JPS59187221A - Feedback-type fluidic flow-meter - Google Patents

Feedback-type fluidic flow-meter

Info

Publication number
JPS59187221A
JPS59187221A JP6030683A JP6030683A JPS59187221A JP S59187221 A JPS59187221 A JP S59187221A JP 6030683 A JP6030683 A JP 6030683A JP 6030683 A JP6030683 A JP 6030683A JP S59187221 A JPS59187221 A JP S59187221A
Authority
JP
Japan
Prior art keywords
flow
pair
nozzle
flow path
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6030683A
Other languages
Japanese (ja)
Inventor
Akio Kono
河野 明夫
Takao Nishizawa
西沢 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6030683A priority Critical patent/JPS59187221A/en
Publication of JPS59187221A publication Critical patent/JPS59187221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators

Abstract

PURPOSE:To obtain the measurement performance which is sufficiently applicable to a consumer gas-meter by a method wherein a pair of flow-path forming members are composed of convex surfaces which have gentle variation of the radius of curvature and the feedback flow-paths are formed into curved shape of nearly the same shape and the same dimensions. CONSTITUTION:Control nozzles 6a, 6b and the downstream side of the conduit expanding portion 5 are connected to a pair of flow-path forming members 8a, 8b to form a pair of feedback flow-paths 7a, 7b. The flow-path forming members 8a, 8b are composed of convex surfaces which have gentle variation of the radius of curvature. The feedback flow-paths 7a, 7b are formed into curved shape of nearly the same shape and the same dimensions over the whole length and are connected to the control nozzles 6a, 6b smoothly. With this constitution, the pressure loss is reduced significantly and the conditions, such as the maximum flow should be 3m<3>/h and the minimum flow should be 30l/h or less and the pressure loss should be 15mm.H2O or less, which are required to a consumer gas-meter, can be sufficiently satisfied.

Description

【発明の詳細な説明】 本発明は、管路縮小部、噴出ノズル及び管路拡大部をそ
の順に流動方向に連ねて形成−し、前記噴出ノズルと管
路拡大部の境界部に、一対の制穐1ノズルを、前記噴出
ノズルの噴出方向に対してほぼ直角方向に向かって、か
つ、相対向1〜で形成し、前記両制御ノズル夫々と前記
管路拡大部の下流側を接続する一対の帰還流路を形成し
た帰還型フルイブインク流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a conduit constriction section, a jet nozzle, and a conduit enlarged section are formed in sequence in the flow direction, and a pair of conduit tubes are provided at the boundary between the jet nozzle and the conduit enlarged section. A pair of control nozzles formed in a direction substantially perpendicular to the ejection direction of the ejection nozzle and facing each other, and connecting each of the control nozzles with the downstream side of the expanded pipe section. The present invention relates to a feedback type full-ink flow meter having a return flow path formed therein.

帰産型フルイテインク流量計ば、第2図に示すような構
造で、コアンダ効果、つ1す、管路&1小部(2)K連
なる噴出ノズル(3)からの噴流が管路拡大部(5)の
一方の傾斜面(9a)又は(9b)に沿う状態で安定す
る現象を利用すると共に、制御ノズル(6a)・(6b
)から交互に流体を吹出すことにより噴出ノズル(3)
からの噴流が管路拡大部(5)の両傾斜面(9a)・(
9b)に交互に沿って流れる現象を利用して、その噴出
ノズル(3)からの噴流の流動方向変化に起因する流体
振動数変化に基いて流量を測定するものであり、機械的
可動部が無く、流体の組成、温度、圧力的−の影響を受
けにくいという利点がある。
The return-type Fruit Ink flowmeter has a structure as shown in Figure 2, and uses the Coanda effect. ), the control nozzles (6a) and (6b
) by blowing out fluid alternately from the jetting nozzle (3).
The jet from
9b), the flow rate is measured based on the change in the fluid frequency caused by the change in the flow direction of the jet from the jet nozzle (3), and the mechanically movable part is It has the advantage of being less susceptible to the effects of fluid composition, temperature, and pressure.

しか17、従来の帰還型フルイブイック流量計け、各種
実験の結果、そのままでは家庭用として利用できないこ
とが判明した。 つまり、例えば家庭用都市ガスメータ
の場合、最大流量がJゴA〕で最小計測流部が3θt/
h以下でなければならないが、従来の  −一 、 も
のでは最小計測流量をioo i7h程度以下にするこ
とができなかった。
However, as a result of various experiments, it has been found that the conventional feedback type full-build flow meter cannot be used as is for home use. In other words, for example, in the case of a household city gas meter, the maximum flow rate is JgoA] and the minimum measured flow rate is 3θt/
The minimum measured flow rate must be less than 7h, but with the conventional type, it was not possible to reduce the minimum measured flow rate to about 7h or less.

本発明の目的は、上記実情に鑑みて、家庭用メータとし
て実用できる測定性能が得られるように、帰還梨フルイ
デインク流、量計を改良する点にある。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, an object of the present invention is to improve a feedback fluid ink flow meter so as to obtain measurement performance that can be practically used as a household meter.

本発明による帰還型フルイブイック流量計の特徴槽12
tは、噴出ノズルの下流側に位置する管路拡大部、噴出
ノズルと管路拡大部の境界部にそのノズルからの噴出方
向に対してほぼ直角で相対向して形状した一対の制御ノ
ズル、及び、それら両制動ノズル夫々と管路拡大部の下
流、 11.lJを接続する帰還流路を形成するたd)
の一対の流路形成部財夫々を、制御ノズルの出口に相当
する部分以外が曲率半径変化の緩い突曲面に欧る形状に
形りzし、帰還流路夫々をその全長にわたってほぼ同形
、同寸の彎曲形状に形成I7たことにあり、その作用効
果は次の通りである。
Characteristic tank 12 of the feedback type full-buoy flowmeter according to the present invention
t is a conduit enlarged part located downstream of the ejection nozzle, a pair of control nozzles formed at the boundary between the ejection nozzle and the conduit enlarged part so as to face each other at substantially right angles to the direction of ejection from the nozzle; and downstream of both brake nozzles and the conduit expansion section, 11. d) to form a return flow path connecting lJ.
Each of the pair of flow path forming parts is shaped into a convex curved surface with a gentle radius of curvature except for the part corresponding to the outlet of the control nozzle, and each of the return flow paths is formed in substantially the same shape over its entire length. The function and effect are as follows.

つ才り、各種実験の結果、従来のものでは微少流量の測
定が不能である原因か、管路縮小部、噴出ノズル及び管
路拡大部にわたる流路の断面積変化が大きく、しかも、
制御ノズルに接続した帰還流路が急激に曲っているため
に、圧力1員失が極めて大になって、制御ノズルから噴
流に十分身エネルギーを付与でき々い点にあることが判
明した。 そこで、圧力損失を低くするための種々の工
夫を加えて実験したところ、流路形成部材に形状改良を
加えて、管路拡大部をラッパ状にして帰還流路に滑らか
に連ねると共に、流路形成部材とで帰還流路及び制御ノ
ズルを形成する部材に形状改良を加えて、帰還流路を、
断面積変化がほとんど無く、滑らかに彎曲した形状で、
制御ノズルに滑らかに連なるものにすると、例えば都市
ガスを対象にした場合、最大流量がJ nJhで、最小
計測流量が30z/h以下で、圧力損失が/ j tx
x H20以下にすること、すなわち現在の家庭用都市
ガスメータに要求されている条件を満足することが可能
となし、また、水道等の各種家庭用メータとl、ても適
用できることが判った。 その結果、従来の家庭用流量
計に比して、安価で耐久性に優れかつ温度や圧力による
精度低下が少く、シかも汎用性に優れた家庭用流量計を
提供できるように々つだ。
As a result of various experiments, we found that the cross-sectional area of the flow path between the constricted pipe section, the jet nozzle, and the expanded pipe section is large, which may be the reason why it is impossible to measure minute flow rates with the conventional method.
It was found that due to the sharp bend in the return flow path connected to the control nozzle, the loss of pressure was so large that the control nozzle could no longer impart sufficient energy to the jet. Therefore, we experimented with various measures to reduce pressure loss, and found that we improved the shape of the channel forming member, made the expanded section of the channel into a trumpet shape, and connected it smoothly to the return channel. By improving the shape of the member that forms the return flow path and the control nozzle with the forming member, the return flow path is
It has a smoothly curved shape with almost no change in cross-sectional area.
If it is connected smoothly to the control nozzle, for example, when targeting city gas, the maximum flow rate is J nJh, the minimum measured flow rate is 30z/h or less, and the pressure loss is /j tx
It has been found that it is possible to reduce x H20 or less, that is, to satisfy the conditions required for current household city gas meters, and that it can also be applied to various household meters such as water meters. As a result, compared to conventional household flowmeters, we are able to provide a household flowmeter that is less expensive, more durable, has less accuracy loss due to temperature and pressure, and is more versatile.

次に1第1図により実施例を示す。Next, an example will be shown with reference to FIG.

矩形断面形状で、小「1a部分(la)I(lb)間に
大巾部分(1c)を備えた金属製やプラスチック製の管
(1)内に、管路縮小部(2)及び噴出ノズル(3)を
形成する一対の第1流路形成部材(4a)・(4b)を
、上流側の小中部分(1a)に位置させて、かつ、管中
心軸芯(P)に対して対称的に位置させて固定して、管
路縮小部(2)の作用で噴出ノズル(3)に流体を円滑
に導くと?::に、噴出ノズル(3)から管中心軸芯(
P)とほぼ平行に流体を噴出させるように構成しである
In a metal or plastic pipe (1) with a rectangular cross-sectional shape and a wide part (1c) between the small parts (1a) and I (lb), there is a conduit constriction part (2) and a jet nozzle. A pair of first flow path forming members (4a) and (4b) forming (3) are located in the small and medium portion (1a) on the upstream side, and are symmetrical with respect to the pipe center axis (P). When the fluid is smoothly guided from the jet nozzle (3) to the pipe center axis (
The structure is such that the fluid is ejected almost parallel to P).

管路拡大部(5)、一対の制御ノズル(6a)う(6b
)、及び、管路拡大部(5)の下流側と制御ノズル(6
a)・(6b)を各別に連通ずる一対の帰還流路(7a
)+(7b)を形成する一対の第2流路形成部財(8a
)+(8b)を、管+1)の大中部分(lc)内に管中
心軸芯(P)に対して対称的に配置して固定し、一対の
制御ノズル(6aハ(6b)を、噴出ノズル(3)と管
路拡大部(5)の境界部において、噴出ノズル(3)の
噴出方向に対してほぼ直角方向に向かわせると共に相対
向させ、もって、噴出ノズル(3)からの流体を管路拡
大部(5)の傾斜面(9a)+(9b)のいずれか一方
に沿って下流側の小中部分(lb)に辱くように構成し
、かつ、両制御ノズル(6a)・(6b)により噴出ノ
ズル(3)からの流体に付与される流体エネルギ、及び
、両制御ノズル(6a)+(6b) Kよ抄付与される
流体エネルギー量の大小関係の逆転によって、噴出ノズ
ル(3)からの流体を傾斜面(9a)T(91)) K
対して交互に沿わせるように構成してあり、この事をさ
らに詳述すると以下の通りである。
Pipe expansion part (5), a pair of control nozzles (6a) and (6b)
), and the downstream side of the conduit expansion part (5) and the control nozzle (6
A pair of return channels (7a) that communicate with each other separately.
) + (7b) a pair of second flow path forming parts (8a
) + (8b) is arranged and fixed symmetrically with respect to the pipe center axis (P) in the large and middle part (lc) of the pipe +1), and a pair of control nozzles (6a c (6b) are At the boundary between the jet nozzle (3) and the expanded pipe section (5), the jet nozzle (3) is oriented substantially perpendicularly to the jet direction of the jet nozzle (3) and opposed to it, so that the fluid from the jet nozzle (3) is is configured so as to inject the small and medium portion (lb) on the downstream side along either one of the inclined surfaces (9a) + (9b) of the conduit expansion part (5), and both control nozzles (6a) - By reversing the magnitude relationship of the fluid energy given to the fluid from the jet nozzle (3) by (6b) and the amount of fluid energy given by both control nozzles (6a) + (6b) K, the jet nozzle The fluid from (3) is transferred to the inclined surface (9a)T(91))K
This is explained in more detail below.

つまり、噴出ノズル(3)からの流体噴出が開始される
と、前述のコアンダ効果によって噴出流体は一方の傾斜
面(9a ) K沿って流れ、そのためにその傾斜面(
9a)側に位置する制御ノズル(6a)に帰還流路(7
a)から大きな流体エネルギーが付与されて、噴出流体
が反対側の傾斜面(9b)に沿って流れるようになり、
今度は反対側の制御ノズル(6b)からの流体エネルギ
ーによって噴出流体が初めに沿った傾斜面(9a)に再
び沿って流ね。
In other words, when fluid ejection from the ejection nozzle (3) starts, the ejected fluid flows along one inclined surface (9a) K due to the aforementioned Coanda effect, and therefore, the ejected fluid flows along one inclined surface (9a) K.
A return flow path (7) is connected to the control nozzle (6a) located on the side (9a).
Large fluid energy is applied from a) so that the ejected fluid flows along the opposite inclined surface (9b),
This time, the fluid energy from the control nozzle (6b) on the opposite side causes the ejected fluid to flow again along the slope (9a) along which it started.

るようになり、このようにして、噴出流体からの流体が
傾斜面(9a)べ9b)に対して交互に沿うようになる
のであり、しかも、噴出流体量が増大する程短周期で、
かつ、定量的相関のある状態で噴出流体の流動方向が変
化するのである。
In this way, the fluid from the ejected fluid comes to alternately follow the slopes (9a) and 9b), and moreover, as the amount of ejected fluid increases, the period becomes shorter.
Moreover, the flow direction of the ejected fluid changes in a state where there is a quantitative correlation.

一方の制御ノズル(6a)に接続した帰還流路(7a)
に、圧力変化あるいは流量変化を検出するセンサー(l
O)を付設し、そのセンサー(In)からの情報に基い
て、圧力あるいは流量変化の振動数から管(1)内の流
量を算出して表示する流量表示装置(11)を設け、も
って、帰還発振型のフルイブイック流量計を構成しであ
る。
A return flow path (7a) connected to one control nozzle (6a)
In addition, there is a sensor (l) that detects pressure changes or flow rate changes.
O), and a flow rate display device (11) that calculates and displays the flow rate in the pipe (1) from the frequency of the pressure or flow rate change based on the information from the sensor (In), It consists of a feedback oscillation type full-build flowmeter.

第1流路形成材(8a)・(8b5夫々を、制御ノズル
(6a)+(6b)の出口に相当する部分(13)以外
が曲率半径変化の緩い突曲面になる形状に形成して、流
路拡大部(5)と帰還流路(7a)+(7b)を滑らか
に連ねさせ、管(1)及び第1流路形成部材(4a)+
(4b)を、第2流路形成部財(8a)+(8b)に対
してほぼ等距閘で対向配置する形状に形成して、帰還流
路(7a)+(7b)夫々を、全長にわたってほぼ同形
、同寸で、制御ノズル(6a)う(6b) K滑らかに
連なる彎曲形状に形成し、また、第1流路形成部財(4
a)+(4b)を、上流側小中部分(1a)から噴出ノ
ズル(3)にわたって流路中が緩やかに変化するように
形成し、さらに、管(1)の露出内面、並びに、第1及
び第1流路形成部材(4a)+(4b)+(8a)ν(
8b)の管内露出面の全てをテフロン(I2)でコーテ
ィングし、全体として、流量計の圧力損失を小さく、望
捷しくけijmH20以下になり、かつ、最大流量が3
−/hでありながら最小計測流量が3θt/h以下にな
るように構成t7である。
Each of the first flow path forming materials (8a) and (8b5) is formed into a shape in which a portion other than the portion (13) corresponding to the outlet of the control nozzle (6a) + (6b) has a convex curved surface with a gentle change in radius of curvature, The flow path enlarged portion (5) and the return flow path (7a) + (7b) are smoothly connected, and the pipe (1) and the first flow path forming member (4a) +
(4b) is formed to face the second flow path forming parts (8a) + (8b) at approximately equal distances, so that each of the return flow paths (7a) + (7b) has a total length. The control nozzles (6a) and (6b) are formed into a smoothly continuous curved shape, and have approximately the same shape and size throughout, and the first flow path forming member (4)
a) + (4b) is formed so that the inside of the flow path changes gradually from the upstream small and medium portion (1a) to the jet nozzle (3), and furthermore, the exposed inner surface of the pipe (1) and the first and first flow path forming member (4a) + (4b) + (8a) ν(
8b) All exposed surfaces inside the pipe are coated with Teflon (I2), and as a whole, the pressure loss of the flowmeter is small, the accuracy is less than ijmH20, and the maximum flow rate is 3.
-/h, the configuration t7 is such that the minimum measured flow rate is 3θt/h or less.

次に、別の実施例を示す。Next, another example will be shown.

テフロンθ2)のコーティングに代えて、管fl及び流
路形成部材(4a) ν(4b)+(8a)ア(8b)
をフッ化黒鉛で形成t7ても同様に圧力損失低下の効果
が得られる。 しかし、流路を形成する素材は金属やプ
ラスチック等のいかなるものでもよい。
Instead of coating with Teflon θ2), the tube fl and flow path forming member (4a) ν(4b)+(8a)a(8b)
Even if T7 is made of fluorinated graphite, the same effect of reducing pressure loss can be obtained. However, the material forming the flow path may be any material such as metal or plastic.

前述のように、上流側小中部分(1a)から噴出ノズル
(3)にわたる流路部分において、流路中を紗やかに変
化させることが望ましいか、その流路部分の形状は変え
ることが可能である。
As mentioned above, in the flow path section extending from the upstream small and medium portion (1a) to the jet nozzle (3), is it desirable to smoothly change the inside of the flow path, or is it possible to change the shape of the flow path section? It is possible.

前記センサー(lO)の検出方式や構成、設置位置や個
数等、流体振動を検出、するだめの機構は自由に変更で
き、また、流量を検出表示する装置(lりも各種変形自
在である。
The mechanism for detecting and detecting fluid vibrations, such as the detection method, configuration, installation position and number of the sensors (IO), can be freely changed, and the device for detecting and displaying the flow rate can also be modified in various ways.

本発明による流か計は、主として燃料ガスや水道等にお
いて家庭用に利用するが、その用途に特定されるもので
無い。
The flow meter according to the present invention is mainly used for household use in fuel gas, water supply, etc., but it is not limited to that use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す要部概略断面図である。  第2図は従来例の要部概略断面図である。 (2)・・・・・管路縮小部、(3)・・・・・・噴出
ノズル、(5)・・・・・・管路拡大部、(6a) ・
(6b) −−制#11ノズル、(7a)+(7b)・
・・・帰還流路、(8a)+(8b)・・・・・流路形
成部材、(13)・・・ノズル出口相当部分。
FIG. 1 is a schematic sectional view of a main part showing an embodiment of the present invention. FIG. 2 is a schematic sectional view of the main parts of a conventional example. (2)...Pipe constriction part, (3)...Blowout nozzle, (5)...Pipe enlargement part, (6a)
(6b) -- system #11 nozzle, (7a) + (7b)・
... Return flow path, (8a) + (8b) ... Channel forming member, (13) ... Portion corresponding to the nozzle exit.

Claims (1)

【特許請求の範囲】[Claims] 管路縮小部(2)、噴出ノズル(3)及び管路拡大部(
5)をその順に流動方向に連ねて形成し、1「1記噴出
ノズル(3)と管路拡大部(5)の境界部に、一対の制
徂1ノズル(6a)+(6b)を、前記噴出ノズル(3
)の噴出方向に対してほぼ直角方向に向かって、かつ、
相対向して形成し、前記両制御ノズル(6a)・(6b
)夫々と前記管路拡大部(5)の下流側を接続する一対
の帰還流路(7a)+(7b)を形成した帰還梨フルイ
デインク流儀計であって、前記管路拡大部(6)、帰以
流路(7a)□(7b)及び制御ノズル(6a))(6
b)を形成する一対の流路形成部材(8a)・(8b)
夫々を、前記制御ノズル(6a)1(6b)の出口に相
当する部分θ3)以外が曲率半径変化の緩い突曲面にな
る形状に形成し、前記帰還流路(7a)+(7b)夫々
をその全長にわたってほぼ同形、同寸の彎曲形状に形成
しである帰還型フルイブインク流量計。
Pipe constriction section (2), jet nozzle (3) and conduit enlargement section (
5) are formed in series in the flow direction, and a pair of restricting nozzles (6a) + (6b) are formed at the boundary between the jet nozzle (3) and the expanded pipe section (5). The spout nozzle (3
) in a direction substantially perpendicular to the direction of ejection, and
The control nozzles (6a) and (6b) are formed opposite to each other.
) A return fluid ink flowmeter forming a pair of return channels (7a) + (7b) connecting the downstream side of the conduit enlarged part (5) with the conduit enlarged part (6), Return flow path (7a) □ (7b) and control nozzle (6a)) (6
A pair of flow path forming members (8a) and (8b) forming b)
Each of the return channels (7a) and (7b) is formed into a convex curved surface with a gentle radius of curvature except for the portion θ3) corresponding to the outlet of the control nozzles (6a) 1 (6b). A feedback type full-ink flowmeter that has a curved shape that is approximately the same shape and size over its entire length.
JP6030683A 1983-04-06 1983-04-06 Feedback-type fluidic flow-meter Pending JPS59187221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030683A JPS59187221A (en) 1983-04-06 1983-04-06 Feedback-type fluidic flow-meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030683A JPS59187221A (en) 1983-04-06 1983-04-06 Feedback-type fluidic flow-meter

Publications (1)

Publication Number Publication Date
JPS59187221A true JPS59187221A (en) 1984-10-24

Family

ID=13138339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030683A Pending JPS59187221A (en) 1983-04-06 1983-04-06 Feedback-type fluidic flow-meter

Country Status (1)

Country Link
JP (1) JPS59187221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126127U (en) * 1991-04-30 1992-11-17 株式会社竹中製作所 Support fittings for fluidic gas meters
JPH04126128U (en) * 1991-04-30 1992-11-17 株式会社竹中製作所 Support fittings for fluidic gas meters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126127U (en) * 1991-04-30 1992-11-17 株式会社竹中製作所 Support fittings for fluidic gas meters
JPH04126128U (en) * 1991-04-30 1992-11-17 株式会社竹中製作所 Support fittings for fluidic gas meters

Similar Documents

Publication Publication Date Title
US4976155A (en) Fluidic flowmeter
US4838091A (en) Fludic oscillator flowmeters
EP0295623B1 (en) Fluidic flowmeter
US4843889A (en) Trapped-vortex pair flowmeter
JPS59187221A (en) Feedback-type fluidic flow-meter
EP0503462B1 (en) Fluidic vibrating type flowmeter
JPS59184822A (en) Fluidic flow meter
JPH0464413B2 (en)
JPH0618244Y2 (en) Fluid vibration type flow meter
JP2566605B2 (en) Fluidic flow meter
JPS61223517A (en) Fluidic flowmeter
JPH0547378Y2 (en)
JPS62108115A (en) Fluid type flowmeter
JPS63139214A (en) Fluidic flowmeter
JPH0547379Y2 (en)
JPH01250725A (en) Fluidic flowmeter
JPS63139213A (en) Fluidic flowmeter
JPS60188817A (en) Feedback type fluidic flowmeter
JPH0545931Y2 (en)
JPH01124711A (en) Full-index flowmeter
JP2821650B2 (en) Fluid vibration type flow meter
JPS63313018A (en) Fluidic flowmeter
EP0309607A1 (en) Fluidic oscillating diverter flow sensor
JP2931198B2 (en) Fluidic flow meter
JPH08136313A (en) Flow-rate measuring instrument