁(8a)
When viewed in the direction of the center of the partition walls (8a) and (8b), a straight line (m) parallel to the jet center (P) of the jet nozzle (3) and passing through the opening end of the jet nozzle (3) and the partition wall (8a)
.

(8b)にターゲット(12)側で接する直線(n)、
及び、直線(Y)と、噴出ノズル(3)に連なる壁面(
A)によって囲まれた範囲に各別に連通させたパイプ(
13a) 、 (13b)を、密閉ケース(16)に接
続し、密閉ケース(16)内に圧力センサー(14)を
両パイプ(13a) 、 (13b)からの流体圧が互
いに逆向きに作用するように取付け、噴出ノズル(3)
からの噴流の流動方向変化に起因する圧力変化を圧力セ
ンサー(14)で検出して、圧力センサー(14)から
流量測定器(15)に正弦波状の波形信号を送り、流量
測定器(15)において、波形信号の周波数から流量を
算出して表示するように構成し、もって、帰還型フルイ
ブインク流量計を形成しである。
A straight line (n) touching (8b) on the target (12) side,
And the straight line (Y) and the wall surface (
A) Pipe (
13a) and (13b) are connected to a closed case (16), and a pressure sensor (14) is placed inside the closed case (16) so that the fluid pressures from both pipes (13a) and (13b) act in opposite directions. Install the spout nozzle (3) as shown.
The pressure sensor (14) detects the pressure change caused by the change in the direction of flow of the jet flow from the pressure sensor (14), and sends a sinusoidal waveform signal from the pressure sensor (14) to the flow rate measuring device (15). In this embodiment, the flow rate is calculated and displayed from the frequency of the waveform signal, thereby forming a feedback type full-ink flow meter.

〔別実施例〕 次に別実施例を説明する。[Another example] Next, another embodiment will be described.

隔壁(8a) 、 (8b)は円筒形又はほぼ円筒形で
あってもよい。
The partitions (8a), (8b) may be cylindrical or approximately cylindrical.

ターゲット(12)の噴出ノズル(3)側の面(12a
)、は直線(X) 、 (Y)上に配置してもよい。
The surface (12a) of the target (12) on the jet nozzle (3) side
), may be placed on the straight lines (X) and (Y).

圧力センサー(14)を一方の帰還流路(7a)又は(
7b)における圧力変化を検出するように設けてもよい
The pressure sensor (14) is connected to one of the return channels (7a) or (
7b) may be provided to detect the pressure change.

流量計は、主として燃料ガスや水道等において工業用や
家庭用に利用するが、その用途に特定されない。
Flowmeters are mainly used for industrial and household purposes, such as fuel gas and water supply, but their uses are not specific.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図及び第3
図は各別の比較例を示す断面図、第4図は従来例を示す
断面図である。 第5図と第6図は比較実験結果を示すグラフであり、第
5図は本発明例の結果、第6図は従来例の結果を示す。 第7図ないし第9図は別の比較実験結果を示すグラフで
あり、第7図は本発明例の結果、第8図と第9図は各別
の比較例の結果を示す。 第1O図ないし第12図はさらに別の比較実験結果を示
すグラフであり、第10図は本発明例の結果、第11図
と第12図は各別の比較例の結果を示す。 (2)・・・・・・管路縮小部、(3)・・・・・・噴
出ノズル、(5)・・・・・・管路拡大部、(6a) 
、 (6b)・・・・・・制御ノズル、37a) 、 
(7b) = ”・帰還流路、(8a) 、 (8b)
 ”・・・・隔壁、(12)・・・・・・ターゲット、
(12a)・・・・・・ターゲットの噴出ノズル側の面
、(14)・・・・・・圧力センサー、(A)・・・・
・・壁面、(n+) 、 (n) 、 (X) 、 (
Y) ・・・・・・直線、(P)・・・・・・噴出中心
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG.
The figures are cross-sectional views showing different comparative examples, and FIG. 4 is a cross-sectional view showing a conventional example. FIGS. 5 and 6 are graphs showing the results of comparative experiments, with FIG. 5 showing the results of the example of the present invention and FIG. 6 showing the results of the conventional example. 7 to 9 are graphs showing the results of other comparative experiments, with FIG. 7 showing the results of the example of the present invention, and FIGS. 8 and 9 showing the results of different comparative examples. 10 to 12 are graphs showing the results of further comparative experiments, with FIG. 10 showing the results of the present invention example, and FIGS. 11 and 12 showing the results of each different comparative example. (2)...Pipe constriction section, (3)...Ejection nozzle, (5)...Pipe enlargement section, (6a)
, (6b)...control nozzle, 37a),
(7b) = ”・Return flow path, (8a), (8b)
”...Bulkhead, (12)...Target,
(12a)...Target face on the jet nozzle side, (14)...Pressure sensor, (A)...
・・Wall surface, (n+), (n), (X), (
Y) ... Straight line, (P) ... Center of eruption.

Claims (1)

【特許請求の範囲】[Claims] 管路縮小部(2)、噴出ノズル(3)及び管路拡大部(
5)をその順に流動方向に連ねて形成し、前記噴出ノズ
ル(3)と管路拡大部(5)の境界部に、一対の制御ノ
ズル(6a)、(6b)を、前記噴出ノズル(3)の噴
出方向に対してほぼ直角方向に向かって、かつ、相対向
して形成し、前記両制御ノズル(6a)、(6b)夫々
と前記管路拡大部(5)の下流側を接続する一対の帰還
流路(7a)、(7b)を形成し、前記管路拡大部(5
)における流動方向切換安定化のためのターゲット(1
2)を設け、前記噴出ノズル(3)からの噴流の流動方
向変化に起因する圧力変化を検出する圧力センサー(1
4)を設けたフルイデイック流量計であって、前記管路
拡大部(5)と制御ノズル(6a)、(6b)と帰還流
路(7a)、(7b)を区画形成する一対の隔壁(8a
)、(8b)に、円柱状又はほぼ円柱状の外周面を備え
させ、前記両隔壁(8a)、(8b)の外周面中心どう
しを結ぶ直線(X)と、前記両隔壁(8a)、(8b)
の前記制御ノズル(6a)、(6b)側の先端どうしを
結ぶ直線(Y)との間に、前記ターゲット(12)の前
記噴出ノズル(3)側に向かう面(12a)を配置し、
前記隔壁(8a)、(8b)の中心方向視において、前
記噴出ノズル(3)の噴出中心(P)と平行で、その噴
出ノズル(3)の開口端部を通る直線(m)と前記隔壁
(8a)、(8b)に前記ターゲット(12)側で接す
る直線(n)、及び、前記直線(Y)と、前記噴出ノズ
ル(3)に連なる壁面(A)によって囲まれた範囲を検
出対象とするように前記圧力センサー(14)を配置し
てあるフルイデイック流量計。
Pipe constriction section (2), jet nozzle (3) and conduit enlargement section (
5) are formed in series in the flow direction, and a pair of control nozzles (6a) and (6b) are provided at the boundary between the jet nozzle (3) and the expanded pipe section (5). ) are formed in a direction substantially perpendicular to the ejection direction of the control nozzles (6a) and (6b), and are formed opposite to each other, and connect the downstream side of the conduit enlarged portion (5) with each of the control nozzles (6a) and (6b). A pair of return channels (7a) and (7b) are formed, and the pipe enlarged portion (5
) Target (1) for stabilizing flow direction switching in
2) is provided, and a pressure sensor (1) is provided to detect a pressure change caused by a change in the flow direction of the jet flow from the jet nozzle (3).
4), the fluidic flowmeter is equipped with a pair of partition walls (4) that define the expanded pipe section (5), the control nozzles (6a), (6b), and the return channels (7a), (7b). 8a
), (8b) are provided with a cylindrical or substantially cylindrical outer circumferential surface, and a straight line (X) connecting the centers of the outer circumferential surfaces of both the partition walls (8a) and (8b), and both the partition walls (8a), (8b)
A surface (12a) of the target (12) facing the ejection nozzle (3) is arranged between the straight line (Y) connecting the tips of the control nozzles (6a) and (6b) of the target (12),
When viewed toward the center of the partition walls (8a) and (8b), a straight line (m) that is parallel to the ejection center (P) of the ejection nozzle (3) and passes through the opening end of the ejection nozzle (3) and the partition wall. The detection target is a straight line (n) that touches (8a) and (8b) on the target (12) side, and an area surrounded by the straight line (Y) and the wall surface (A) that continues to the jet nozzle (3). A fluidic flow meter in which the pressure sensor (14) is arranged so as to.
JP14949287A 1987-06-16 1987-06-16 Fluidic flow meter Expired - Lifetime JPH083432B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14949287A JPH083432B2 (en) 1987-06-16 1987-06-16 Fluidic flow meter
DE8888109456T DE3867720D1 (en) 1987-06-16 1988-06-14 LIQUID FLOW METER.
EP19880109456 EP0295623B1 (en) 1987-06-16 1988-06-14 Fluidic flowmeter
CA 569571 CA1322470C (en) 1987-06-16 1988-06-15 Fluidic flowmeter
US07/207,749 US4854176A (en) 1987-06-16 1988-06-16 Fluidic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14949287A JPH083432B2 (en) 1987-06-16 1987-06-16 Fluidic flow meter

Publications (2)

Publication Number Publication Date
JPS63313018A true JPS63313018A (en) 1988-12-21
JPH083432B2 JPH083432B2 (en) 1996-01-17

Family

ID=15476333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14949287A Expired - Lifetime JPH083432B2 (en) 1987-06-16 1987-06-16 Fluidic flow meter

Country Status (1)

Country Link
JP (1) JPH083432B2 (en)

Also Published As

Publication number Publication date
JPH083432B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
WO1989005441A1 (en) Fluidic flowmeter
EP0295623B1 (en) Fluidic flowmeter
US4843889A (en) Trapped-vortex pair flowmeter
JPS63313018A (en) Fluidic flowmeter
JPS63191920A (en) Fluidics flowmeter
JPH0547378Y2 (en)
JPH0545931Y2 (en)
JPH0547379Y2 (en)
JPH0619051Y2 (en) Fluidic flow meter
JPS63139214A (en) Fluidic flowmeter
JPS63139213A (en) Fluidic flowmeter
JPH01223313A (en) Fluidic flowmeter
JPH01250725A (en) Fluidic flowmeter
JPH01124711A (en) Full-index flowmeter
JPS62108115A (en) Fluid type flowmeter
JPH0530099Y2 (en)
JPS60187814A (en) Fluidic flow meter
JPS59184822A (en) Fluidic flow meter
JPS62276411A (en) Fluidic flowmeter
JPS62288520A (en) Fluidic flowmeter
JP2708282B2 (en) Fluidic flow meter with micro flow sensor
JPS59187221A (en) Feedback-type fluidic flow-meter
JP2931198B2 (en) Fluidic flow meter
JPS63140916A (en) Fluidic flowmeter
JP2925058B2 (en) Fluidic flow meter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12