JPH0545931Y2 - - Google Patents

Info

Publication number
JPH0545931Y2
JPH0545931Y2 JP1580787U JP1580787U JPH0545931Y2 JP H0545931 Y2 JPH0545931 Y2 JP H0545931Y2 JP 1580787 U JP1580787 U JP 1580787U JP 1580787 U JP1580787 U JP 1580787U JP H0545931 Y2 JPH0545931 Y2 JP H0545931Y2
Authority
JP
Japan
Prior art keywords
flow rate
flow
jet nozzle
partition walls
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1580787U
Other languages
Japanese (ja)
Other versions
JPS63124622U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1580787U priority Critical patent/JPH0545931Y2/ja
Publication of JPS63124622U publication Critical patent/JPS63124622U/ja
Application granted granted Critical
Publication of JPH0545931Y2 publication Critical patent/JPH0545931Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、管路縮小部、噴出ノズル及び管路拡
大部をその順に流動方向に連ねて形成し、前記噴
出ノズルと管路拡大部の境界部に、一対の制御ノ
ズルを、前記噴出ノズルの噴出方向に対してほぼ
直角方向に向かつて、かつ、相対向して形成し、
前記両制御ノズル夫々と前記管路拡大部の下流側
を接続する一対の帰還流路を形成し、前記管路拡
大部における流動方向切換安定化のためのターゲ
ツトを設け、管路縮小部に連なる噴出ノズルから
の噴流が管路拡大部の一方の傾斜面に沿う状態で
安定する現象、及び、制御ノズルから交互に流体
を吹出すことにより噴出ノズルからの噴流が管路
拡大部の両傾斜面を交互に沿つて流れる現象を利
用して、流量を測定するように、噴出ノズルから
の噴流の流動方向変化に起因する圧力又は流量変
化を検出する流量測定用センサーを設けたフルイ
デイツク流量計に関する。
[Detailed description of the invention] [Industrial field of application] The present invention forms a conduit constriction section, a jet nozzle, and a conduit expansion section in sequence in the flow direction, and A pair of control nozzles are formed at the boundary portion so as to face each other in a direction substantially perpendicular to the jetting direction of the jetting nozzle;
forming a pair of return flow paths connecting each of the control nozzles and the downstream side of the expanded pipe section, providing a target for stabilizing flow direction switching in the expanded pipe section, and connecting to the contracted pipe section; A phenomenon in which the jet flow from the jet nozzle is stabilized along one slope of the expanded pipe section, and a phenomenon in which the jet flow from the jet nozzle is stabilized along both slopes of the expanded pipe section by alternately jetting fluid from the control nozzle. The present invention relates to a fluidic flowmeter equipped with a flow rate measurement sensor that detects a change in pressure or flow rate caused by a change in the flow direction of a jet flow from a jet nozzle, so as to measure the flow rate by utilizing the phenomenon in which the jet flow alternately flows along the jet nozzle.

〔従来の技術〕[Conventional technology]

従来、第4図に示すように、管路拡大部5と制
御ノズル6a,6bと帰還流路7a,7bを区画
形成する一対の隔壁17a,17bを翼形に形成
し、管路拡大部5内で下流側にターゲツト12を
配置し、帰還流路7a,7bを隔壁17a,17
bと対向して形成する隔壁面Cを、その対向巾l
が制御ノズル6a,6b側ほど小さくなるように
形成していた。
Conventionally, as shown in FIG. 4, a pair of partition walls 17a, 17b defining the conduit enlarged part 5, control nozzles 6a, 6b, and return channels 7a, 7b are formed into airfoil shapes, and the conduit enlarged part 5 The target 12 is placed on the downstream side within
The partition surface C formed opposite to b is defined by its opposing width l.
was formed so that it became smaller toward the control nozzles 6a and 6b.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、測定流量範囲を大きくすると、微小流
量の測定における誤差が大きく、一層の改良の余
地があつた。
However, increasing the measurement flow rate range resulted in large errors in measuring minute flow rates, leaving room for further improvement.

本考案の目的は、簡単な隔壁形状の改良とター
ゲツトの配置及び管路拡大部に対する排出路の配
置の改良でもつて、測定流量範囲を十分に大きく
しながら、流量いかんにかかわらず正確に流量測
定できるようにする点にある。
The purpose of the present invention is to accurately measure the flow rate regardless of the flow rate while sufficiently widening the measurement flow rate range by simply improving the shape of the partition wall, the arrangement of the target, and the arrangement of the discharge channel relative to the expanded pipe section. The point is to make it possible.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の特徴構成は、管路拡大部と制御ノズル
と帰還流路を区画形成する一対の隔壁に、円柱状
又はほぼ円柱状の外周面を備えさせ、前記両隔壁
の外周面中心どうしを結ぶ直線と、前記両隔壁の
前記制御ノズル側の先端どうしを結ぶ直線との間
に、前記管路拡大部における流動方向切換安定化
のためのターゲツトの前記噴出ノズル側に向かう
面を配置し、前記両帰還流路の終端側部分を形成
する隔壁のうち、前記円柱状又はほぼ円柱状の外
周面に対向する隔壁面を、その外周面と同芯又は
ほぼ同芯の円柱面状に形成し、前記管路拡大部に
対する一対の排出路を、入口が前記帰還流路のう
ち前記外周面中心どうしを結ぶ直線の近くに位置
するように形成したことにあり、その作用効果は
次の通りである。
A characteristic configuration of the present invention is that a pair of partition walls that define a conduit expansion section, a control nozzle, and a return flow path are provided with a cylindrical or nearly cylindrical outer peripheral surface, and the centers of the outer peripheral surfaces of the two partition walls are connected to each other. A surface of a target for stabilizing flow direction switching in the conduit enlarged portion facing toward the ejection nozzle is disposed between the straight line and a straight line connecting the tips of the two partition walls on the control nozzle side, and Of the partition walls forming the terminal end portions of both return flow paths, the partition surface facing the cylindrical or substantially cylindrical outer circumferential surface is formed into a cylindrical surface that is concentric or substantially concentric with the outer circumferential surface, The pair of discharge passages for the pipe expansion part are formed such that the inlet is located near a straight line connecting the centers of the outer peripheral surfaces of the return flow passage, and the effects thereof are as follows. .

〔作用〕[Effect]

つまり、両隔壁をいかなる形状にし、ターゲツ
トをどこに配置し、両帰還流路をいかなる形状に
し、排出路をどのように接続すれば、流量測定誤
差を小さくできるかを実験で調べた結果、次の事
実が判明した。
In other words, as a result of experimenting to find out what shape the partition walls should be, where the target should be placed, what shape the return channels should be, and how the discharge channel should be connected, the flow rate measurement error could be reduced. The facts have been revealed.

第1図に示すように、両隔壁8a,8bに円柱
状又はほぼ円柱状の外周面を備えさせ、外周面中
心どうしを結ぶ直線Xと両隔壁8a,8bの先端
どうしを結ぶ直線Yの間〔両直線X,Yを含む〕
に、ターゲツト12の噴出ノズル3側の面12a
を配置し、隔壁8a,8bと対向して帰還流路7
a,7bの終端側部分を形成する隔壁面Aを、隔
壁8a,8bの外周面と同芯状の円柱面状に形成
して、帰還流路7a,7bの終端側部分全体をほ
ぼ同巾に形成し、さらに、一対の排出路10a,
10bの入口を上記直線Xの近くで両帰還流路7
a,7bに接続することによつて、第2図に示す
ように、最大流量(3000/h)からその1/20の
微小流量(150/h)の広範囲を、誤差が±1.0
%以下になる状態で正確に測定できることが判つ
た。
As shown in FIG. 1, both partition walls 8a and 8b are provided with cylindrical or nearly cylindrical outer peripheral surfaces, and between a straight line X connecting the centers of the outer peripheral surfaces and a straight line Y connecting the tips of both partition walls 8a and 8b. [Including both straight lines X and Y]
In addition, the surface 12a of the target 12 on the side of the jet nozzle 3
are arranged, and a return flow path 7 is arranged facing the partition walls 8a and 8b.
The partition wall surface A forming the terminal end portions of the return channels 7a and 7b is formed into a cylindrical surface concentric with the outer peripheral surfaces of the partition walls 8a and 8b, so that the entire terminal end portions of the return channels 7a and 7b have approximately the same width. furthermore, a pair of discharge passages 10a,
10b near the above-mentioned straight line
By connecting to ports a and 7b, as shown in Figure 2, a wide range of flow from the maximum flow rate (3000/h) to 1/20 of the maximum flow rate (150/h) can be achieved with an error of ±1.0.
It has been found that accurate measurements can be made in conditions where the value is less than %.

他方、第4図に示した従来技術において、同様
の流量範囲(3000〜150/h)における誤差は、
第5図に示すように微小流量域(150〜300/
h)で最大10%以上のもの大きなものになり、第
2図と第5図の比較によつて明らかなように、本
考案によれば、流量測定範囲を大きくしながら微
小流量であつても測定を正確に行えるのである。
On the other hand, in the conventional technology shown in Fig. 4, the error in the same flow rate range (3000 to 150/h) is
As shown in Figure 5, the micro flow rate range (150~300/
h) becomes larger by up to 10% or more, and as is clear from the comparison of Figures 2 and 5, according to the present invention, the flow rate measurement range can be increased while even minute flow rates can be measured. Measurements can be made accurately.

〔考案の効果〕[Effect of idea]

その結果、単に隔壁の形状とターゲツトの配置
と排出路の接続位置を変更するだけの極めて簡単
な改造でもつて、微小流量の測定を正確に行える
ようになり、フルイデイツク流量計の用途拡大を
図れるようになつた。
As a result, it has become possible to accurately measure minute flow rates with an extremely simple modification that involves simply changing the shape of the partition wall, the placement of the target, and the connection position of the discharge channel, allowing the use of fluidic flowmeters to be expanded. It became.

〔実施例〕〔Example〕

次に第1図により実施例を示す。 Next, an example will be shown with reference to FIG.

管1内に管路縮小部2及び噴出ノズル3を形成
する一対の第1流路形成部材4a,4bを、管中
心軸芯Pに対して対称的に配置し、管路縮小部2
の作用で噴出ノズル3に流体を円滑に導くと共
に、噴出ノズル3から管中心軸芯Pとほぼ平行に
流体を噴出するように構成し、管路拡大部5、一
対の制御ノズル6a,6b、及び、管路拡大部5
の下流側と制御ノズル6a,6bを各別に連通す
る一対の帰還流路7a,7bを区画形成する一対
の隔壁8a,8bを管中心軸芯Pに対して対称的
に配置し、一対の制御ノズル6a,6bを、噴出
ノズル3の噴出方向に対してほぼ直角方向に向か
わせると共に相対向させてある。一対の隔壁9
a,9bとの協働で一対の排出路10a,10b
を形成する隔壁11を、管路拡大部5の下流側を
遮断する状態で設けてある。
A pair of first flow path forming members 4a and 4b forming the conduit constriction section 2 and the jet nozzle 3 in the tube 1 are arranged symmetrically with respect to the tube center axis P, and the conduit constriction section 2 is arranged symmetrically with respect to the tube center axis P.
The fluid is smoothly guided to the jet nozzle 3 by the action of the jet nozzle 3, and the fluid is jetted from the jet nozzle 3 substantially parallel to the pipe center axis P. And the pipe expansion part 5
A pair of partition walls 8a, 8b defining a pair of return passages 7a, 7b which respectively communicate with the downstream side of the control nozzles 6a, 6b are arranged symmetrically with respect to the pipe center axis P, and a pair of control The nozzles 6a and 6b are oriented substantially perpendicular to the ejection direction of the ejection nozzle 3 and are opposed to each other. A pair of bulkheads 9
A pair of discharge passages 10a, 10b in cooperation with a, 9b
A partition wall 11 is provided to block the downstream side of the expanded pipe section 5.

つまり、噴出ノズル3からの流体噴出が開始さ
れると、コアンダ効果によつて噴出流体は一方の
隔壁8aに沿つて流れ、そのためにその隔壁8a
側に位置する制御ノズル6aに帰還流路7aから
大きな流体エネルギーが付与されて、噴出流体が
反対側の隔壁8bに沿つて流れるようになり、今
度は反対側の制御ノズル6bからの流体エネルギ
ーによつて噴出流体が初めに沿つた隔壁8aに再
び沿つて流れるようになり、このようにして、噴
出ノズル3からの流体が隔壁8a,8bに対して
交互に沿うように構成し、もつて、噴出流体量が
増大する程短周期で、かつ、定量的相関のある状
態で噴出流体の流動方向が変化するように構成し
てある。
That is, when fluid ejection from the ejection nozzle 3 is started, the ejected fluid flows along one partition wall 8a due to the Coanda effect, and therefore, the ejection fluid flows along one partition wall 8a.
Large fluid energy is applied from the return flow path 7a to the control nozzle 6a located on the side, and the ejected fluid flows along the partition wall 8b on the opposite side, and this time, the fluid energy from the control nozzle 6b on the opposite side is applied. As a result, the ejected fluid again flows along the partition wall 8a along which it initially ran, and in this way, the fluid from the ejection nozzle 3 is configured to alternately follow the partition walls 8a and 8b, and thus, The flow direction of the ejected fluid is configured to change in a shorter cycle as the amount of ejected fluid increases, and in a state where there is a quantitative correlation.

両隔壁8a,8bを円柱状又はほぼ円柱状に形
成し、管路拡大部5における流動方向切換安定化
のためのターゲツト12を、両隔壁8a,8bの
外周面中心どうしを結ぶ直線Xと、両隔壁8a,
8bの制御ノズル6a,6b側の先端どうしを結
ぶ直線Yとの間に、噴出ノズル3側に向かう面1
2aが位置する状態で設けてある。さらに、両帰
還流路7a,7bの終端側部分を形成する隔壁9
a,9bのうち、隔壁8a,8bの外周面に対向
する隔壁面Aを、その外周面と同芯又はほぼ同芯
の円柱面状に形成し、管路拡大部5に対する一対
の排出路10a,10bを、入口が帰還流路7
a,7bのうち前記外周面中心どうしを結ぶ直線
Xの近くに位置するように形成してある。つま
り、それら構成を兼備させることによつて、第2
図に示すように、測定流量範囲を例えば都市ガス
の家庭用ガスメータとして必要な150〜3000/
hというように大にしながら、流量測定における
誤差を例えば都市ガスの家庭用ガスメータの検定
公差内である±1%程度以下というように小さく
できるように構成してある。
Both the partition walls 8a and 8b are formed into a columnar shape or almost a columnar shape, and the target 12 for stabilizing the switching of the flow direction in the conduit expansion section 5 is a straight line X connecting the centers of the outer peripheral surfaces of the partition walls 8a and 8b. Both bulkheads 8a,
Between the straight line Y connecting the tips of control nozzles 6a and 6b of 8b, there is a surface 1 facing the jet nozzle 3 side.
2a is located. Further, a partition wall 9 forming the terminal end portion of both return channels 7a and 7b.
Of the partition walls 8a and 9b, the partition wall surface A facing the outer peripheral surface of the partition walls 8a and 8b is formed into a cylindrical surface concentric or almost concentric with the outer peripheral surface, and a pair of discharge passages 10a to the conduit enlarged portion 5 are formed. , 10b, the inlet is the return flow path 7
It is formed so as to be located near the straight line X connecting the centers of the outer circumferential surfaces of a and 7b. In other words, by combining these configurations, the second
As shown in the figure, the measured flow rate range is, for example, 150 to 3000, which is required for a residential city gas meter.
h, while the error in flow rate measurement can be made small, for example, within ±1% or less, which is within the certification tolerance of a city gas household gas meter.

また、隔壁11のうち帰還流路7a,7bの始
端側部分を形成する隔壁面Bを、上記隔壁面Aと
ほぼ同一円周面上に位置する円柱面状に形成し
て、微小流量時の測定誤差を一層小さくできるよ
うに構成してある。
In addition, the partition wall surface B forming the starting end side portion of the return channels 7a and 7b of the partition wall 11 is formed into a cylindrical surface located approximately on the same circumferential surface as the partition wall surface A, so that the The structure is designed to further reduce measurement errors.

両帰還流路7a,7bのうち排出路10a,1
0bの入口近くで隔壁11側に各別に連通させた
パイプ13a,13bを、合流排出路10内に配
置した密閉ケース16に接続し、密閉ケース16
内に圧力センサー14を両パイプ13a,13b
からの流体圧が互いに逆向きに作用するように取
付け、噴出ノズル3からの噴流の流動方向変化に
起因する圧力変化を圧力センサー14で検出し
て、圧力センサー14から流量測定器15に正弦
波状の波形信号を送り、流量測定器15におい
て、波形信号の周波数から流量を算出して表示す
るように構成し、もつて、帰還型フルイデイツク
流量計を形成してある。
Out of both return channels 7a, 7b, discharge channels 10a, 1
The pipes 13a and 13b, which are connected to the partition wall 11 side separately near the entrance of
A pressure sensor 14 is installed inside both pipes 13a and 13b.
The pressure sensor 14 detects the pressure change caused by the change in the flow direction of the jet flow from the jet nozzle 3, and the pressure sensor 14 transmits a sinusoidal waveform to the flow rate measuring device 15. A waveform signal is sent, and the flow rate measuring device 15 is configured to calculate and display the flow rate from the frequency of the waveform signal, thereby forming a feedback type fluidic flowmeter.

排出路10a,10bの入口を管中心軸芯Pに
ほぼ平行な平面Z上に配置して、大流量時の圧力
センサー14からの波形信号が整うように構成
し、大流量時においても流量測定精度を向上でき
るように構成してある。
The inlets of the discharge passages 10a and 10b are arranged on a plane Z that is substantially parallel to the pipe center axis P, and the waveform signal from the pressure sensor 14 is arranged evenly during large flow rates, so that flow rate measurement is possible even during large flow rates. It is designed to improve accuracy.

〔別実施例〕[Another example]

次に別実施例を説明する。 Next, another embodiment will be described.

隔壁8a,8bは円筒形又はほぼ円筒形であつ
てもよい。
The partition walls 8a, 8b may be cylindrical or approximately cylindrical.

ターゲツト12の噴出ノズル3側の面12aは
直線X,Y上に配置してもよい。
The surface 12a of the target 12 on the jet nozzle 3 side may be arranged on the straight lines X and Y.

隔壁11の形状は適当に変更できる。 The shape of the partition wall 11 can be changed appropriately.

また、第3図に示すように、隔壁9a,9b,
11を一体形成して、隔壁面A,Bを隔壁8a,
8bと同芯状の円柱面状に連続形成してもよく、
そして、排出路10a,10bの入口E1,E2
管1に形成して、流量計の巾Lを小さくしてもよ
く、また、帰還流路7a,7b夫々に対して排出
路10a,10bの入口E1,E2を複数個づつ形
成してもよい。
Further, as shown in FIG. 3, partition walls 9a, 9b,
11 are integrally formed, and the partition surfaces A and B are connected to the partition walls 8a,
It may be continuously formed in a cylindrical shape concentric with 8b,
Then, the inlets E 1 and E 2 of the discharge passages 10a and 10b may be formed in the pipe 1 to reduce the width L of the flowmeter. A plurality of inlets E 1 and E 2 of 10b may be formed.

両帰還流路7a,7bに各別に連通させたパイ
プ13a,13bを外部配置した密閉ケース16
に接続してもよい。また、圧力センサー14を一
方の帰還流路7a又は7bにおける圧力変化を検
出するように設けてもよく、その場合、帰還流路
7a又は7bに圧力センサー14を配置してもよ
い。さらに、圧力センサーに替えて流量センサー
を設けてもよく、それらセンサー14を帰還流路
7a,7bのいずれに配置してもよい。
A sealed case 16 externally disposed with pipes 13a and 13b communicating with both return channels 7a and 7b, respectively.
may be connected to. Further, the pressure sensor 14 may be provided to detect a pressure change in one of the return channels 7a or 7b, and in that case, the pressure sensor 14 may be arranged in the return channel 7a or 7b. Furthermore, a flow rate sensor may be provided in place of the pressure sensor, and these sensors 14 may be placed in either of the return channels 7a and 7b.

流量計は、主として燃料ガスや水道等において
工業用や家庭用に利用するが、その用途に特定さ
れない。
Flowmeters are mainly used for industrial and household purposes, such as fuel gas and water supply, but their uses are not specific.

尚、実用新案登録請求の範囲の項に図面との対
照を便利にする為に符号を記すが、該記入により
本考案は添付図面の構造に限定されるものではな
い。
Note that although reference numerals are written in the claims section of the utility model registration for convenience of comparison with the drawings, the present invention is not limited to the structure of the attached drawings by such entry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す断面図、第2図
は本考案の実験結果を示すグラフである。第3図
は本考案の別実施例を示す断面図である。第4図
は従来例を示す断面図、第5図は従来例の実験結
果を示すグラフである。 2……管路縮小部、3……噴出ノズル、5……
管路拡大部、6a,6b……制御ノズル、7a,
7b……帰還流路、8a,8b……隔壁、9a,
9b……隔壁、10a,10b……排出路、12
……ターゲツト、12a……ターゲツトの噴出ノ
ズル側の面、14……センサー、A……隔壁面、
X,Y……直線。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a graph showing experimental results of the present invention. FIG. 3 is a sectional view showing another embodiment of the present invention. FIG. 4 is a sectional view showing a conventional example, and FIG. 5 is a graph showing experimental results of the conventional example. 2...Pipe reduction part, 3...Blowout nozzle, 5...
Pipe expansion portion, 6a, 6b...control nozzle, 7a,
7b... Return flow path, 8a, 8b... Partition wall, 9a,
9b... Bulkhead, 10a, 10b... Discharge path, 12
...Target, 12a...The surface of the target on the jet nozzle side, 14...Sensor, A...The partition wall surface,
X, Y...straight line.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 管路縮小部2、噴出ノズル3及び管路拡大部5
をその順に流動方向に連ねて形成し、前記噴出ノ
ズル3と管路拡大部5の境界部に、一対の制御ノ
ズル6a,6bを、前記噴出ノズル3の噴出方向
に対してほぼ直角方向に向かつて、かつ、相対向
して形成し、前記両制御ノズル6a,6b夫々と
前記管路拡大部5の下流側を接続する一対の帰還
流路7a,7bを形成し、前記管路拡大部5にお
ける流動方向切換安定化のためのターゲツト12
を設け、前記噴出ノズル3からの噴流の流動方向
変化に起因する圧力又は流量変化を検出する流量
測定用センサー14を設けたフルイデイツク流量
計であつて、前記管路拡大部5と制御ノズル6
a,6bと帰還流路7a,7bを区画形成する一
対の隔壁8a,8bに、円柱状又はほぼ円柱状の
外周面を備えさせ、前記両隔壁8a,8bの外周
面中心どうしを結ぶ直線Xと、前記両隔壁8a,
8bの前記制御ノズル6a,6b側の先端どうし
を結ぶ直線Yとの間に、前記ターゲツト12の前
記噴出ノズル3側に向かう面12aを配置し、前
記両帰還流路7a,7bの終端側部分を形成する
隔壁9a,9bのうち、前記円柱状又はほぼ円柱
状の外周面に対向する隔壁面Aを、その外周面と
同芯又はほぼ同芯の円柱面状に形成し、前記管路
拡大部5に対する一対の排出路10a,10b
を、入口が前記帰還流路7a,7bのうち前記外
周面中心どうしを結ぶ直線Xの近くに位置するよ
うに形成してあるフルイデイツク流量計。
Pipe reduction section 2, jet nozzle 3, and pipe enlargement section 5
are formed in series in the flow direction, and a pair of control nozzles 6a and 6b are provided at the boundary between the jet nozzle 3 and the expanded pipe section 5, oriented in a direction substantially perpendicular to the jet direction of the jet nozzle 3. A pair of return flow passages 7a and 7b are formed to face each other and connect the control nozzles 6a and 6b to the downstream side of the conduit enlarged part 5, respectively. Target 12 for stabilizing flow direction switching in
The fluidic flowmeter is equipped with a flow rate measurement sensor 14 that detects a change in pressure or flow rate caused by a change in the flow direction of the jet flow from the jet nozzle 3, and the fluidic flowmeter is provided with a flow rate measurement sensor 14 that detects a change in pressure or flow rate caused by a change in the flow direction of the jet flow from the jet nozzle 3, and the flow rate measurement sensor 14 is provided with a sensor 14 for measuring a flow rate, which
A pair of partition walls 8a, 8b that define the return channels 7a, 7b are provided with a cylindrical or substantially cylindrical outer peripheral surface, and a straight line X connecting the centers of the outer peripheral surfaces of the partition walls 8a, 8b is provided. and both partition walls 8a,
A surface 12a of the target 12 facing the jet nozzle 3 is disposed between the straight line Y connecting the tips of the control nozzles 6a and 6b of the target 8b, and the end portion of both the return channels 7a and 7b is Of the partition walls 9a and 9b forming the duct, the partition surface A facing the cylindrical or substantially cylindrical outer circumferential surface is formed into a cylindrical surface concentric or substantially concentric with the outer circumferential surface, and the conduit expansion A pair of discharge passages 10a, 10b for section 5
A fluidic flowmeter in which the inlet is located near a straight line X connecting the centers of the outer peripheral surfaces of the return channels 7a and 7b.
JP1580787U 1987-02-05 1987-02-05 Expired - Lifetime JPH0545931Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1580787U JPH0545931Y2 (en) 1987-02-05 1987-02-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1580787U JPH0545931Y2 (en) 1987-02-05 1987-02-05

Publications (2)

Publication Number Publication Date
JPS63124622U JPS63124622U (en) 1988-08-15
JPH0545931Y2 true JPH0545931Y2 (en) 1993-11-30

Family

ID=30807081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1580787U Expired - Lifetime JPH0545931Y2 (en) 1987-02-05 1987-02-05

Country Status (1)

Country Link
JP (1) JPH0545931Y2 (en)

Also Published As

Publication number Publication date
JPS63124622U (en) 1988-08-15

Similar Documents

Publication Publication Date Title
US4976155A (en) Fluidic flowmeter
US4854176A (en) Fluidic flowmeter
JPH0545931Y2 (en)
AU600409B2 (en) Trapped-vortex pair flowmeter
JPH0547378Y2 (en)
JPH0547379Y2 (en)
JPH0619051Y2 (en) Fluidic flow meter
JPS63191920A (en) Fluidics flowmeter
JPH0530099Y2 (en)
JPS63313018A (en) Fluidic flowmeter
JP2566605B2 (en) Fluidic flow meter
JPH01250725A (en) Fluidic flowmeter
JPH0236092Y2 (en)
JPS63139214A (en) Fluidic flowmeter
JPH01124711A (en) Full-index flowmeter
JPS63139213A (en) Fluidic flowmeter
JPS62288520A (en) Fluidic flowmeter
JPS62276411A (en) Fluidic flowmeter
JPH0618244Y2 (en) Fluid vibration type flow meter
JPS59184822A (en) Fluidic flow meter
JPS63140916A (en) Fluidic flowmeter
JPH0464413B2 (en)
JP2931198B2 (en) Fluidic flow meter
JPH0619050Y2 (en) Fluid vibration detection end in fluid vibration type flow meter
JPS60188817A (en) Feedback type fluidic flowmeter