JPS63312816A - Preparation of multi-layered copper-clad laminated plate - Google Patents

Preparation of multi-layered copper-clad laminated plate

Info

Publication number
JPS63312816A
JPS63312816A JP62149813A JP14981387A JPS63312816A JP S63312816 A JPS63312816 A JP S63312816A JP 62149813 A JP62149813 A JP 62149813A JP 14981387 A JP14981387 A JP 14981387A JP S63312816 A JPS63312816 A JP S63312816A
Authority
JP
Japan
Prior art keywords
resin
inner layer
copper
copper foil
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62149813A
Other languages
Japanese (ja)
Other versions
JPH089180B2 (en
Inventor
Kazuo Okubo
和夫 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP62149813A priority Critical patent/JPH089180B2/en
Publication of JPS63312816A publication Critical patent/JPS63312816A/en
Publication of JPH089180B2 publication Critical patent/JPH089180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To absorb strain, to enlarge strength of a resin and to prevent the occurrence of cracks, by making the resin volume of the side in contact with the inner layer plate to be larger in a prepare of a multi-layered copper-clad laminated plate. CONSTITUTION:In a multi-layered copper-clad laminated plate prepared by laminating an inner layer plate 10 having an inner copper foil 13 and an outer copper foil 12 through prepregs 11, the thickness of a resin layer (A) located between the inner layer copper foil 13 and the prepreg 11 is made thicker. As the resin layer is thick, strain becomes less and no resin crack occurs. The laminated plate has excellent moisture resistance and heat resistance and is effective as a multi-layered printed circuit board coping with the trend of high speed and high density.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、熱衝撃時に生じる樹脂クラックの発生を防止
するとともに、外観、耐湿耐熱性に優れた多層銅張積層
板の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a multilayer copper-clad laminate that prevents the occurrence of resin cracks that occur during thermal shock, and has excellent appearance, moisture resistance, and heat resistance. Regarding the manufacturing method.

(従来の技術) 最近、産業用電子機器の高速化、高密度化に伴って、こ
れらに使用されるプリント配線板の多層化が進められ、
多層銅張積層板の需要が年毎に増加している。
(Prior art) Recently, as industrial electronic devices become faster and more dense, the printed wiring boards used in these devices are becoming more multilayered.
Demand for multilayer copper-clad laminates is increasing every year.

多層銅張積層板において、内層の配線パターンを形成す
る内層銅箔には、最外層の配線パターンを形成する外層
銅箔に比べて厚いものが使用されている。 その理由は
、 ■ 内層配線パターンに発生する熱の放散性が良好であ
る。
In a multilayer copper-clad laminate, the inner layer copper foil forming the inner layer wiring pattern is thicker than the outer layer copper foil forming the outermost layer wiring pattern. The reason for this is: (1) Good dissipation of heat generated in the inner layer wiring pattern.

■ スルーホールの接続信頼性が良好である。■ Through-hole connection reliability is good.

■ 内層板の回路パターンは、外層はど高密度ではなく
、エツチング精度をあまり必要としない。
■ The circuit pattern on the inner layer board is not as dense as that on the outer layer, and does not require much etching precision.

等である。 これらの理由から内層銅箔には、通常70
μm程度の厚さのものが使用されている。
etc. For these reasons, the inner layer copper foil usually contains 70
Thicknesses on the order of μm are used.

(発明が解決しようとする問題点) しかし、このような多層銅張積層板は、メッキ工程後、
ホットエアーレベラー等の装置で、半田浸漬処理(HA
L処理:ホットエアーレベラーの略、銅スルーホールさ
れた基板を半田槽に浸漬し、余分な半田を熱風で吹きと
ばすことによりスルーホールに半田皮膜を形成し、後の
部品半田付けをやりやすくする処理)を行うと、第2図
に示すように、内層板4の内層配線パターン(内層銅箔
部)5と接するプリプレグ1のガラスクロス2に含浸さ
れているエポキシ樹脂等の樹脂(ガラスエポキシ部)3
にクラック6が発生し、甚しいときは外から見てもミー
ズリング状斑点を生じるという問題があった。 このク
ラック6は、外観を悪くするばかりでなく、眉間11M
等を引き起こす原因となっていた。
(Problems to be solved by the invention) However, after the plating process, such multilayer copper-clad laminates
Solder immersion treatment (HA) is performed using equipment such as a hot air leveler.
L treatment: Abbreviation for hot air leveler. A board with copper through-holes is immersed in a solder bath, and excess solder is blown away with hot air to form a solder film on the through-holes, making it easier to solder parts later. As shown in FIG. 2, as shown in FIG. )3
There was a problem in that cracks 6 occurred, and in severe cases, measling-like spots appeared even when viewed from the outside. This crack 6 not only worsens the appearance, but also
This was the cause of such problems.

HA L処理のような熱衝撃を受けるときの多層銅張積
層板は、第3図に示すように、ガラスエポキシ部3およ
び内層銅箔部5は共に熱膨張(図中矢印B、C)を起こ
す、 ところが熱膨張率の温度に対する依存性をみると
、第4図のようにガラスクロスとエポキシ樹脂で構成す
るプリプレグと、内層銅箔部を構成する銀箔との熱膨張
率が異なり、プリプレグの熱膨張率はガラス転移点を過
ぎると増大し、特にHA L処理時の温度範囲(図中斜
線で示す)で銅箔のそれと大きく異なるため、ガラスエ
ポキシ部3は大きく膨張しようとするが熱膨張率の小さ
い内N銅箔部5に抑えられる形となり、ここにひずみが
生じ、このひずみが限界を超えると最も強度の小さい樹
脂部3、特に樹脂部3の内層銅箔5に接している部分に
クラック6が発生するものと考えられる。 そして熱伝
導性が良い厚い内層銅箔はど温度上昇が少なく、よって
発生するひずみも大きくなるため、厚い内層銅箔を有す
る多層銅張積層板において、特にクラックが発生しやす
いという問題がある。
When a multilayer copper-clad laminate is subjected to thermal shock such as HA L treatment, as shown in FIG. However, when looking at the dependence of the coefficient of thermal expansion on temperature, as shown in Figure 4, the coefficient of thermal expansion of the prepreg made of glass cloth and epoxy resin is different from that of the silver foil that makes up the inner layer copper foil. The coefficient of thermal expansion increases after passing the glass transition point, and is significantly different from that of copper foil, especially in the temperature range during HA L treatment (indicated by diagonal lines in the figure). The inner copper foil portion 5 has the lowest strength, and strain occurs there. When this strain exceeds the limit, the resin portion 3 has the lowest strength, especially the portion of the resin portion 3 that is in contact with the inner layer copper foil 5. It is thought that cracks 6 are generated in this case. A thick inner layer copper foil with good thermal conductivity causes a small temperature rise, and therefore a large amount of strain occurs, so there is a problem that cracks are particularly likely to occur in a multilayer copper clad laminate having a thick inner layer copper foil.

本発明は、このような問題点を解決するためになされた
もので、半田浸漬等によって熱fR9が加っな際でもひ
ずみを少なくして樹脂クラックを防止し、外観がよく、
耐湿耐熱性に優れた、眉間剥離のない多層銅張積層板の
製造方法を提供することを目的とする。
The present invention was made to solve these problems, and it reduces distortion even when heat fR9 is applied due to solder immersion, prevents resin cracks, has a good appearance,
The purpose of the present invention is to provide a method for manufacturing a multilayer copper-clad laminate that has excellent moisture and heat resistance and is free from glabellar peeling.

[発明の構成] (問題点を解決するための手段) 本発明者は、このような目的を達成するため鋭意研究し
た結果、樹脂クラックが発生する内層銅箔側の樹脂分を
高め、ひずみを吸収し、かつ樹脂の強度を大きくするこ
とによってクラックの発生を防止することが可能である
ことを見いだし本発明を完成したものである。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive research to achieve the above object, the inventor of the present invention has developed a method of increasing the resin content on the inner layer copper foil side where resin cracks occur to reduce strain. The present invention was completed based on the discovery that it is possible to prevent the occurrence of cracks by absorbing the resin and increasing the strength of the resin.

すなわち、本発明の多層銅張積層板の製造方法は、1枚
又は複数枚の内層板と、表裏の外層#;I箔と、複数枚
のプリプレグとを積層し、これらを一体に加熱−・加圧
成形する多層銅張積層板の製造方法において、上記複数
枚のプリプレグのうち内層板に接する側に樹脂付着is
o〜75重量%、かつ170℃におけるゲルタイム60
〜120秒のプリプレグを用いて成形し、内層板側の樹
脂分を高めたことを特徴とする。 そして、本発明は、
真空度10TO「「以下の低圧で成形することが好まし
い。
That is, the method for producing a multilayer copper-clad laminate of the present invention involves laminating one or more inner layer boards, outer layer I foils on the front and back sides, and a plurality of prepregs, and heating them together. In a method for manufacturing a multilayer copper-clad laminate by pressure molding, resin is attached to the side of the plurality of prepregs that is in contact with the inner layer board.
o~75% by weight and gel time 60 at 170°C
It is characterized by molding using prepreg for ~120 seconds and increasing the resin content on the inner layer side. And, the present invention
It is preferable to mold at a low pressure below a degree of vacuum of 10TO.

本発明に用いる内層板は、内層用銅51積層板の銅箔に
常法によって内層配線パターンを形成したもので、その
銅箔が通常より厚い10μm程度のときに有効であり、
その曲の条件は通常の内層板と何ら変るものではなく、
特に限定はなく広く使用できる。
The inner layer board used in the present invention has an inner layer wiring pattern formed on the copper foil of the inner layer copper 51 laminate by a conventional method, and is effective when the copper foil is about 10 μm thicker than usual.
The conditions of the song are no different from those of a normal inner layer board,
There are no particular limitations and it can be widely used.

本発明に用いるグリプレグは、ガラス基材にエポキシ樹
脂等の熱硬化性樹脂を塗布、含浸乾燥させたものである
。 プリプレグは1枚又は複数枚使用するが、そのプリ
プレグのうち内層板に接する側に用いるものは、まず樹
脂部1ffiが50〜70重量%であることが必要であ
る。v!4脂付着瓜が50重量%未満では内層板側の樹
脂分が高くならずひずみを吸収することができず、また
、70重量%を超えると多層銅張積層板全体が厚くなり
好ましくない、 次に、内層板側のプリプレグのゲルタ
イムは60〜120秒であることが必要である。 ゲル
タイムが60秒未満の場合は、ガラス基材に対する含浸
性が悪く、また、ボイドが残り好ましくない。
The Gripreg used in the present invention is obtained by coating a glass base material with a thermosetting resin such as an epoxy resin, impregnating it, and drying it. One or more prepregs are used, and the prepreg used on the side in contact with the inner layer needs to have a resin portion 1ffi of 50 to 70% by weight. v! 4 If the amount of fat-adhering melon is less than 50% by weight, the resin content on the inner layer plate side will not be high enough to absorb strain, and if it exceeds 70% by weight, the entire multilayer copper-clad laminate will become thick, which is undesirable. In addition, it is necessary that the gel time of the inner layer prepreg is 60 to 120 seconds. If the gel time is less than 60 seconds, impregnating the glass substrate will be poor and voids will remain, which is not preferable.

また、120秒を超えるとフローが大きく樹脂分が高く
ならず好ましくない。
Moreover, if it exceeds 120 seconds, the flow will be large and the resin content will not be high, which is not preferable.

こうして得たプリプレグを内層板側に接して配置し、更
に通常のプリプレグを重ね合わせ、その最外層に銅箔を
重ねて加熱加圧成形するがこの場合、低圧、すなわち真
空度10T orr以下で成形を行うと、より好ましい
結果が得られる。 真空度が10T Orrを超えると
樹脂のフローが大きくなり、まなボイドが多少残り好ま
しくないためIOT orr以下とした。
The prepreg obtained in this way is placed in contact with the inner layer plate side, a normal prepreg is further layered, and a copper foil is layered on the outermost layer, which is then heated and pressure molded. If you do this, you will get more favorable results. If the degree of vacuum exceeds 10 T orr, the flow of the resin increases and some voids remain, which is not desirable, so it was set to be less than IOT orr.

(作用) 本発明の多層v1重積層板の製造方法において、内層板
側の樹脂分を高めているため、HA L処理等における
熱衝撃を受けた時に、ひずみを吸収し、樹脂クラックを
防止することができる。 すなわち、第1図(a)(本
発明構造)に示したように内層銅箔13を有する内層板
10とプリプレグ11を介して外層銅箔12とを′MI
層した多N銅張積層板において、内層銅箔13と1リグ
レグ11との間に存在する樹脂層が厚く(図中Aで示す
)なっているため、第1図(b)(従来構造)に示した
ように、内層銅箔13とプリプレグ11との間に存在す
る樹脂分が薄い(図中A′で示す)ものよりA−A′の
差分のみ、Aの方が単位断面積出りのひずみが少なくな
り、樹脂クラックを防止することができるものである。
(Function) In the method for producing a multilayer V1 laminated board of the present invention, the resin content on the inner layer side is increased, so when subjected to thermal shock during HA L treatment, etc., it absorbs strain and prevents resin cracks. be able to. That is, as shown in FIG. 1(a) (structure of the present invention), the inner layer plate 10 having the inner layer copper foil 13 and the outer layer copper foil 12 are connected via the prepreg 11.
In the layered multi-N copper-clad laminate, the resin layer existing between the inner layer copper foil 13 and the 1st leg 11 is thick (indicated by A in the figure), so the thickness of the layer shown in FIG. 1(b) (conventional structure) As shown in , A has a larger unit cross-sectional area than the one in which the resin between the inner layer copper foil 13 and the prepreg 11 is thinner (indicated by A' in the figure) only by the difference between A and A'. This reduces strain and prevents resin cracks.

PA脂ツクラック防止するためには、内層板側の樹脂分
を厚く、厚い樹脂層が残るように成形を行うことが必要
となる。 それには次のことが考えられた。
In order to prevent PA resin cracking, it is necessary to thicken the resin on the inner layer plate side and perform molding so that a thick resin layer remains. The following was considered.

<i>  出来るだけ樹脂分の高いプリプレグを使用す
る。
<i> Use prepreg with as high a resin content as possible.

(ii)  成形時のレジンフローを少なくする。(ii) Reduce resin flow during molding.

(i )については、含浸性の良いガラスクロスを用い
て樹脂付着量50〜75重量%のプリプレグをつくり、
樹脂クラックの発生しやすい内層板側に使用することに
した。   (ii)については、プリプレグのゲルタ
イムをできるだけ短くし、また、成形圧力を低くするこ
と、また成形性の低下を減圧等の補助手段を加えること
で解決することとした。
For (i), a prepreg with a resin adhesion of 50 to 75% by weight was made using glass cloth with good impregnability.
I decided to use it on the inner layer board side where resin cracks are more likely to occur. Regarding (ii), it was decided to solve the problem by shortening the gel time of the prepreg as much as possible, lowering the molding pressure, and adding auxiliary means such as reduced pressure to reduce the moldability.

こうすることによって内層板側の樹脂層を厚くすること
ができ、HALA理等の熱衝撃に対しても、厚い樹脂層
がひずみを吸収し、樹脂クラック、眉間剥離等を防止す
ることができるものである。
By doing this, the resin layer on the inner plate side can be made thicker, and the thick resin layer absorbs strain even in the case of thermal shock such as HALA processing, and can prevent resin cracks, glabella peeling, etc. It is.

こうして製造された多層銅張積層板は、高速化、高密度
化に対応できる多層配線板として電子機器等に使用する
ことができる。
The multilayer copper-clad laminate thus manufactured can be used in electronic devices and the like as a multilayer wiring board that can handle higher speeds and higher densities.

(実施例) 次に、本発明の実施例ついて説明する。(Example) Next, examples of the present invention will be described.

実施例1〜3 両面に厚さ70μmの内NJ銅箔を有する厚さ 1.0
Illの内層板の両側に第1表に示した樹脂付着量、ゲ
ルタイムを有する厚さ100μmのプリプレグ1枚と、
180μmのプリプレグ1枚を重ね、さらに外層銅箔と
して厚さ18μmの%I箔を重ね合わせて第1表に示し
た成形圧力、真空度で成形を行い、厚さ1.6mmの多
NJIF+張積層板を製造した。 得られたこの積層板
について外観、耐湿耐熱性、レジンフロー、内層板側の
樹脂層厚さ、作業性を試験したので、その結果を第1表
に示した。 本発明の多N銅張積層板は、レジンフロー
が少なく樹脂層が厚く、樹脂クラックの発生がなく、耐
湿耐熱性に優れており、本発明の顕著な効果を確認する
ことができた。
Examples 1 to 3 Thickness 1.0 with NJ copper foil of 70 μm on both sides
One sheet of prepreg with a thickness of 100 μm having the resin adhesion amount and gel time shown in Table 1 on both sides of the inner layer plate of Ill,
One sheet of 180 μm prepreg is layered, and %I foil with a thickness of 18 μm is layered as the outer layer copper foil, and molding is performed at the molding pressure and vacuum degree shown in Table 1 to form a 1.6 mm thick multi-NJIF + tension laminate. The board was manufactured. The obtained laminate was tested for appearance, moisture resistance and heat resistance, resin flow, resin layer thickness on the inner layer side, and workability, and the results are shown in Table 1. The multi-N copper-clad laminate of the present invention had a small resin flow, a thick resin layer, no resin cracks, and excellent moisture and heat resistance, confirming the remarkable effects of the present invention.

比較例1〜6 第1表に示した条件によって実施例と同様にして多層銅
張積層板を製造した。 また、実施例と同様にして、諸
試験を行い、その結果を第1表に示しな。
Comparative Examples 1 to 6 Multilayer copper-clad laminates were manufactured in the same manner as in the examples under the conditions shown in Table 1. In addition, various tests were conducted in the same manner as in the Examples, and the results are shown in Table 1.

1  :MILの測定法に準じて測定。1: Measured according to the MIL measurement method.

*2 :樹脂クラックはクロスセクションによる顕微j
J[察/ボイドは外観目視による。
*2: Resin cracks can be detected using a cross-section microscope.
J [Inspection/Voids are determined by visual inspection.

$3 : D−4/100の前処理試料を260℃で3
0秒ハンダ浸漬の後判定 O・・・異常なし、Δ・・・
ミーズリング(vIJ脂クラック)のみあり、X・・・
デラミ(層間剥M)とミーズリングあり。
$3: Pretreated sample of D-4/100 at 260℃
Judgment after solder immersion for 0 seconds: 0...No abnormality, Δ...
There is only Measling (vIJ fat crack), X...
There is delamination (delamination M) and measling.

*4:成形後の耳部分を切りおとし、その部分の板金体
に対する重量比で表示。
*4: Cut off the ear after molding and express the weight ratio of that part to the sheet metal body.

*5:クロスセクションにより測定。*5: Measured by cross section.

*6:成形終了後の開梱時における作業性(耳だれによ
る開梱のしにくさや、ステンレス板の汚れ状況)。
*6: Workability when unpacking after molding is completed (difficulty in unpacking due to dripping in the ears, dirt on the stainless steel plate).

[発明の効果] 以上の説明および第1表から明らかなように、本発明の
多層銅張積層板の製造方法によれば、ゲルタイムが短く
、樹脂付着量の高いプリプレグを内層板側に用いて、低
圧、特に減圧成形を行うことによって熱衝撃等によって
も樹脂クラックの発生がなく、外観に優れ、眉間剥離が
なく、成形性に優れた多層銅張積層板を製造することが
できる。
[Effects of the Invention] As is clear from the above explanation and Table 1, according to the method for manufacturing a multilayer copper-clad laminate of the present invention, a prepreg with a short gel time and a high amount of resin adhesion is used on the inner layer side. By performing low-pressure, especially vacuum molding, it is possible to produce a multilayer copper-clad laminate that does not cause resin cracks even due to thermal shock, has an excellent appearance, does not peel between the eyebrows, and has excellent moldability.

また、低圧成形による寸法安定性や、フローによる余分
なレジンの節約等の効果ら得られ、本発明は、工業上有
益な方法である。
Furthermore, the present invention is an industrially useful method, as it provides dimensional stability due to low-pressure molding and saves excess resin due to flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )及び(b )は、本発明の多層銅張積層
板の製造方法における、厚い樹脂層の作用を説明するた
めの断面概念図、第2図および第3図は、従来の多層銅
張積層板の断面模式図、第4図は銅箔とガラス−エポキ
シ樹脂構成によるプリプレグとを比較した、温度に対す
る熱膨張率の変化を示すグラフである。 1.11・・・プリプレグ、 2・・・ガラスクロス、
3・・・樹脂、 4,10・・・内層板、 5,13・
・・内M銅箔(内層板配線パターン)、 6・・・樹脂
クラック。 第1図 第2図   第3r:gl 温度(”C) 第4図
FIGS. 1(a) and (b) are cross-sectional conceptual diagrams for explaining the effect of a thick resin layer in the method of manufacturing a multilayer copper-clad laminate of the present invention, and FIGS. FIG. 4, which is a schematic cross-sectional view of a multilayer copper-clad laminate, is a graph showing changes in thermal expansion coefficient with respect to temperature, comparing copper foil and prepreg having a glass-epoxy resin structure. 1.11...Prepreg, 2...Glass cloth,
3...Resin, 4,10...Inner layer plate, 5,13...
...Inner M copper foil (inner layer board wiring pattern), 6...Resin crack. Figure 1 Figure 2 Figure 3r:gl Temperature ("C) Figure 4

Claims (1)

【特許請求の範囲】 1 1枚又は複数枚の内層板と、表裏の外層銅箔と、複
数枚のプリプレグとを積層し、これらを一体に加熱・加
圧成形する多層銅張積層板の製造方法において、上記複
数枚のプリプレグのうち内層板に接する側に樹脂付着量
50〜75重量%、かつ170℃におけるゲルタイム6
0〜120秒のプリプレグを用いて成形し、内層板側の
樹脂分を高めたことを特徴とする多層銅張積層板の製造
方法。 2 成形を、真空度10Torr以下の雰囲気で行う特
許請求の範囲第1項記載の多層銅張積層板の製造方法。
[Claims] 1. Manufacture of a multilayer copper-clad laminate by laminating one or more inner layers, front and back outer layer copper foils, and multiple prepregs, and integrally molding them under heat and pressure. In the method, a resin adhesion amount of 50 to 75% by weight is applied to the side of the plurality of prepregs in contact with the inner layer plate, and a gel time of 6 at 170°C is applied.
A method for manufacturing a multilayer copper-clad laminate, characterized in that the resin content on the inner layer side is increased by molding using prepreg for 0 to 120 seconds. 2. The method for manufacturing a multilayer copper-clad laminate according to claim 1, wherein the molding is performed in an atmosphere with a degree of vacuum of 10 Torr or less.
JP62149813A 1987-06-16 1987-06-16 Method for producing multilayer copper-clad laminate Expired - Fee Related JPH089180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149813A JPH089180B2 (en) 1987-06-16 1987-06-16 Method for producing multilayer copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149813A JPH089180B2 (en) 1987-06-16 1987-06-16 Method for producing multilayer copper-clad laminate

Publications (2)

Publication Number Publication Date
JPS63312816A true JPS63312816A (en) 1988-12-21
JPH089180B2 JPH089180B2 (en) 1996-01-31

Family

ID=15483269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149813A Expired - Fee Related JPH089180B2 (en) 1987-06-16 1987-06-16 Method for producing multilayer copper-clad laminate

Country Status (1)

Country Link
JP (1) JPH089180B2 (en)

Also Published As

Publication number Publication date
JPH089180B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5633069A (en) Multilayer printed-circuit substrate, wiring substrate and process of producing the same
US4985294A (en) Printed wiring board
JPS63312816A (en) Preparation of multi-layered copper-clad laminated plate
JP2956370B2 (en) Copper clad laminate and method for producing the same
JP2579195B2 (en) Copper-clad insulating film for printed wiring boards
JP2023002495A (en) Dielectric material and flexible copper clad laminate including the same
CN216761079U (en) Polymer coated film
JPH0697670A (en) Board for multilayer printed wiring
JPH04208597A (en) Multilayer printed circuit board
JP2509885B2 (en) Multilayer copper clad laminate
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JPS61121496A (en) Multilayer printed wiring board
JP2798292B2 (en) Method of manufacturing printed wiring board substrate
JP2894105B2 (en) Copper clad laminate and method for producing the same
JP3227874B2 (en) Manufacturing method of laminated board
JPH03231843A (en) Fluororesin laminated sheet
JP2713024B2 (en) Manufacturing method of multilayer metal foil-clad laminate
JPH04329695A (en) Manufacturing lamination plate with metal foil for multi-layer printed circuit board
JPH0529763A (en) Manufacture of multilayer copper clad laminated board
JPH0834348B2 (en) Manufacturing method of multilayer printed wiring board
JPS63264341A (en) Multi-layer copper plated laminate
JPH0374895A (en) Multilayer copper coated laminated board
JPH06334278A (en) Rigid flex printed wiring board
JPH03263395A (en) Manufacture of printed wiring board for inner layer
JP2003158374A (en) Manufacturing method for multilayer printed wiring board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees