JPS63312991A - Control of amount of zinc powder in removal of impurities from zinc sulfate solution - Google Patents
Control of amount of zinc powder in removal of impurities from zinc sulfate solutionInfo
- Publication number
- JPS63312991A JPS63312991A JP63135786A JP13578688A JPS63312991A JP S63312991 A JPS63312991 A JP S63312991A JP 63135786 A JP63135786 A JP 63135786A JP 13578688 A JP13578688 A JP 13578688A JP S63312991 A JPS63312991 A JP S63312991A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- zinc powder
- zinc
- redox potential
- adjusting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 68
- 239000012535 impurity Substances 0.000 title claims description 9
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 title claims description 8
- 229910000368 zinc sulfate Inorganic materials 0.000 title claims description 8
- 229960001763 zinc sulfate Drugs 0.000 title claims description 6
- 239000011701 zinc Substances 0.000 claims description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- 229910052725 zinc Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 25
- 238000001556 precipitation Methods 0.000 claims description 20
- 238000000746 purification Methods 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 18
- 229910017052 cobalt Inorganic materials 0.000 claims description 17
- 239000010941 cobalt Substances 0.000 claims description 17
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229910052785 arsenic Inorganic materials 0.000 claims description 10
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 9
- 238000011282 treatment Methods 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 229940075397 calomel Drugs 0.000 claims description 5
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 2
- 239000012752 auxiliary agent Substances 0.000 claims 2
- 230000001376 precipitating effect Effects 0.000 claims 1
- 238000009991 scouring Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 32
- 239000000843 powder Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- -1 dalmanium Chemical compound 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000011686 zinc sulphate Substances 0.000 description 2
- 235000009529 zinc sulphate Nutrition 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 241000201776 Steno Species 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- NMLUQMQPJQWTFK-UHFFFAOYSA-N arsanylidynecobalt Chemical compound [As]#[Co] NMLUQMQPJQWTFK-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012045 crude solution Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/16—Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/06—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/20—Obtaining zinc otherwise than by distilling
- C22B19/26—Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
技術分野
本発明は、亜鉛の電気N練において、硫酸亜鉛溶液から
不純物を除去するための方法に関し、特に不純物除去に
使用する亜鉛粉末量の調節に関する。Description: TECHNICAL FIELD The present invention relates to a method for removing impurities from a zinc sulfate solution in electric N-mixing of zinc, and more particularly to adjusting the amount of zinc powder used for impurity removal.
従来技術
銅、コバルト、ニッケル、ダルマニウム、カドミウム等
の不純物除去は、亜鉛粉末を使用してこれらをセメント
化して実行され、使用亜鉛粉末量は酸化還元電位測定に
よって最適化される。Prior art Removal of impurities such as copper, cobalt, nickel, dalmanium, cadmium, etc. is carried out by cementing them using zinc powder, and the amount of zinc powder used is optimized by redox potential measurements.
亜鉛電解処理に使われる主原料は亜鉛精鉱で。The main raw material used in zinc electrolytic treatment is zinc concentrate.
これを先ず酸化によって頒焼する。収焼主成分は電気分
解析出で回収された硫酸を含む回収酸性溶液内で溶解さ
れる。不溶含有物は、溶解処理中に生成される硫酸亜鉛
溶液から分離される。This is first distributed by oxidation. The burned main component is dissolved in a recovered acidic solution containing sulfuric acid recovered by electrolytic separation. Insoluble inclusions are separated from the zinc sulfate solution produced during the dissolution process.
この溶液は更に精製され、亜鉛より不活性のすべての元
素が取り除かれる。溶液精製後に電気分解を行う。This solution is further purified to remove all elements that are more inert than zinc. Electrolysis is performed after solution purification.
亜鉛処理の粗製液は、亜鉛より不活性な元素を含み、そ
れらの含有量は、亜鉛精鉱および他の構成物によって変
化する。特に重要なものは、銅、カドミウム、コバルト
、ニッケル、砒素、アンチモン、ケ9ルマニウム、タリ
ウムで6る。The crude solution of zinc processing contains elements that are more inert than zinc, and their content varies depending on the zinc concentrate and other constituents. Particularly important are copper, cadmium, cobalt, nickel, arsenic, antimony, chelium, and thallium.
これらの元素は亜鉛より不活性なため、電気分解では、
陰極側に析出する傾向にある。これは、析出した亜鉛の
純度を低下させ、ある元素は二次的反応(水素発生)を
起こすので望ましくない。These elements are more inert than zinc, so in electrolysis,
It tends to precipitate on the cathode side. This is undesirable since it reduces the purity of the deposited zinc and some elements undergo secondary reactions (hydrogen evolution).
上記元素は亜鉛よシネ活性なので、金属亜鉛によって溶
液からセメントとして取り出せる。Since the above elements are more cineactive than zinc, they can be extracted from solution as cement by metallic zinc.
この方法は、溶液精製法を除けば、亜鉛生産でほぼ専用
的に使用されている。溶液精製法では、亜鉛より不活性
な元素は、βナフトールとともに抽出することで亜鉛電
解溶液から除去される。This method, apart from solution purification methods, is used almost exclusively in zinc production. In the solution purification method, elements that are more inert than zinc are removed from the zinc electrolyte solution by extraction with β-naphthol.
溶液精製で使用される一般的なセメント化作用剤は金属
亜鉛であるが、通例、砒素またはアンチモン等の補助剤
が使用される。アンチモン使用時には、精製は全体とし
て連続反応ステップであり、第1ステツプはカドミウム
と銅の除去、第2ステツプはコバルトとニッケルの除去
で、第2ステツプは主として、前のステップをバックア
ップするものである。A common cementing agent used in solution refining is metallic zinc, but adjuvants such as arsenic or antimony are commonly used. When antimony is used, the purification is an entirely continuous reaction step, with the first step removing cadmium and copper, the second step removing cobalt and nickel, and the second step being primarily a backup of the previous step. .
原則として、亜鉛の補助剤として砒素を使用する方法は
2種類ある。第1の方法では、銅、コバルト、ニッケル
は、バッチ処理または連続反応処理で、溶液精製の第1
ステツプで亜鉛電解液から除去される。第2ステツプで
はカドミウムを除去し、必要であれば第3ステツプでは
これらのステップのパラファツジ処理を行なう。In principle, there are two ways to use arsenic as a supplement to zinc. In the first method, copper, cobalt, and nickel are purified in the first stage of solution purification in a batch or continuous reaction process.
Zinc is removed from the electrolyte in steps. A second step removes the cadmium and, if necessary, a third step paraphrases these steps.
亜鉛の補助剤として砒素を使用する第2の溶液精製方法
では、溶液精製/fi3ステップで実行サレ、一般に、
第1ステツプと第3ステツプは連続処理であり、中間の
ステップは自動バッチ処理である。第1ステツプでは、
はとんどの銅が亜鉛電解溶液から分離される。第2ステ
ップfU、Fl銅;6:コバルト、ニッケル、ダルマニ
ウムとともに分離される。第3ステツプでは、主として
カドミウムの分離を行なう。A second solution purification method using arsenic as an adjuvant for zinc is carried out in solution purification/fi3 steps, generally:
The first and third steps are continuous processes, and intermediate steps are automatic batch processes. In the first step,
Most of the copper is separated from the zinc electrolyte solution. Second step fU, Fl copper; 6: Separated together with cobalt, nickel, and dalmanium. The third step mainly involves separation of cadmium.
補助剤として砒素を使う3ステツプの溶液精製処理での
第2ステンf(バッチ処理)は、一般に次のように実行
される。すなわち、反応槽への亜鉛電解溶液の供給を始
める。例えば、反応槽が半分はど溶液で満たされると、
混合を開始踵ここで亜鉛粉末の供給を開始できる。最初
、粉末供給は、槽内に十分な量を入れるためにかなり素
早く行なう。反応槽への供給終了近くで、供給速度を下
げるが、バッチ当シで計算した総量の亜鉛を供給するま
で続行する。一定時間後、溶液に対して銅分析を行ない
、コバルト析出量が十分であれば、バッチは準備完了で
ある。分析結果でコバルト析出量が不十分ならば、コバ
ルト析出が十分になるまで粉末供給を続ける。得られた
析出物ないし沈澱物はその都度除去するのでなく、いく
つかの析出を連続して行なった後に、つまり時々、沈澱
物の除去を行なう。The second step f (batch process) in a three-step solution purification process using arsenic as an adjuvant is generally carried out as follows. That is, the supply of zinc electrolytic solution to the reaction tank is started. For example, if the reaction vessel is half filled with solution,
Start Mixing Now you can start feeding the zinc powder. Initially, the powder feed is done fairly quickly to get enough volume into the tank. Near the end of the feed to the reactor, reduce the feed rate but continue until the total calculated amount of zinc per batch has been fed. After a certain period of time, the solution is subjected to a copper analysis and if the amount of cobalt precipitated is sufficient, the batch is ready. If the analysis results show that the amount of cobalt precipitation is insufficient, powder supply is continued until sufficient cobalt precipitation is achieved. The precipitate obtained is not removed each time, but after several precipitations have been carried out in succession, that is, from time to time, the precipitate is removed.
亜鉛粉末の投与量は大きな問題であった。一般に、最終
結果を良くするために、「十分コな量の亜鉛粉末を供給
する。わずかな乱れがあっても通常、粉末使用量は増加
する。さらに、早期に少量の粉末添加に移ると作業が困
難になる。The dosage of zinc powder was a big problem. In general, feed enough zinc powder to achieve a good final result. Even slight disturbances will usually increase the amount of powder used. Additionally, if you move to small amounts of powder addition early, becomes difficult.
すなわち、供給粉末の適量を示す適当なインジケータ(
指標)がなかった。i.e. a suitable indicator (
indicators) were not available.
従来、沈澱ないし析出は次式に従うことが知られている
。Conventionally, it has been known that precipitation or precipitation follows the following equation.
C。C.
kXt =1nで「
ここで、k:析出率係数
t:析出時間
co=初期含有量
Ct:ある時点での含有量
この等式によれば、反応槽内の条件が適当で、亜鉛粉末
量が十分である等の場合に、析出が起る。しかし、「十
分」な点を超えての粉末添加の増加は、析出速度を上昇
させないことが知られている。逆に、過度な粉末使用は
、反応を遅くすることさえあり、この理由は、アルカリ
性の硫酸亜鉛が形成されるためである。kXt = 1n, where k: precipitation rate coefficient t: precipitation time co = initial content Ct: content at a certain point According to this equation, if the conditions in the reaction tank are appropriate and the amount of zinc powder is If there is enough, precipitation will occur. However, it is known that increasing powder addition beyond the "sufficient" point does not increase the precipitation rate. On the contrary, excessive use of powder can even slow down the reaction, due to the formation of alkaline zinc sulfate.
フィンランド公報第66027号に記載の亜鉛電解溶液
のだめの溶液精製処理では、銅除去に要する亜鉛粉末量
は、溶液から銅を除くのに必要な化学量論上の量におよ
そ対応するように調節される。亜鉛粉末添加は、電解溶
液の酸化還元電位によって調節できる。酸化還元電位を
調節して亜鉛粉末添加を制御し、これによって、電解溶
液め電位を+200mVから一600mVの範囲に保つ
。ここで使用される酸化還元基準によって銅除去の程度
が決定し、他の金属の析出を制限する。銅を除去した溶
液に対し、さらにコバルト除去処理を行なう。In the solution purification process of a zinc electrolyte reservoir described in Finnish Publication No. 66027, the amount of zinc powder required for copper removal is adjusted to approximately correspond to the stoichiometric amount required to remove copper from the solution. Ru. Zinc powder addition can be adjusted by the redox potential of the electrolytic solution. The zinc powder addition is controlled by adjusting the redox potential, thereby keeping the electrolyte potential in the range of +200 mV to -600 mV. The redox criteria used here determines the extent of copper removal and limits the precipitation of other metals. The solution from which copper has been removed is further subjected to cobalt removal treatment.
沢口他の「イジマ亜鉛精練所における亜鉛電解精練J
、 MMIJ/Aus IMM Joint Symp
osjum1983 、仙台、第217〜229頁では
、溶液精製の第2ステツプにおいて、ゲルマニウムレベ
ルを十分低下させるために、ゲルマニウム含有量調節の
ために電位調節を使用したことが記載されている。これ
によれば、電位を一610mV〜−640mVの範囲内
に調節すれば、ゲルマニウムレベルは10 ppn+未
満に保持できる。“Zinc electrolytic smelting at Ijima zinc smelter J” by Sawaguchi et al.
, MMIJ/Aus IMM Joint Symp
Osjum 1983, Sendai, pp. 217-229 describes the use of potential adjustment to control the germanium content in order to sufficiently reduce the germanium level in the second step of solution purification. According to this, the germanium level can be maintained below 10 ppn+ by adjusting the potential within the range of -610 mV to -640 mV.
上記論文では、溶液から除去すべき金属の除去程度を調
節するために、酸化還元電位測定を使用している。これ
は、最終生成物の品質に関して当然なことに重要な要素
である。亜鉛生産コストに影響を及ぼす他の要素は、溶
液精製に使用する亜鉛粉末量である。フィンランド公報
第66027号から明らかなように、例えば、銅除去に
おいて、添加亜鉛粉末の初期量は、化学量論的に得られ
た量に概ね対応し、この後、必要の程度に応じて粉末が
加えられる。上記論文では、酸化還元電位を使用してこ
の添加を調節すると記述しているが、他方、所与の範囲
(+200 mV〜−600mV )では、粉末添加と
該電位との相互依存関係は不明のままである。The above paper uses redox potential measurements to control the extent of metal removal from solution. This is of course an important factor regarding the quality of the final product. Another factor that affects zinc production costs is the amount of zinc powder used for solution purification. As is clear from Finnish Publication No. 66027, for example in copper removal, the initial amount of added zinc powder roughly corresponds to the stoichiometrically obtained amount, after which the powder is added to the required degree. Added. The above paper describes using the redox potential to regulate this addition, but on the other hand, in a given range (+200 mV to -600 mV), the interdependence between powder addition and the potential is unknown. It remains as it is.
発明の開示
本発明の方法によれば、特に亜鉛電解溶液の精製での亜
鉛粉末添加は、酸化還元電位測定により、最適範囲内に
調節できる。本発明の本質的特徴は、特許請求の範囲第
1項の記載から明らかである。DISCLOSURE OF THE INVENTION According to the method of the invention, the addition of zinc powder, especially in the purification of zinc electrolyte solutions, can be adjusted within an optimum range by redox potential measurements. The essential features of the present invention are clear from the description in claim 1.
溶液精製の第2ステツプのいわゆるコバルト除去では、
除去処理後の残留鋼は、コバルト、ニッケル、ゲルマニ
ウムとともに溶液から析出する。使用した溶液精製の第
2ステツプでの元素量を次表に示す。第2ステツプの結
果の溶液内の残留含有量は極めて僅かである。In the second step of solution purification, so-called cobalt removal,
The residual steel after the removal process precipitates out of the solution along with cobalt, nickel, and germanium. The amounts of elements used in the second step of solution purification are shown in the following table. The residual content in the solution resulting from the second step is very low.
銅 50〜150m9/l <0.
i m9/1コバルト 10〜501n9/l
(0,2mg7Bニッケル10〜501KFl
<0.1 111’71!ケ9ルマニウム 0.1〜
3〜/l (0,02■4上記のように、析出処
理では、金属亜鉛粉末とAs2O3f使用する。析出処
理は次反応式に従がう。Copper 50-150m9/l <0.
i m9/1 cobalt 10-501n9/l
(0.2mg 7B Nickel 10~501KFl
<0.1 111'71! Ke9 Rumanium 0.1~
3~/l (0,02■4 As mentioned above, metal zinc powder and As2O3f are used in the precipitation treatment.The precipitation treatment follows the following reaction formula.
(1) Cu +Zn −+Cu十Zn”C2
) 6Cu + AS20’3 +9 Zn →2
Cuμs+9Zn++(3) 2Me +As2O
3+5 Zn −+ 2MeAs +5 Zn”Me
= Co 、 Ni
ゲルマニウムの析出は不明である。(1) Cu + Zn −+ Cu + Zn”C2
) 6Cu + AS20'3 +9 Zn →2
Cuμs+9Zn++(3) 2Me+As2O
3+5 Zn −+ 2MeAs +5 Zn”Me
= Co, Ni The precipitation of germanium is unknown.
二次反応として、亜鉛粉末の分解が発生する。As a secondary reaction, decomposition of the zinc powder occurs.
(4) Zn + H2SO4−+ ZnSO4+
H2↑(5) xZn +ZnSO4+ (x+y)
H2O→znS04・xZn(OH)2・yH20↓+
xH2↑砒素量は初期含有量によって容易に調節される
。したがって、使用量が過少または過大であるさ、析出
が難しくなり、または、最終的に砒素含有量が高くなる
。(4) Zn + H2SO4−+ ZnSO4+
H2↑(5) xZn +ZnSO4+ (x+y)
H2O→znS04・xZn(OH)2・yH20↓+
The amount of xH2↑arsenic is easily adjusted by the initial content. Therefore, if too little or too much is used, precipitation becomes difficult or the final arsenic content becomes high.
注目すべきことに、酸化還元電位により、添加亜鉛粉末
量を調節することによって、過大な亜鉛粉末の使用なし
に、最適析出条件が保持できることが明らかとなった。Remarkably, it was revealed that by adjusting the amount of added zinc powder according to the redox potential, the optimum precipitation conditions could be maintained without using an excessive amount of zinc powder.
同時に、この測定から、粉末添加による妨害の可能性も
認められる。At the same time, this measurement also reveals the possibility of interference due to powder addition.
実施例の説明 次に、添付図面を参照して本発明を説明する。Description of examples Next, the present invention will be described with reference to the accompanying drawings.
これらの図には本発明の本質的な特徴がグラフで示され
ている。These figures graphically illustrate essential features of the invention.
図から明らかなように、コバルトとニッケルの析出では
、すでに、電位−575mVで最大値に達する。ゲルマ
ニウムの析出での最大値は600mV〜−625mVの
範囲で得られる。酸化還元電位はプラチナ電極で測定し
、基準電極はカロメル電極を使用している。As is clear from the figure, the deposition of cobalt and nickel already reaches its maximum value at a potential of -575 mV. The maximum value for germanium precipitation is obtained in the range of 600 mV to -625 mV. Redox potential was measured with a platinum electrode, and a calomel electrode was used as the reference electrode.
さらに研究を続けて判明したことは、電位測定によって
粉末添加調節を行うことで、不純物の含有程度を変えず
に、亜鉛粉未使用量を本質的に減少でき、従来に比較し
て半分にまで減少可能な点である。すなわち、生産プラ
ントの生産能力を本質的に増加でき、この場合、処理の
Mトルネックが電気分解であるならば、達成された利点
を収率に従って計算できる。亜鉛粉末の製造コストの単
なる減少ですらかなりの利点である。Through further research, we discovered that by adjusting powder addition using potential measurements, we could essentially reduce the amount of unused zinc powder without changing the degree of impurity content, to half the amount compared to conventional methods. This is a point that can be reduced. That is, the production capacity of the production plant can be essentially increased, and in this case if the M-torque of the process is electrolysis, the achieved benefits can be calculated according to the yield. Even a mere reduction in the cost of producing zinc powder is a considerable advantage.
この新しい調節方法によれば、反応槽への亜鉛粉末添加
は、溶液精製の第2ステツプにおいて、反応槽への粉末
投入中に、酸化還元電位を測定して調節する。投入粉末
量は、反応槽内ですでに析出したコバルト砒化物または
ニッケル砒化物が溶液とともに反応槽に入るCu に
よって溶解されずに銅の析出が可能なように選ばれる。According to this new control method, the addition of zinc powder to the reactor is regulated by measuring the redox potential during powder charging into the reactor in the second step of solution purification. The amount of powder introduced is chosen such that the cobalt arsenide or nickel arsenide already precipitated in the reactor is not dissolved by the Cu entering the reactor with the solution, allowing copper precipitation.
他方、亜鉛粉末添加は、亜鉛粉末が溶解しないように、
かつ、溶液中に砒素を含んではいるが水素砒化物が生成
しないように、行なわねばならない。水素砒化物が生成
すると、環境破壊の害を生じ、さらに、当然なことに、
亜鉛粉末消費量が増加する。本出願人は、電位調節を実
施することによって、排出ガスとともに放出される水素
砒化物量が従来よシずつと低くなることを明らかにした
。これは、水素砒化物生成が可能なほど低レベルには、
電位が低下しないからである。実際、酸化還元電位をカ
ロメル電極に対し−480〜−550mVの範囲に調節
することで、このステッノでの好結果を得ている。On the other hand, adding zinc powder prevents the zinc powder from dissolving.
In addition, although the solution contains arsenic, it must be carried out in such a way that hydrogen arsenide is not generated. The formation of hydrogen arsenide causes environmental damage and, of course,
Zinc powder consumption increases. The applicant has revealed that by carrying out the potential adjustment, the amount of hydrogen arsenide released together with the exhaust gas becomes lower than before. This means that at low enough levels that hydrogen arsenide formation is possible,
This is because the potential does not drop. In fact, by adjusting the redox potential to a range of -480 to -550 mV with respect to the calomel electrode, good results have been obtained with this steno test.
反応槽が充満状態では、溶液精製の第1ステツプ後の溶
液内の残留鋼も、上記の処理で除去される。その後、亜
鉛粉末添加を調節してコバルト、ニッケル、ゲルマニウ
ムの析出が始まるようにする。実際、この電位範囲は、
カロメル電極に対して−570〜−650mVの範囲で
ある。各不純物は各々に固有の電位範囲を有し、最適範
囲は、それまでに反応槽内に存在する析出量に影響され
る。When the reactor is full, residual steel in the solution after the first step of solution purification is also removed in the above process. The zinc powder addition is then adjusted to initiate the cobalt, nickel, and germanium precipitation. In fact, this potential range is
It ranges from -570 to -650 mV relative to the calomel electrode. Each impurity has its own potential range, and the optimum range is influenced by the amount of precipitate previously present in the reaction vessel.
したがって、酸化還元電位を使用すれば、亜鉛粉末添加
を調節して、所望の電位を得ることができ、上記金属が
析出される。しかも、同時に、亜鉛粉末の過度の使用を
防ぐことができる。Therefore, using the redox potential, the zinc powder addition can be adjusted to obtain the desired potential and the metal is deposited. Moreover, at the same time, excessive use of zinc powder can be prevented.
反応槽に供給する溶液の各種不純物の含有量、並びに、
直前のバッチ後の反応槽内に存在する析出量が分れば、
析出時間を実験上から決定でき、その後粉末供給を停止
する。The content of various impurities in the solution supplied to the reaction tank, and
If you know the amount of precipitate present in the reaction tank after the previous batch,
The precipitation time can be determined experimentally, after which the powder feed is stopped.
バッチ処理における溶液精製の第2ステツゾでの酸化還
元電位調節について説明を行なった。The redox potential adjustment in the second stage of solution purification in batch processing was explained.
しかし、酸化還元電位は連続処理においても調節回能で
ある。したがって、コバルト除去は連続処理で実行でき
、また、酸化還元電位調節は、溶液精製の他のステップ
で実施可能である。However, the redox potential is a regulatory factor even in continuous processing. Therefore, cobalt removal can be performed in a continuous process and redox potential adjustment can be performed in other steps of solution purification.
以上、本発明を主に、補助剤として砒素を使用する処理
に関して説明した。しかし、本発明は、他の補助剤を使
用する処理にも適用でき、その場合も本発明の精神に全
く一致するものである。酸化還元電位の最適値は、上記
の値に比較してわずかに変化してもよいが、本質的に変
化するというものではない。The present invention has been described above primarily with respect to treatments using arsenic as an adjuvant. However, the present invention can also be applied to treatments using other adjuvants and is fully consistent with the spirit of the invention. Although the optimum value of the redox potential may change slightly compared to the above value, it does not essentially change.
第1図は、時間の関数である各種酸化還元電位値におけ
る電解溶液からのコ・ぐルト除去を示すグラフ、
第2図は、第1図と同様のニッケル除去を示すグラフ、
第3図は、第1図と同様のケ゛ルマニウム除去全示すグ
ラフである。
1(械ト)□Figure 1 is a graph showing co-Gult removal from an electrolytic solution at various redox potential values as a function of time; Figure 2 is a graph showing nickel removal similar to Figure 1; Figure 3 is a graph showing nickel removal from an electrolytic solution as a function of time. , is a graph similar to that of FIG. 1 illustrating kermanium removal. 1 (machine) □
Claims (1)
出に使用する亜鉛粉末量調節方法において、該方法は、
酸化還元電位測定によって添加亜鉛粉末量を調節するこ
とを特徴とする硫酸亜鉛溶液からの不純物除去における
亜鉛粉末量調節方法。 2、請求項1に記載の方法において、該方法は、前記溶
液精製のコバルト除去ステップにおいて実行される酸化
還元電位測定によって添加亜鉛粉末量を調節することを
特徴とする亜鉛粉末量調節方法。 3、請求項1に記載の方法において、該方法は、銅析出
のために亜鉛粉末を供給中に、前記酸化還元電位をカロ
メル電極に対して−480〜−550mVの範囲内に調
節することを特徴とする亜鉛粉末量調節方法。 4、請求項1または2に記載の方法において、該方法は
、コバルト、ニッケルおよびゲルマニウムの析出のため
に亜鉛粉末を供給中に、前記酸化還元電位をカロメル電
極に対して−570〜−650mVの範囲に調節するこ
とを特徴とする亜鉛粉末量調節方法。 5、請求項1に記載の方法において、該方法は、バッチ
処理において酸化還元電位測定によって添加亜鉛粉末量
を調節することを特徴とする亜鉛粉末量調節方法。 6、請求項1に記載の方法において、該方法は、連続処
置において酸化還元電位測定によって添加亜鉛粉末量を
調節することを特徴とする亜鉛粉末量調節方法。 7、請求項1に記載の方法において、該方法は、補助剤
として砒素を使用する処理において酸化還元電位測定に
よって添加亜鉛粉末量を時節することを特徴とする亜鉛
粉末量調節方法。 8、請求項1に記載の方法において、該方法は、補助剤
としてアンチモンを使用する処理において酸化還元電位
測定によって添加亜鉛粉末量を調節することを特徴とす
る亜鉛粉末量調節方法。[Claims] 1. A method for adjusting the amount of zinc powder used for precipitating impurities from a zinc sulfate solution in zinc electrolytic scouring, the method comprising:
A method for adjusting the amount of zinc powder in removing impurities from a zinc sulfate solution, the method comprising adjusting the amount of zinc powder added by measuring redox potential. 2. The method according to claim 1, characterized in that the amount of added zinc powder is adjusted by redox potential measurement performed in the cobalt removal step of the solution purification. 3. The method according to claim 1, comprising adjusting the redox potential within the range of -480 to -550 mV with respect to a calomel electrode while supplying zinc powder for copper deposition. Features a method for adjusting the amount of zinc powder. 4. The method according to claim 1 or 2, wherein the redox potential is adjusted to between -570 and -650 mV with respect to a calomel electrode while supplying zinc powder for the precipitation of cobalt, nickel and germanium. A method for adjusting the amount of zinc powder, characterized by adjusting the amount within a range. 5. The method according to claim 1, wherein the amount of added zinc powder is adjusted by measuring redox potential in batch processing. 6. The method according to claim 1, characterized in that the amount of added zinc powder is adjusted by measuring redox potential in continuous treatment. 7. A method for adjusting the amount of zinc powder according to claim 1, characterized in that the amount of added zinc powder is adjusted by measuring redox potential in the treatment using arsenic as an auxiliary agent. 8. A method for adjusting the amount of zinc powder according to claim 1, wherein the amount of zinc powder added is adjusted by measuring redox potential in the treatment using antimony as an auxiliary agent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI872488A FI872488A (en) | 1987-06-03 | 1987-06-03 | SAETT ATT REGLERA MAENGDEN AV ZINKPULVER VID AVLAEGSNANDE AV ORENHETER I ZINKSULFATLOESNING. |
FI872488 | 1987-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63312991A true JPS63312991A (en) | 1988-12-21 |
Family
ID=8524613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63135786A Pending JPS63312991A (en) | 1987-06-03 | 1988-06-03 | Control of amount of zinc powder in removal of impurities from zinc sulfate solution |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS63312991A (en) |
AU (1) | AU1690688A (en) |
DE (1) | DE3819020A1 (en) |
FI (1) | FI872488A (en) |
FR (1) | FR2616159A1 (en) |
IT (1) | IT1217750B (en) |
NL (1) | NL8801406A (en) |
NO (1) | NO882410L (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432764A (en) * | 1990-05-30 | 1992-02-04 | Mitsubishi Materials Corp | Method for measuring concentration of impurity in metal electrolyte and system for removing impurity |
JP2007100153A (en) * | 2005-10-03 | 2007-04-19 | Dowa Holdings Co Ltd | Method for removing thallium from zinc sulfate solution |
CN103154283A (en) * | 2010-10-12 | 2013-06-12 | 奥图泰有限公司 | Method for treating a solution containing zinc sulphate |
WO2021147803A1 (en) * | 2020-01-20 | 2021-07-29 | 昆明瀚创科技有限公司 | Device and control method for removing nickel, cobalt and germanium in zinc sulfate solution by means of continuous deep purification |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996041039A1 (en) * | 1995-06-07 | 1996-12-19 | Cominco Ltd. | Redox control in the electrodeposition of metals |
DE19747328A1 (en) * | 1997-10-27 | 1999-04-29 | Ruhr Zink Gmbh | Non-ferrous metal, especially zinc, electrowinning process |
FI116730B (en) * | 2003-07-31 | 2006-02-15 | Outokumpu Oy | Method and apparatus for controlling demetallization |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1347200A (en) * | 1920-07-20 | Williams | ||
CA895794A (en) * | 1969-12-31 | 1972-03-21 | Cominco Ltd. | Purification of zinc sulphate solution |
BE783549A (en) * | 1972-05-16 | 1972-09-18 | Mines Fond Zinc Vieille | PROCESS FOR PURIFYING ZINC SULPHATE SOLUTIONS FROM THE LEACHING OF ZINC ORES. |
NL182494C (en) * | 1975-06-04 | 1988-03-16 | Shell Int Research | METHOD FOR PURIFYING A ZINC SULPHATE SOLUTION |
CA1090143A (en) * | 1976-01-26 | 1980-11-25 | Hans Reinhardt | Method of recovering zinc from a material containing zinc and iron |
CA1111125A (en) * | 1978-07-05 | 1981-10-20 | Robert C. Kerby | Method and apparatus for control of electrowinning of zinc |
US4168970A (en) * | 1978-09-21 | 1979-09-25 | Noranda Mines Limited | Purification of zinc sulphate solutions |
NO842597L (en) * | 1983-07-08 | 1985-01-09 | Electrolyt Zinc Australasia | PROCEDURE FOR AA REMOVE POLLUTANTS FROM Aqueous Zinc Sulphate Solutions |
EP0134053B1 (en) * | 1983-08-02 | 1988-10-26 | AGIP S.p.A. | Process for purifying solutions of zinc sulphate |
-
1987
- 1987-06-03 FI FI872488A patent/FI872488A/en not_active Application Discontinuation
-
1988
- 1988-05-31 AU AU16906/88A patent/AU1690688A/en not_active Abandoned
- 1988-05-31 IT IT20818/88A patent/IT1217750B/en active
- 1988-06-01 FR FR8807306A patent/FR2616159A1/en not_active Withdrawn
- 1988-06-01 NL NL8801406A patent/NL8801406A/en not_active Application Discontinuation
- 1988-06-01 NO NO882410A patent/NO882410L/en unknown
- 1988-06-03 JP JP63135786A patent/JPS63312991A/en active Pending
- 1988-06-03 DE DE3819020A patent/DE3819020A1/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432764A (en) * | 1990-05-30 | 1992-02-04 | Mitsubishi Materials Corp | Method for measuring concentration of impurity in metal electrolyte and system for removing impurity |
JP2007100153A (en) * | 2005-10-03 | 2007-04-19 | Dowa Holdings Co Ltd | Method for removing thallium from zinc sulfate solution |
CN103154283A (en) * | 2010-10-12 | 2013-06-12 | 奥图泰有限公司 | Method for treating a solution containing zinc sulphate |
CN103154283B (en) * | 2010-10-12 | 2016-01-20 | 奥图泰有限公司 | To the method that the solution of sulfur acid zinc processes |
WO2021147803A1 (en) * | 2020-01-20 | 2021-07-29 | 昆明瀚创科技有限公司 | Device and control method for removing nickel, cobalt and germanium in zinc sulfate solution by means of continuous deep purification |
Also Published As
Publication number | Publication date |
---|---|
NO882410D0 (en) | 1988-06-01 |
DE3819020A1 (en) | 1988-12-15 |
FI872488A0 (en) | 1987-06-03 |
FI872488A (en) | 1988-12-04 |
NO882410L (en) | 1988-12-05 |
IT1217750B (en) | 1990-03-30 |
NL8801406A (en) | 1989-01-02 |
AU1690688A (en) | 1988-12-08 |
IT8820818A0 (en) | 1988-05-31 |
FR2616159A1 (en) | 1988-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2584055B1 (en) | Method for removal of copper ions from copper-containing nickel chloride solution, and process for production of electrolytic nickel | |
US4071421A (en) | Process for the recovery of zinc | |
US4030990A (en) | Process for recovering electrolytic copper of high purity by means of reduction electrolysis | |
JPS63312991A (en) | Control of amount of zinc powder in removal of impurities from zinc sulfate solution | |
US4149945A (en) | Hydrometallurgical brass dust reclamation | |
US5372684A (en) | Process for the direct electrochemical refining of copper scrap | |
JP6365395B2 (en) | Method for producing nickel sulfate | |
US20210292927A1 (en) | Method for refining bismuth | |
US4468302A (en) | Processing copper-nickel matte | |
JP2642230B2 (en) | Manufacturing method of high purity tin | |
DE112014005310B4 (en) | Process for the preparation of tungsten carbide compositions | |
US4552629A (en) | Electrogalvanizing utilizing primary and secondary zinc sources | |
US3979266A (en) | Process for purifying aqueous solutions, of metal ions precipitating as arsenides, antimonides, tellurides, and selenides | |
KR101055073B1 (en) | Metal separation control method and apparatus | |
JP2003183871A (en) | Electrolytic refining method for producing high-purity tin, and apparatus therefor | |
DE102011012133B4 (en) | Process for separating lead from the brass recycling cycle | |
JP2001262389A (en) | Liquid feed controlling method in decoppering electrolysis | |
CN111996381A (en) | Method for removing lead from electrolytic manganese anode slime in enhanced mode | |
JP2000038692A (en) | Production of high purity silver | |
JP3875548B2 (en) | Electrolyte purification method | |
CA2161308C (en) | Selective bismuth and antimony removal from copper electrolyte | |
JP2622019B2 (en) | Method for producing granular copper fine powder | |
JP7180039B1 (en) | Method for separating tin and nickel from mixtures containing tin and nickel | |
EP1549777B1 (en) | Method for removal of silver from a copper chloride solution | |
JP2000203848A (en) | Production of low-chlorine nickel cobalt sulfate solution |