JPS633126B2 - - Google Patents

Info

Publication number
JPS633126B2
JPS633126B2 JP17557982A JP17557982A JPS633126B2 JP S633126 B2 JPS633126 B2 JP S633126B2 JP 17557982 A JP17557982 A JP 17557982A JP 17557982 A JP17557982 A JP 17557982A JP S633126 B2 JPS633126 B2 JP S633126B2
Authority
JP
Japan
Prior art keywords
valve
intake
load
engine
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17557982A
Other languages
Japanese (ja)
Other versions
JPS5965510A (en
Inventor
Toshiharu Masuda
Yasuyuki Morita
Hiroyuki Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP17557982A priority Critical patent/JPS5965510A/en
Publication of JPS5965510A publication Critical patent/JPS5965510A/en
Publication of JPS633126B2 publication Critical patent/JPS633126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 本発明は、エンジンのバルブタイミング制御装
置に関し、特に吸排気弁を開閉制御する動弁系に
おいてエンジンの運転状態に応じてバルブタイミ
ングを可変制御するための可変機構に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine valve timing control device, and more particularly to a variable mechanism for variably controlling valve timing in accordance with engine operating conditions in a valve train that controls the opening and closing of intake and exhaust valves. It is.

一般に、エンジンにおける吸排気弁のバルブタ
イミングは、エンジンの運転状態に応じて可変制
御することがエンジンの運転性態上好ましい。例
えば、エンジンの低負荷時には吸排気弁のオーバ
ラツプ期間を短くすることが残留排気量を少なく
抑えて燃焼安定性を確保できる。また、エンジン
の高負荷低回転時には吸排気弁のオーバラツプ期
間を短くすると、吸気の吹き返しが防止できて充
填効率を向上できる。一方、エンジンの高負荷高
回転時には吸気弁の開弁期間を長くすることが充
填効率が向上できてエンジン出力を向上できるの
である。
In general, it is preferable from the viewpoint of engine operating characteristics that the valve timing of intake and exhaust valves in an engine be variably controlled depending on the operating state of the engine. For example, when the engine is under low load, shortening the overlap period of the intake and exhaust valves can suppress the residual exhaust gas amount and ensure combustion stability. Furthermore, when the engine is under high load and at low rotation speeds, by shortening the overlap period of the intake and exhaust valves, blowback of intake air can be prevented and charging efficiency can be improved. On the other hand, when the engine is under high load and is rotating at high speeds, extending the opening period of the intake valve can improve the filling efficiency and improve the engine output.

このため、従来、エンジンの動弁系においてバ
ルブタイミングを可変制御するための可変機構が
種々提案されている。例えば、特公昭52−35819
号公報に開示されているようにエンジンの出力軸
とカムシヤフトとの間に遠心カバナを有する遊星
歯車を介在させてエンジンの出力軸とカムシヤフ
トとの相対位置を変化させるようにしたもの、あ
るいはカムシヤフトを立体カムシヤフトとし該立
体カムシヤフトをスライドさせるようにしたもの
等がある。
For this reason, various variable mechanisms for variably controlling valve timing in the valve train of an engine have been proposed. For example, Special Public Interest Publication No. 52-35819
As disclosed in the above publication, a planetary gear having a centrifugal cover is interposed between the output shaft of the engine and the camshaft to change the relative position between the output shaft of the engine and the camshaft, or a camshaft. There is a three-dimensional camshaft in which the three-dimensional camshaft is slidable.

しかるに、上記従来のものは何れも、構造が複
雑で大がかりなものとなるとともに、可変制御の
応答性,信頼性が悪く、また大きな騒音を発生し
やすいなど、実用性に欠けるものであつた。
However, all of the above-mentioned conventional devices have complicated and large-scale structures, have poor variable control response and reliability, and tend to generate large noises, and thus lack practicality.

本発明は斯かる点に鑑みてなされたもので、既
存の動弁機構を有効に利用して、カムシヤフトの
特定角度位置に対するカム面とバルブステムに当
接するタペツトの受圧部との接触位置をエンジン
の運転状態に応じて変化させるようにすることに
より、構造が簡単で、応答性,信頼性良く可変制
御でき、また騒音の発生の少ないなど、実用性に
優れた可変機構の提供を主たる目的とするもので
ある。
The present invention has been made in view of the above, and effectively utilizes the existing valve mechanism to adjust the contact position between the cam surface and the pressure-receiving portion of the tappet that contacts the valve stem for a specific angular position of the camshaft. The main purpose is to provide a highly practical variable mechanism that has a simple structure, can be controlled with good responsiveness and reliability, and generates little noise. It is something to do.

さらに、本発明の他の目的は、隣接する気筒の
バルブタイミングを一体的に同時に可変制御する
ようにして、上記構造の簡略化を一層図らんとす
るものである。
Furthermore, another object of the present invention is to further simplify the above structure by integrally and simultaneously variable controlling the valve timings of adjacent cylinders.

これらの目的を達成するため、本発明の構成
は、隣接する気筒のバルブとそれに対応するカム
シヤフトのカム面との間の動力伝達系路中にそれ
ぞれ介装され、上記カム面から力を受ける受圧部
およびカム面から受けた力をバルブステム側に伝
達する押圧部を備えた複数のタペツトと、該各タ
ペツトが摺動自在に嵌挿される複数の嵌挿孔を有
し、かつ上記カムシヤフト周りを回動可能な回動
部材と、該回動部材をエンジンの運転状態に応じ
て上記カムシヤフトの特定角度位置に対する各カ
ム面と各タペツトの受圧部との接触位置が変化す
るように回動させる操作装置とを備えてなり、操
作装置により回動部材を回動させて、エンジンの
運転状態に応じて隣接気筒におけるカムシヤフト
の特定角度位置に対する各カム面と各タペツト部
材の一端との接触位置をカムシヤフト周りに一体
的に同時に変化させ、隣接気筒のバルブタイミン
グを単一の機構で制御するようにしたものであ
る。
In order to achieve these objects, the configuration of the present invention is such that the valves of the adjacent cylinders are interposed in the power transmission path between the valves of the adjacent cylinders and the cam surfaces of the corresponding camshafts, and the pressure receivers receive the force from the cam surfaces. and a plurality of tappets each having a pressing portion that transmits the force received from the cam surface and the cam surface to the valve stem side, and a plurality of insertion holes into which each of the tappets is slidably inserted; A rotatable rotating member and an operation for rotating the rotating member so that the contact position between each cam surface and the pressure receiving portion of each tappet changes with respect to a specific angular position of the camshaft according to the operating state of the engine. The rotating member is rotated by an operating device to adjust the contact position between each cam surface and one end of each tappet member with respect to a specific angular position of the camshaft in an adjacent cylinder according to the operating state of the engine. The valve timing of adjacent cylinders is controlled by a single mechanism.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図および第2図は一つの気筒に対して低負
荷用および高負荷用の一対の吸気ポートと一対の
排気ポートとを備えたデユアルインダクシヨン方
式の4気筒エンジンに本発明を適用した実施例を
示す。同図において、1はエンジン本体、2a〜
2dはエンジン本体1の中心線lに沿つて直列状
に形成された第1〜第4気筒であつて、各気筒2
a〜2dには各々、低負荷用および高負荷用の一
対の吸気ポート3a,3bと第1および第2の一
対の排気ポート4a,4bとが設けられている。
各気筒2a〜2dにおける低負荷用および高負荷
用吸気ポート3a,3bはエンジン本体1の一方
側(吸気側)から気筒2a〜2dのエンジン本体
中心線l方向(気筒列方向)と略平行な方向に並
列して開口しているとともに、低負荷用吸気ポー
ト3aは通路面積が吸気流速を高めるために比較
的小さく絞られて形成され、且つ気筒2a〜2d
内でスワールを形成するよう湾曲形成されてお
り、一方、高負荷用吸気ポート3bは通路面積が
吸気の充填効率を高めるために比較的大きく形成
されている。また、各気筒2a〜2dにおける第
1および第2排気ポート4a,4bはエンジン本
体1の他方側(排気側)から同じく気筒2a〜2
dのエンジン本体中心線l方向と略平行に並列し
て開口しており、上記両吸気ポート3a,3bと
両排気ポート4a,4bとはエンジン本体中心線
lを挾んで対向するように配置されている。さら
に、隣り合う第1気筒2aと第2気筒2bとにお
ける同じ性質の高負荷用吸気ポート3b,3b同
士および第2排気ポート4b,4b同士、並びに
隣り合う第3気筒2cと第4気筒2dとにおける
同じ性質の高負荷用吸気ポート3b,3b同士お
よび第2排気ポート4b,4b同士はそれぞれ互
いに背中合せ状態に隣接して配置されている。
Figures 1 and 2 show an embodiment in which the present invention is applied to a dual induction four-cylinder engine, which has a pair of intake ports and a pair of exhaust ports for low load and high load for one cylinder. Give an example. In the figure, 1 is the engine body, 2a to
2d is the first to fourth cylinders formed in series along the center line l of the engine body 1, and each cylinder 2
A to 2d are each provided with a pair of intake ports 3a, 3b for low load and high load, and a pair of first and second exhaust ports 4a, 4b.
The low-load and high-load intake ports 3a and 3b in each cylinder 2a to 2d are connected from one side (intake side) of the engine body 1 to approximately parallel to the engine body center line l direction (cylinder row direction) of the cylinders 2a to 2d. The low-load intake ports 3a are opened in parallel in the direction, and the passage area of the low-load intake ports 3a is narrowed to a relatively small size in order to increase the intake flow velocity.
On the other hand, the high-load intake port 3b is formed to have a relatively large passage area in order to improve the filling efficiency of intake air. Further, the first and second exhaust ports 4a and 4b in each cylinder 2a to 2d are connected to the other side (exhaust side) of the engine body 1 from the same side to the cylinders 2a to 2d.
They are opened in parallel and parallel to the direction of the centerline l of the engine body in d, and the intake ports 3a, 3b and the exhaust ports 4a, 4b are arranged to face each other across the centerline l of the engine body. ing. Furthermore, the high-load intake ports 3b, 3b and the second exhaust ports 4b, 4b of the same nature in the adjacent first cylinder 2a and second cylinder 2b, and the adjacent third cylinder 2c and fourth cylinder 2d. The high-load intake ports 3b, 3b and the second exhaust ports 4b, 4b, which have the same properties, are arranged adjacent to each other in a back-to-back manner.

さらに、上記各気筒2a〜2dにおける低負荷
用および高負荷用吸気ポート3a,3bには該各
吸気ポート3a,3bをそれぞれ所定のタイミン
グで開閉する低負荷用および高負荷用の一対の吸
気弁5a,5bがエンジン本体1の吸気側に並ん
で配設されているとともに、上記各気筒2a〜2
dにおける第1および第2排気ポート4a,4b
には該各排気ポート4a,4bをそれぞれ所定の
タイミングで開閉する第1および第2の一対の排
気弁6a,6bがエンジン本体1の排気側に並ん
で配設されている。よつてエンジン本体1に吸気
側においては隣接する第1気筒2aと第2気筒2
bとの高負荷用吸気弁5b,5b同士および隣接
する第3気筒2cと第4気筒2dとの高負荷用吸
気弁5b,5b同士がそれぞれ互いに隣接し、ま
たエンジン本体1の排気側においては第1気筒2
aと第2気筒2bとの第2排気弁6b,6b同士
および第3気筒2cと第4気筒2dとの第2排気
弁6b,6b同士がそれぞれ互いに隣接してい
る。
Further, the low-load and high-load intake ports 3a and 3b in each of the cylinders 2a to 2d are provided with a pair of low-load and high-load intake valves that open and close the intake ports 3a and 3b at predetermined timings, respectively. 5a and 5b are arranged side by side on the intake side of the engine main body 1, and each of the cylinders 2a to 2
First and second exhaust ports 4a, 4b at d
A pair of first and second exhaust valves 6a and 6b that open and close the respective exhaust ports 4a and 4b at predetermined timings are arranged side by side on the exhaust side of the engine body 1. Therefore, on the intake side of the engine body 1, the first cylinder 2a and the second cylinder 2 are adjacent to each other.
The high load intake valves 5b, 5b of the engine body 1 are adjacent to each other, and the high load intake valves 5b, 5b of the adjacent third cylinder 2c and fourth cylinder 2d are adjacent to each other, and on the exhaust side of the engine body 1, 1st cylinder 2
The second exhaust valves 6b, 6b of the cylinder a and the second cylinder 2b are adjacent to each other, and the second exhaust valves 6b, 6b of the third cylinder 2c and the fourth cylinder 2d are adjacent to each other.

また、各気筒2a〜2dにおける高負荷用吸気
ポート3bに接続される吸気マニホールドの高負
荷用吸気通路7aにはエンジンの高負荷時に開作
動する開閉弁7が配設されており、各気筒2a〜
2dにおいてエンジンの低負荷時には低負荷用吸
気ポート3aのみから吸気を供給する一方、エン
ジンの高負荷時には低負荷用および高負荷用吸気
ポート3a,3bの両方から吸気を供給するよう
にしている。
In addition, an on-off valve 7 that opens when the engine is under high load is disposed in the high-load intake passage 7a of the intake manifold connected to the high-load intake port 3b of each cylinder 2a to 2d. ~
2d, when the engine is under low load, intake air is supplied only from the low-load intake port 3a, while when the engine is under high load, intake air is supplied from both the low-load and high-load intake ports 3a and 3b.

一方、8aはエンジン本体1の吸気側に配設さ
れ、各気筒2a〜2dにおける低負荷用および高
負荷用吸気弁5a,5bを開閉制御する第1動弁
機構であつて、該第1動弁機構8aは、エンジン
本体1の吸気側にエンジン本体中心線lと平行に
配設されエンジンのクランクシヤフト(図示せ
ず)によつてタイミングベルト110を介して回
転駆動される第1カムシヤフト9を有し、該第1
カムシヤフト9には各気筒2a〜2dの低負荷用
および高負荷用吸気弁5a,5bに対応するカム
面9a,9bが同形状に形成されており、該第1
カムシヤフト9の回転により各気筒2a〜2dに
おいて低負荷用および高負荷用吸気弁5a,5b
を同じ開弁期間でもつて同時に開閉制御するよう
に構成されている。また、8bはエンジン本体1
の排気側に配設され、各気筒2a〜2dにおける
第1および第2排気弁6a,6bを開閉制御する
第2動弁機構であつて、該第2動弁機構8bは、
エンジン本体1の排気側にエンジン本体中心線l
と平行に配設され同じくタイミングベルト110
により回転駆動される第2カムシヤフト10を有
し、該第2カムシヤフト10には各気筒2a〜2
dの第1,第2排気弁6a,6bに対応するカム
面10a,10bが同形状に形成されており、該
第2カムシヤフト10の回転により各気筒2a〜
2dにおいて第1,第2排気弁6a,6bを同じ
開弁期間でもつて同時に開閉制御するように構成
されている。
On the other hand, 8a is a first valve operating mechanism disposed on the intake side of the engine body 1, which controls the opening and closing of the low-load and high-load intake valves 5a and 5b in each cylinder 2a to 2d. The valve mechanism 8a includes a first camshaft 9 which is disposed on the intake side of the engine body 1 in parallel with the engine body center line l and is rotationally driven by the engine crankshaft (not shown) via a timing belt 110. and the first
The camshaft 9 has cam surfaces 9a and 9b formed in the same shape corresponding to the low-load and high-load intake valves 5a and 5b of the respective cylinders 2a to 2d.
The rotation of the camshaft 9 causes the low-load and high-load intake valves 5a, 5b in each cylinder 2a to 2d.
The valves are configured to open and close at the same time with the same valve opening period. Also, 8b is the engine body 1
A second valve mechanism 8b is disposed on the exhaust side of the cylinders 2a to 2d and controls opening and closing of the first and second exhaust valves 6a and 6b in each cylinder 2a to 2d.
Engine body center line l on the exhaust side of engine body 1
The timing belt 110 is also arranged parallel to the timing belt 110.
The second camshaft 10 has a second camshaft 10 that is rotationally driven by the cylinders 2a to 2.
Cam surfaces 10a and 10b corresponding to the first and second exhaust valves 6a and 6b of d are formed in the same shape, and the rotation of the second camshaft 10 causes each cylinder 2a to
2d, the first and second exhaust valves 6a and 6b are controlled to open and close simultaneously with the same valve opening period.

そして、上記第1動弁機構8aには、第1気筒
2aと第2気筒2bとの隣接する両高負荷用吸気
弁5b,5bおよび第3気筒2cと第4気筒2d
との隣接する両高負荷用吸気弁5b,5bのバル
ブタイミングをそれぞれ可変制御する2つの本発
明に係る第1可変機構11,11が設けられてお
り、また、上記第2動弁機構8bには、第1気筒
2aと第2気筒2bとの隣接する両第2排気弁6
b,6bおよび第3気筒2cと第4気筒2dとの
隣接する両第2排気弁6b,6bのバルブタイミ
ングをそれぞれ可変制御する2つの本発明に係る
第2可変機構12,12が設けられている。
The first valve operating mechanism 8a includes both adjacent high-load intake valves 5b, 5b of the first cylinder 2a and second cylinder 2b, and the third cylinder 2c and fourth cylinder 2d.
Two first variable mechanisms 11, 11 according to the present invention are provided which respectively variably control the valve timing of both high-load intake valves 5b, 5b adjacent to the second valve operating mechanism 8b. are both adjacent second exhaust valves 6 of the first cylinder 2a and the second cylinder 2b.
Two second variable mechanisms 12, 12 according to the present invention are provided to variably control the valve timings of the second exhaust valves 6b, 6b and the adjacent second exhaust valves 6b, 6b of the third cylinder 2c and fourth cylinder 2d, respectively. There is.

上記第1および第2可変機構11,12はそれ
ぞれ第3図に拡大詳示するように同じ構成によつ
てなる。すなわち、第1可変機構11は、一端
(上端)で第1カムシヤフト9の対応する各カム
面9b,9bと当接する受圧部(受圧面)13a
とその反対側で隣接気筒(2aと2b,2cと2
d)での各高負荷用吸気弁5b,5bのバルブス
テムと当接する押圧部(押圧面)13bと円筒状
のガイド部13cとからなる2つのタペツト部材
13,13と、該各タペツト部材13,13が上
下方向に摺動自在に嵌挿保持される2つの嵌挿孔
14a,14aを有するとともに下面に上記エン
ジン本体1に形成した円弧状のガイド面1aに摺
接案内される円弧状の摺接面14bを有し、上記
第1カムシヤフト9に対して回動自在に支承され
て上記ガイド面1aの案内補助のもとに第1カム
シヤフト9周りを回動可能なバケツト状の回動部
材14と、該回動部材14をエンジンの運転状態
に応じて上記第1カムシヤフト9の特定角度位置
に対する各カム面9b,9bと各タペツト部材1
3,13の受圧部13aおよび押圧部13bとの
接触位置が変化するように第1カムシヤフト9の
回転軸を中心として回動させる操作装置15とを
備えてなり、上記回動部材14は第1カムシヤフ
ト9に支承される部分で上下に分割されていてボ
ルト16,16で一体に結合されている。さら
に、上記操作装置15は、エンジン本体中心線l
に平行に配設設され2つの第1可変機構11,1
1に跨つて両回動部材14,14の上端部を連結
して該回動部材14,14を回動させる揺動軸1
7と、エンジン本体1の中心線l方向中央部にお
いて該中心線lと直交して配設され、上記揺動軸
17に係合して該揺動軸17を揺動させる往復動
軸18と、回転運動を往復動運動に変換して該往
復動軸18を往復動させる駆動モータ19とを備
え、該駆動モータ19には、エンジンの回転数を
検出する回転数センサ20およびエンジンの負荷
状態を検出する負荷センサ21の各出力が入力さ
れており、エンジンの特定運転時としてのエンジ
ンの高負荷高回転時、駆動モータ19の作動によ
り往復動軸18を第2図右方向に移動させて揺動
軸17を第1カムシヤフト9の回転方向Xと同方
向(第2図で時計方向)に回動させることによ
り、回動部材14,14を第1カムシヤフト9を
中心にその回転方向Xと同方向に回動させるもの
である。以上により、エンジンの高負荷高回転時
には操作装置15により回動部材14,14が第
1カムシヤフト9の回転方向Xと同方向に回動す
ることにより、第1カムシヤフト9の特定角度位
置に対する各カム面9b,9bと各タペツト部材
13,13の受圧部13a,13aとの接触位置
が第1カムシヤフト9の回転方向Xに対して遅れ
側に変化して、各高負荷用吸気弁5b,5bのバ
ルブタイミングを遅れ側にずらすよう制御するよ
うに構成されている。
The first and second variable mechanisms 11 and 12 have the same structure as shown in enlarged detail in FIG. 3, respectively. That is, the first variable mechanism 11 has a pressure receiving portion (pressure receiving surface) 13a that comes into contact with each corresponding cam surface 9b of the first camshaft 9 at one end (upper end).
and adjacent cylinders (2a and 2b, 2c and 2
d) Two tappet members 13, 13 each consisting of a pressing part (pressing surface) 13b and a cylindrical guide part 13c that come into contact with the valve stem of each high-load intake valve 5b, 5b, and each of the tappet members 13 , 13 have two fitting holes 14a, 14a in which the fitting holes 14a, 13 are slidably inserted and held in the vertical direction, and an arc-shaped bottom surface is slidably guided by the arc-shaped guide surface 1a formed on the engine body 1. a bucket-shaped rotating member having a sliding surface 14b, rotatably supported on the first camshaft 9, and capable of rotating around the first camshaft 9 with guidance assistance of the guide surface 1a; 14, and the rotating member 14 is moved to each cam surface 9b, 9b and each tappet member 1 to a specific angular position of the first camshaft 9 according to the operating state of the engine.
and an operating device 15 that rotates the first camshaft 9 about the rotation axis so that the contact position with the pressure receiving part 13a and the pressing part 13b of the first camshaft 9 changes. The portion supported by the camshaft 9 is divided into upper and lower portions, and is joined together with bolts 16, 16. Further, the operating device 15 is configured to control the engine body center line l.
The two first variable mechanisms 11, 1 are arranged parallel to each other.
A swing shaft 1 that connects the upper ends of both rotating members 14, 14 and rotates the rotating members 14, 14.
7, and a reciprocating shaft 18 that is disposed in the center of the engine body 1 in the direction of the center line l and perpendicular to the center line l, and engages with the swing shaft 17 to swing the swing shaft 17. , a drive motor 19 that converts rotational motion into reciprocating motion and reciprocates the reciprocating shaft 18. Each output of a load sensor 21 that detects the engine is inputted, and when the engine is under high load and at high rotation speeds during a specific engine operation, the reciprocating shaft 18 is moved to the right in FIG. 2 by the operation of the drive motor 19. By rotating the swing shaft 17 in the same direction as the rotation direction X of the first camshaft 9 (clockwise in FIG. 2), the rotation members 14, 14 are rotated in the rotation direction X around the first camshaft 9. It rotates in the same direction. As described above, when the engine is under high load and rotates at high speed, the operating device 15 causes the rotating members 14, 14 to rotate in the same direction as the rotation direction X of the first camshaft 9. The contact position between the surfaces 9b, 9b and the pressure receiving portions 13a, 13a of each tappet member 13, 13 changes to the delayed side with respect to the rotational direction The valve timing is configured to be controlled to shift the valve timing to the delay side.

また、上記第2可変機構12は、上記第1可変
機構11と同じ構成部材(第1可変機構11の構
成部材の符号に「′(ダツシユ)」を付けて表わ
す)によつてなるもので、一端で第2カムシヤフ
ト10の対応する各カム面10b,10bと当接
し、他端で隣接気筒(2aと2b,2cと2d)
での各第2排気弁6b,6bのバルブステムと当
接する2つのタペツト部材13′,13′と、該各
タペツト部材13′,13′を嵌挿孔14′a,1
4′aに摺動自在に嵌挿保持せしめて第2カムシ
ヤフト10周りを回動する回動部材14′と、該
回動部材14′をエンジンの運転状態に応じて回
動させる操作装置15′とを備えてなる。該操作
装置15′は、2つの第2可変機構12,12の
両回動部材14′,14′をその上端部で連結する
揺動軸17′と、該揺動軸17′を揺動させる第1
可変機構11と共用の往復動軸18と、該往復動
軸18を往復動させる同じく第1可変機構11と
共用の駆動モータ19とを備えており、よつてエ
ンジンの高負荷高回転時、駆動モータ19の作動
により往復動軸18を介して揺動軸16′を第2
カムシヤフト10の回転方向Xと同方向に回動さ
せることにより、両回動部材14′,14′を第2
カムシヤフト10を中心としてその回転方向Xと
同方向に回動させて、第2カムシヤフト10の特
定角度位置に対する各カム面10b,10bと各
タペツト部材13′,13′の受圧部(受圧面)1
3′a,13′aとの接触位置を第2カムシヤフト
10の回転方向Xに対して遅れ側に変化させ、各
第2排気弁6b,6bのバルブタイミングを遅れ
側にずらすよう制御するものである。
Further, the second variable mechanism 12 is made of the same constituent members as the first variable mechanism 11 (the constituent members of the first variable mechanism 11 are represented by adding a '' (dart) to the reference numerals), One end contacts the corresponding cam surfaces 10b, 10b of the second camshaft 10, and the other end contacts the adjacent cylinders (2a and 2b, 2c and 2d).
The two tappet members 13', 13' that come into contact with the valve stems of the respective second exhaust valves 6b, 6b, and the respective tappet members 13', 13' inserted into the holes 14'a, 1
A rotating member 14' that is slidably inserted into and held by 4'a and rotates around the second camshaft 10, and an operating device 15' that rotates the rotating member 14' in accordance with the operating state of the engine. It will be equipped with. The operating device 15' includes a swing shaft 17' that connects both rotating members 14', 14' of the two second variable mechanisms 12, 12 at their upper ends, and a swing shaft 17' that swings the swing shaft 17'. 1st
It is equipped with a reciprocating shaft 18 that is shared with the variable mechanism 11, and a drive motor 19 that is also shared with the first variable mechanism 11 that reciprocates the reciprocating shaft 18. The operation of the motor 19 causes the swing shaft 16' to move to the second position via the reciprocating shaft 18.
By rotating the camshaft 10 in the same direction as the rotational direction
The pressure receiving portion (pressure receiving surface) 1 of each cam surface 10b, 10b and each tappet member 13', 13' is rotated in the same direction as the rotation direction
3'a, 13'a to the lag side with respect to the rotational direction X of the second camshaft 10, and controls the valve timing of each second exhaust valve 6b, 6b to the lag side. be.

尚、ここで、上記カムシヤフト9,10のカム
面9b,10bとタペツト部材13,13′の受
圧部13a,13′aとの接触位置は、可変制御
しない通常運転時はカムシヤフト9,10の回転
方向Xに対して該カムシヤフト9,10の中心と
バルブステムとを結ぶ最短直線上での接点Pより
進み側に設定しておき、可変制御する特定運転時
(高負荷高回転時)には遅れ側の変位により上記
接点にP付近に位置するように設定することが好
ましい。すなわち、この場合、カム面9b,10
bとタペツト部材13,13′との接触による面
圧と滑り速度との積いわゆるPV値をエンジンの
高回転時においても低く抑えることができ、バル
ブタイミングの有効可変制御範囲を拡大化できる
利点を有する。
Here, the contact positions between the cam surfaces 9b, 10b of the camshafts 9, 10 and the pressure receiving parts 13a, 13'a of the tappet members 13, 13' are determined by the rotation of the camshafts 9, 10 during normal operation without variable control. It is set on the advance side of the contact point P on the shortest straight line connecting the centers of the camshafts 9 and 10 and the valve stem in direction It is preferable to set the contact point to be located near P due to side displacement. That is, in this case, the cam surfaces 9b, 10
The so-called PV value, which is the product of the surface pressure caused by the contact between B and the tappet members 13 and 13' and the sliding speed, can be kept low even at high engine speeds, and the advantage is that the effective variable control range of valve timing can be expanded. have

加えて、上記実施例ではタペツトとして受圧部
13a,13′aと押圧部13b,13′bとガイ
ド部13c,13′cとが一体のタペツト部材1
3又は13′を用いたが、第4図に示す如く油圧
タペツト装置Aを用いてもよい。すなわち、該油
圧タペツト装置Aは、カムシヤフト9(又は1
0)のカム面9b,10bと摺接する円形状の閉
塞部(受圧部)23aおよび該閉塞部外周から直
角に延び、回動部材14,14′に設けられたオ
イル通路22と連通する第1連通孔23bを有し
且つ該回動部材14,14′の嵌挿孔14a,1
4′a内を摺動する側部(ガイド部)23cを備
えた円筒状のタペツト部材23と、該タペツト部
材23の内周に嵌挿される側壁24aおよび吸排
気弁5b,6bのバルブステムに当接する底壁
(押圧部)24bを備え、上記タペツト部材23
の向きと逆方向に配設された円筒状の第1部材2
4と、上記タペツト部材23と第1部材24との
間に外周が第1部材24の内周に摺接するととも
に先端がタペツト部材23の閉塞部23aにスプ
リング25により押圧当接するように配設され、
一端側(上部側)はタペツト部材23の閉塞部2
3aとで該閉塞部23aに形成した切欠き溝23
bを介して上記第1連通孔23bと連通する油溜
り室26を形成する一方、他端側(下部側)は第
1部材24の底壁24bとで油圧力室27を形成
し、且つ中央に上記油溜り室26と油圧力室27
とを連通する第2連通孔28aを備えた断面路略
H字状の第2部材28と、上記油圧力室27に内
蔵され、油圧力室27の内圧がカムシヤフト9,
10のカム面9b,10bの押圧力によつて急激
に圧力上昇したときは閉弁して上記第2連通孔2
8aを閉塞する一方、その他のときには開弁して
第2連通孔28aを開放するように制御するチエ
ツク弁29とからなり、上記油溜り室26と油圧
力室27との反力差に応じて第2連通孔28aを
開閉して油圧力室27内の油量を変化させること
により、タペツト部材23の閉塞部23aをカム
面9b,10bに常に摺接せしめるように追従さ
せて、エンジンの高回転時においてもバルブクリ
アランスを生じることなくカム力をバルブステム
に伝達するようにしたものである。尚、第4図の
ようにタペツトとして油圧タペツト装置Aを用い
ない場合は、タペツトとカム面との間にシムを介
装させることによつてバルブクリアランスを調整
するようにすれば良い。
In addition, in the above embodiment, the tappet member 1 includes the pressure receiving portions 13a, 13'a, the pressing portions 13b, 13'b, and the guide portions 13c, 13'c.
3 or 13', a hydraulic tappet device A may also be used as shown in FIG. That is, the hydraulic tappet device A is connected to the camshaft 9 (or 1
0) and a first circular closing portion (pressure receiving portion) 23a that is in sliding contact with the cam surfaces 9b, 10b and extending at right angles from the outer periphery of the closing portion and communicating with the oil passage 22 provided in the rotating members 14, 14'. It has a communicating hole 23b and fitting holes 14a, 1 for the rotating members 14, 14'.
A cylindrical tappet member 23 having a side part (guide part) 23c that slides inside the tappet member 4'a, a side wall 24a fitted into the inner periphery of the tappet member 23, and valve stems of the intake and exhaust valves 5b and 6b. The tappet member 23 is provided with a bottom wall (pressing portion) 24b that comes into contact with the
A cylindrical first member 2 arranged in a direction opposite to the direction of
4, and is arranged between the tappet member 23 and the first member 24 so that the outer periphery is in sliding contact with the inner periphery of the first member 24, and the tip is pressed against the closed portion 23a of the tappet member 23 by a spring 25. ,
One end side (upper side) is the closed part 2 of the tapepet member 23.
3a and the notch groove 23 formed in the closing portion 23a.
An oil reservoir chamber 26 is formed which communicates with the first communication hole 23b through the hole b, while the other end (lower side) forms a hydraulic pressure chamber 27 with the bottom wall 24b of the first member 24, and the center The oil reservoir chamber 26 and the hydraulic pressure chamber 27
A second member 28 having a substantially H-shaped cross section and having a second communication hole 28a that communicates with the camshaft 9,
When the pressure suddenly increases due to the pressing force of the cam surfaces 9b and 10b, the valve is closed and the second communication hole 2 is closed.
The check valve 29 is configured to close the second communication hole 28a and to open the second communication hole 28a at other times, depending on the reaction force difference between the oil reservoir chamber 26 and the hydraulic pressure chamber 27. By opening and closing the second communication hole 28a to change the amount of oil in the hydraulic pressure chamber 27, the closed portion 23a of the tappet member 23 is always kept in sliding contact with the cam surfaces 9b and 10b, thereby increasing the engine speed. The cam force is transmitted to the valve stem without creating valve clearance even during rotation. Incidentally, when the hydraulic tappet device A is not used as the tappet as shown in FIG. 4, the valve clearance may be adjusted by interposing a shim between the tappet and the cam surface.

尚、第1図中、30は第1および第2カムシヤ
フト9,10を回転自在に支承する軸受部であつ
て、該軸受部30は第1および第2可変機構1
1,12の各回動部材14,14,14′,1
4′と干渉しないように且つ第1および第2カム
シヤフト9,10の撓みを可及的に抑えるように
エンジン本体1の中心線l方向の両端部および中
央部に配設されている。また、第2図中、31は
各吸,排気弁5a,5b,6a,6bを閉弁方向
に付勢するバルブスプリング、32はバルブガイ
ドである。
In FIG. 1, reference numeral 30 denotes a bearing portion that rotatably supports the first and second camshafts 9, 10, and the bearing portion 30 is a bearing portion that rotatably supports the first and second camshafts 9, 10.
Each rotating member 14, 14, 14', 1 of 1, 12
4' and to suppress the deflection of the first and second camshafts 9, 10 as much as possible at both ends and in the center of the engine body 1 in the direction of the center line l. Further, in FIG. 2, 31 is a valve spring that urges each intake and exhaust valve 5a, 5b, 6a, 6b in the valve closing direction, and 32 is a valve guide.

次に、上記実施例の作用について述べるに、エ
ンジンの低負荷時には、第1および第2可変機構
11,12が非作動状態にあり、各気筒2a〜2
dにおける低負荷用,高負荷用吸気弁5a,5b
および第1,第2排気弁6a,6bはそれぞれ第
1および第2動弁機構8a,8bによつて各々所
定のバルブタイミングは開閉制御される。すなわ
ち、第5図実線で示すように、第1および第2排
気弁6a,6bのバルブタイミングは共に、ピス
トンの下死点付近で開いたのち上死点付近で閉じ
て排気行程を行うように制御され、また低負荷用
および高負荷用吸気弁5a,5bのバルブタイミ
ングは共に排気弁6a,6bとのオーバラツプ期
間を少なくしてピストン上死点付近で開いたのち
下死点付近で閉じて吸気行程を行うように制御さ
れる。また、各気筒2a〜2dにおける低負荷用
吸気ポート3bは開閉弁7の閉作動によつて閉塞
されており、低負荷用吸気ポート3aのみから吸
気が供給されている。
Next, to describe the operation of the above embodiment, when the engine is under low load, the first and second variable mechanisms 11 and 12 are in a non-operating state, and each cylinder 2a to 2
Intake valves 5a and 5b for low load and high load in d
The opening and closing of the first and second exhaust valves 6a and 6b are controlled at predetermined valve timings by first and second valve operating mechanisms 8a and 8b, respectively. That is, as shown by the solid line in FIG. 5, the valve timings of the first and second exhaust valves 6a and 6b are such that they open near the bottom dead center of the piston and then close near the top dead center to perform the exhaust stroke. In addition, the valve timing of both the low-load and high-load intake valves 5a and 5b is such that the overlap period with the exhaust valves 6a and 6b is reduced, and the valve timings are opened near the top dead center of the piston and then closed near the bottom dead center. It is controlled to perform an intake stroke. Further, the low-load intake ports 3b in each of the cylinders 2a to 2d are closed by the closing operation of the on-off valve 7, and intake air is supplied only from the low-load intake ports 3a.

そのため、各気筒2a〜2dの吸気行程におい
て、吸気は低負荷用吸気ポート3aの特性を活か
して、速い吸気流速でもつて且つ気筒2a〜2d
内でスワールを生成せしめて行われることにな
り、エンジンの低負荷時における燃焼速度を早め
て燃焼性を向上させることができる。また、その
際、低負荷用吸気弁5aの排気弁6a,6bとの
オーバラツプ期間が短いので、残留排気量を少な
く抑え上記良好な燃焼性を確保することができ
る。
Therefore, in the intake stroke of each cylinder 2a to 2d, the intake air takes advantage of the characteristics of the low-load intake port 3a, and even at a high intake flow rate.
This is done by generating a swirl within the combustion engine, increasing the combustion speed and improving combustion performance when the engine is under low load. Furthermore, since the overlapping period between the low-load intake valve 5a and the exhaust valves 6a and 6b is short, the amount of residual exhaust gas can be kept low and the above-mentioned good combustibility can be ensured.

一方、エンジンの低回転高負荷時には、この状
態では高負荷用吸気ポート3bの開閉弁7が開か
れ、低負荷用吸気ポート3aに加えて高負荷用吸
気ポート3bからも吸気が行われるが、第1およ
び第2可変機構11,12が共に非作動の状態に
あるので、吸,排気弁5a,5bと6a,6bの
オーバラツプ期間が短く吸気の吹き返しを防止し
て充填効率を向上させることができる。しかも、
この場合、各気筒2a〜2dの排気行程において
第1および第2の一対の排気ポート4a,4bを
それぞれ一対の排気弁6a,6bで開閉するの
で、排気のための有効開口面積が単一の排気ポー
トの場合と較べて増大して掃気効率が向上し、ひ
いては上記充填効率の向上を一層図ることができ
る。
On the other hand, when the engine is running at low speed and under high load, the on-off valve 7 of the high-load intake port 3b is opened, and air is taken in from the high-load intake port 3b in addition to the low-load intake port 3a. Since the first and second variable mechanisms 11 and 12 are both inactive, the overlapping period between the intake and exhaust valves 5a and 5b and 6a and 6b is short, preventing intake air from blowing back and improving filling efficiency. can. Moreover,
In this case, in the exhaust stroke of each cylinder 2a to 2d, the first and second pair of exhaust ports 4a, 4b are opened and closed by the pair of exhaust valves 6a, 6b, respectively, so that the effective opening area for exhaust is a single one. Compared to the case of an exhaust port, the scavenging efficiency is increased and the filling efficiency can be further improved.

さらに、エンジンの高負荷高回転時には、第1
および第2可変機構11,12が共に作動して、
第5図仮想線で示すように、各気筒2a〜2dに
おける一対の排気弁6a,6bのうち第2排気弁
6bのバルブタイミングが第2可変機構12によ
つて遅れ側に、また一対の吸気弁5a,5bのう
ち高負荷用吸気弁5bのバルブタイミングが第1
可変機構11によつて遅れ側にずれるように可変
制御される。また、各気筒2a〜2dにおける高
負荷用吸気ポート3bは開閉弁7の開作動により
開放しており、高負荷低回転時と同様に該高負荷
用吸気ポート3bからも吸気の供給が行われる。
Furthermore, when the engine is under high load and at high speed, the first
and the second variable mechanisms 11 and 12 operate together,
As shown by the imaginary line in FIG. 5, the valve timing of the second exhaust valve 6b of the pair of exhaust valves 6a, 6b in each cylinder 2a to 2d is delayed by the second variable mechanism 12, and the valve timing of the second exhaust valve 6b is delayed by the second variable mechanism 12, and Among the valves 5a and 5b, the valve timing of the high-load intake valve 5b is the first.
The variable mechanism 11 performs variable control to shift to the delay side. In addition, the high-load intake ports 3b in each cylinder 2a to 2d are opened by the opening operation of the on-off valve 7, and intake air is supplied from the high-load intake ports 3b in the same way as during high load and low rotation. .

そのため、各気筒2a〜2dの吸気行程におい
て、上記低負荷用および高負荷用の両吸気ポート
3a,3bからの吸気の供給と併せて、上記高負
荷用吸気弁5bのバルブタイミングの遅れ側のず
れ分だけ、両吸気弁5a,5bの全体としての総
開弁期間が開口面積を変えることなく長くなり、
しかも吸気の慣性作用の大きい遅れ側のずれと相
俟つて、吸気の充填効率を著しく向上させること
ができ、よつて出力の要するエンジンの高負荷高
回転時の出力性能を大巾に向上させることができ
る。しかも、この場合、低負荷用吸気弁5aのバ
ルブタイミングを固定とし、充填効率の優れた高
負荷用吸気ポート3bにおける高負荷用吸気弁5
bのバルブタイミングを可変として遅れ側にずら
したので、上記充填効率の向上に有効である。
Therefore, in the intake stroke of each cylinder 2a to 2d, in addition to supplying intake air from both the low-load and high-load intake ports 3a and 3b, the valve timing of the high-load intake valve 5b is delayed. The total opening period of both intake valves 5a and 5b as a whole becomes longer by the amount of the deviation, without changing the opening area.
Moreover, in combination with the shift on the lag side where the inertial effect of the intake air is large, the filling efficiency of the intake air can be significantly improved, and the output performance at high load and high rotation times of the engine that requires output can be greatly improved. Can be done. Moreover, in this case, the valve timing of the low-load intake valve 5a is fixed, and the high-load intake valve 5 at the high-load intake port 3b with excellent filling efficiency
Since the valve timing of b is made variable and shifted to the delayed side, it is effective in improving the filling efficiency.

さらに、この場合、各気筒2a〜2dの排気行
程において、上記第2排気弁6bのバルブタイミ
ングの遅れ側のずれ分だけ、両排気弁6a,6b
の全体としての総開弁期間が長くなるので、上記
排気のための有効開口面積の増大と相俟つて掃気
効率を著しく向上させることができ、ひいては上
記吸気の充填効率をより一層向上でき、出力性能
のより大巾な向上を図ることができる。
Furthermore, in this case, in the exhaust stroke of each cylinder 2a to 2d, both exhaust valves 6a, 6b are adjusted by the amount of the delay side deviation of the valve timing of the second exhaust valve 6b.
Since the total valve opening period as a whole becomes longer, together with the increase in the effective opening area for exhaust, the scavenging efficiency can be significantly improved, and the filling efficiency of the intake air can be further improved, and the output It is possible to achieve even greater improvements in performance.

尚、その際、エンジンの高負荷高回転時には吸
気量が多く、また吸気の慣性速度が速いことか
ら、吸,排気弁5a,5b,6a,6bの総オー
バラツプ期間が長くなつても、また吸気弁5bの
開弁期間の圧縮行程へのずれ込みがあつても、残
留排気の持込み量を可及的に少なくできるととも
に吸気の吹き返しが生じ難いので、燃焼性に支障
を与えることはない。
In this case, when the engine is under high load and at high speed, the amount of intake air is large and the inertia speed of the intake air is high. Even if the opening period of the valve 5b lags into the compression stroke, the amount of residual exhaust gas brought in can be minimized and blowback of intake air is less likely to occur, so combustibility is not affected.

また、上記高負荷用吸気弁5bおよび第2排気
弁6bのバルブタイミングを第1および第2可変
機構11,12によつて、エンジンの低回転から
高回転に移行するに従つて漸次遅れ側にずらすよ
うに可変制御すれば、移行時にトルクシヨツクが
生じることなくスムーズに可変制御できるので有
効である。
In addition, the valve timing of the high-load intake valve 5b and the second exhaust valve 6b is gradually delayed as the engine speed shifts from low engine speed to high engine speed by the first and second variable mechanisms 11 and 12. It is effective to perform variable control so as to shift the position, since it allows smooth variable control without causing torque shock during transition.

そして、上記のように吸,排気弁5b,6bの
バルブタイミングを可変制御するにおいて、上記
各可変機構11,12は、既存の動弁機構(直接
駆動方式オーバヘツドカム機構)に、タペツト部
材13,13,13′,13′を嵌挿保持する回動
部材14,14′および該回動部材14,14′を
カムシヤフト9,10周りに回動させる操作装置
15,15′を設けるだけで済むので、構造が簡
単であり、容易にかつ安価に実施することができ
る。
In variably controlling the valve timing of the intake and exhaust valves 5b and 6b as described above, each of the variable mechanisms 11 and 12 is equipped with tappet members 13 and 13 in an existing valve operating mechanism (direct drive type overhead cam mechanism). , 13', 13', and the operating devices 15, 15' for rotating the rotating members 14, 14' around the camshafts 9, 10. The structure is simple and can be implemented easily and inexpensively.

しかも、上記可変機構11,12は、一つの回
動部材14,14′に2つのタペツト部材13,
13,13′,13′を嵌挿孔保持して、該回動部
材14,14′の回動により隣接する気筒(2a
と2b,2cと2d)における各高負荷用吸気弁
5b,5b(各第2排気弁6b,6b)のバルブ
タイミングを一体的に同時に可変制御するように
したので、構造を一層簡略化することができる。
Moreover, the variable mechanisms 11 and 12 have two tappet members 13 and 13 on one rotating member 14 and 14'.
13, 13', 13' are fitted into the holes and the adjacent cylinders (2a
and 2b, 2c, and 2d), the valve timings of the high-load intake valves 5b, 5b (each of the second exhaust valves 6b, 6b) are integrally and simultaneously variable controlled, thereby further simplifying the structure. Can be done.

さらに、上記可変機構11,12の可変制御
は、カムシヤフト9,10の特定角度位置に対す
る各カム面9b,10bと各タペツト部材13,
13′の受圧部13a,13′aとの接触位置がカ
ムシヤフト9,10周りに変化することによつて
行うので、吸,排気弁5b,6bのリフトロスや
すべり速度が少なく、よつて可変制御を応答性良
く信頼性良く安定して行うことができる。
Further, the variable control of the variable mechanisms 11 and 12 is performed by adjusting the cam surfaces 9b and 10b and the tappet members 13 and 13, respectively, for specific angular positions of the camshafts 9 and 10.
This is done by changing the contact position of the pressure receiving parts 13a, 13'a of the camshafts 9, 10 around the camshafts 9, 10, so there is less lift loss and sliding speed of the intake and exhaust valves 5b, 6b, and therefore variable control is possible. It can be performed stably with good responsiveness and reliability.

さらにまた、上記各タペツト部材13,13′
は回動部材14,14′の嵌挿孔14a,14′a
内に嵌挿保持されて上下に摺動するのでカム力の
伝達時、回動部材14,14′に僅かなスラスト
荷重が作用するのみで、その他の部分には何らの
力やモーメントが作用しないため、ガタ付きを生
じることなく、よつて直接駆動方式オーバヘツド
カム機構の持つ特徴と相俟つて上記信頼性,安定
性の一層の向上を図ると共に、耐久性に優れ、ま
た騒音の発生を可及的に制御することができる。
Furthermore, each of the above-mentioned tappet members 13, 13'
are the fitting holes 14a, 14'a of the rotating members 14, 14'.
Since it is fitted and held inside and slides up and down, when transmitting cam force, only a slight thrust load acts on the rotating members 14, 14', and no force or moment acts on other parts. Therefore, there is no rattling, and together with the features of the direct drive type overhead cam mechanism, we aim to further improve the reliability and stability mentioned above, have excellent durability, and minimize noise generation. can be controlled.

加えて、上記実施例では、各気筒2a〜2dに
おける一対の吸気ポート3a,3bおよび一対の
吸気弁5a,5bと、一対の排気ポート4a,4
bおよび一対の排気弁6a,6bとをそれぞれエ
ンジン本体1の吸気側と排気側とに分けて中心線
l方向に平行に配置し、かつ隣接する気筒(2a
と2b,2cと2d)での高負荷用吸気弁5b,
5b同士および第2排気弁6b,6b同士を隣接
させて配置して、この隣り合う気筒(2aと2
b,2cと2d)の間の同じ性質をもつ高負荷用
吸気弁5b,5b同士および第2排気弁6b,6
b同士を一つの可変機構11,12で兼用して可
変制御できるので、各カムシヤフト9,10の軸
受部30,30,30を、エンジン本体1の中心
線l方向中央部と両端部との3点に支障なく配置
することができ、有利である。
In addition, in the above embodiment, a pair of intake ports 3a, 3b and a pair of intake valves 5a, 5b in each cylinder 2a to 2d, and a pair of exhaust ports 4a, 4
b and a pair of exhaust valves 6a, 6b are respectively arranged on the intake side and exhaust side of the engine main body 1 and arranged parallel to the center line l direction, and the adjacent cylinders (2a
and 2b, 2c and 2d), high load intake valve 5b,
5b and the second exhaust valves 6b and 6b are arranged adjacent to each other, and the adjacent cylinders (2a and 2
b, 2c and 2d) with the same properties, and the second exhaust valves 6b, 6.
Since the variable mechanisms 11 and 12 can be used for variable control, the bearing parts 30, 30, 30 of each camshaft 9, 10 can be controlled between the central part and both ends in the direction of the center line l of the engine body 1. It is advantageous because it can be placed at any point without any problem.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記実施例では、低負荷用と高負荷
用の吸気ポートをもつデユアルインダクシヨン方
式の4バルブエンジンに適用した例を示したが、
本発明は、単なる4バルブ方式のエンジンに対し
ても同様に適用できるものである。この場合、可
変機構によるバルブタイミングの可変制御によ
り、エンジンの高負荷低回転時、一対の吸気ポー
トによる有効開口面積の増大により吸気の吹き返
しを惹起することなく充填効率が向上し、一方、
エンジンの高負荷高回転時、上記有効開口面積の
増大に加えて両吸気弁の総開弁期間の増大により
充填効率が一層向上することが可能である。ま
た、第6図に示すように、1つの気筒2a〜2d
に対して単一の吸気ポート3と単一の排気ポート
4とを有する通常の例えば4気筒エンジンについ
ても適用でき、この場合、相隣る気筒間(2aと
2b,2cと2d)において吸気ポート3,3
(又は排気ポート4,4)を隣接配置し、動弁系
のカムシヤフト中心Sにおいてその吸気弁同士
(又は排気弁同士)間に跨つて上記の如き可変機
構11,12を配設するようにすればよい。その
他、各種方式の単気筒あるいは多気筒エンジンに
対しても適用可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, an example was shown in which the application was applied to a dual induction type 4-valve engine that has intake ports for low load and high load.
The present invention can be similarly applied to a simple four-valve type engine. In this case, by variable control of the valve timing by the variable mechanism, when the engine is under high load and at low speed, the effective opening area of the pair of intake ports is increased, thereby improving the filling efficiency without causing intake air blowback.
When the engine is under high load and at high speed, the filling efficiency can be further improved by increasing the total open period of both intake valves in addition to increasing the effective opening area. Moreover, as shown in FIG. 6, one cylinder 2a to 2d
It can also be applied to a normal four-cylinder engine, for example, which has a single intake port 3 and a single exhaust port 4. In this case, the intake port between adjacent cylinders (2a and 2b, 2c and 2d) 3,3
(or exhaust ports 4, 4) are arranged adjacent to each other, and variable mechanisms 11, 12 as described above are arranged at the center S of the camshaft of the valve train, spanning between the intake valves (or between the exhaust valves). Bye. In addition, it is also applicable to various types of single-cylinder or multi-cylinder engines.

また、上記実施例では、吸,排気弁5b,6b
のバルブタイミングを可変制御するエンジンの特
定運転時を、エンジンの高負荷高回転時とした
が、その他の運転時においても必要に応じて可変
機構11,12により可変制御してもよい。要
は、本発明は、エンジンの運転状態に応じて吸,
排気弁のバルブタイミングを可変制御する場合に
適用できるものである。
Further, in the above embodiment, the intake and exhaust valves 5b, 6b
Although the specific engine operation during which the valve timing of the engine is variably controlled is when the engine is under high load and at high rotation speed, variable control may also be performed by the variable mechanisms 11 and 12 during other operations as necessary. In short, the present invention provides suction and
This can be applied to variably control the valve timing of an exhaust valve.

さらに、吸,排気弁のバルブタイミングを可変
制御する可変機構としては、上記如き可変機構1
1,12の他に種々の変形例が採用可能である。
例えば、第7図および第8図に示す可変機構33
では、回動部材34は、中央の円筒部34aにカ
ムシヤフト35が貫通する貫通孔34bを有する
とともに、該円筒部34aの両側の円弧部34
c,34cにそれぞれ、一端でカムシヤフト35
と当接し他端でバルブステム36と当接するタペ
ツト部材37を摺動自在に嵌挿保持する嵌挿孔3
4d,34dを有し、その下部の円弧状摺接面3
4eにてエンジン本体1′に形成された上記カム
シヤフト35の中心軸を中心とする円弧状のガイ
ド面1′aに回動自在に支承されてカムシヤフト
35周りを回動可能に設けられており、さらに該
回動部材34の円筒部34a上部外周面には扇形
ギヤ部34fが形成されている。一方、操作装置
38は、上記扇形ギヤ部34fに噛合するギヤ3
9と、該ギヤ39を回転軸40を介して回転させ
るモータ(図示せず)とからなり、よつてモータ
(図示せず)によりギヤ39を回転させることに
より回動部材34をガイド面1′aに摺接させな
がらカムシヤフト35周りを回動させ、そのこと
により該回動部材34に保持された各タペツト部
材37,37の一端とカムシヤフト35の特定角
度位置に対する各カム面35a,35aとの接触
位置を変化させて、隣接する気筒のバルブタイミ
ングを一体的に可変制御するようにしたものであ
る。
Furthermore, as a variable mechanism that variably controls the valve timing of the intake and exhaust valves, the above-mentioned variable mechanism 1
Various modifications other than No. 1 and No. 12 can be adopted.
For example, the variable mechanism 33 shown in FIGS. 7 and 8
Here, the rotating member 34 has a through hole 34b through which the camshaft 35 passes through the central cylindrical portion 34a, and arcuate portions 34 on both sides of the cylindrical portion 34a.
camshaft 35 at one end of each of c and 34c.
and a fitting hole 3 into which a tapepet member 37 which contacts the valve stem 36 at the other end is slidably inserted and held.
4d and 34d, and the lower arcuate sliding contact surface 3
4e, it is rotatably supported on an arcuate guide surface 1'a centered on the central axis of the camshaft 35 formed in the engine body 1', and is rotatably provided around the camshaft 35; Further, a fan-shaped gear portion 34f is formed on the outer peripheral surface of the upper portion of the cylindrical portion 34a of the rotating member 34. On the other hand, the operating device 38 is connected to the gear 3 that meshes with the fan-shaped gear portion 34f.
9 and a motor (not shown) that rotates the gear 39 via a rotating shaft 40. Therefore, by rotating the gear 39 with the motor (not shown), the rotating member 34 is moved to the guide surface 1'. The camshaft 35 is rotated around the camshaft 35 while being in sliding contact with the camshaft 35, whereby one end of each tapepet member 37, 37 held by the rotation member 34 and each cam surface 35a, 35a relative to a specific angular position of the camshaft 35 are rotated. By changing the contact position, the valve timing of adjacent cylinders can be integrally and variably controlled.

さらにまた、上記実施例では、隣接気筒間の2
つの吸気弁又は2つの排気弁を同時に可変制御す
るようにしたが、3つ以上の吸気弁又は排気弁を
同時に可変制御するように構成してもよい。
Furthermore, in the above embodiment, two
Although one intake valve or two exhaust valves are variably controlled at the same time, three or more intake valves or exhaust valves may be variably controlled at the same time.

以上説明したように、本発明によれば、複数気
筒のバルブタイミングの可変制御を、単一の機構
により簡単な構造でもつて応答性,信頼性良く確
実に行うことができ、また耐久性に優れ、騒音の
発生が少ないなどの効果を有し、よつて多気筒エ
ンジンのバルブタイミング制御の容易実施化に著
効を発揮するものである。
As explained above, according to the present invention, variable valve timing control of multiple cylinders can be reliably performed with a single mechanism with a simple structure, responsiveness, and reliability. This has the effect of generating less noise, and is therefore extremely effective in facilitating the implementation of valve timing control for multi-cylinder engines.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を例示し、第1図はデユ
アルインダクシヨン方式の4気筒エンジンに適用
した場合の破断平面図、第2図は第1図の縦断側
面図、第3図は可変機構部分の拡大斜視図、第4
図は可変機構のタペツト部材部分の変形例を示す
要部縦断側面図、第5図は吸,排気弁のバルブタ
イミングを示す説明図、第6図は通常の4気筒エ
ンジンに適用した場合の概略模式図、第7図は可
変機構の変形例を示す縦断側面図、第8図は第7
図の回動部材の斜視図である。 2a〜2d……第1〜第4気筒、3a〜3b…
…吸気ポート、4a,4b……排気ポート、5
a,5b……吸気弁、6a,6b……排気弁、8
a,8b……動弁機構、9,10……カムシヤフ
ト、9a,9b,10a,10b……カム面、1
1……第1可変機構、12……第2可変機構、1
3,13′……タペツト部材、13a,13′a…
…受圧部、13b,13′b……押圧部、14,
14′……回動部材、14a,14′a……嵌挿
孔、15,15′……操作装置、A……油圧タペ
ツト装置、33……可変装置、34……回動部
材、34b……嵌挿孔、35……カムシヤフト、
35a……カム面、36……バルブステム、37
……タペツト部材、38……操作装置。
The drawings illustrate an embodiment of the present invention, in which Fig. 1 is a cutaway plan view when applied to a dual induction four-cylinder engine, Fig. 2 is a vertical cross-sectional side view of Fig. 1, and Fig. 3 is a variable mechanism. Enlarged perspective view of part, 4th
The figure is a vertical sectional side view of the main part showing a modification of the tappet member portion of the variable mechanism, Figure 5 is an explanatory diagram showing the valve timing of the intake and exhaust valves, and Figure 6 is a schematic diagram when applied to a normal 4-cylinder engine. A schematic diagram, FIG. 7 is a vertical cross-sectional side view showing a modification of the variable mechanism, and FIG.
FIG. 3 is a perspective view of the rotating member shown in the figure. 2a to 2d...1st to 4th cylinders, 3a to 3b...
...Intake port, 4a, 4b...Exhaust port, 5
a, 5b...Intake valve, 6a, 6b...Exhaust valve, 8
a, 8b... Valve mechanism, 9, 10... Camshaft, 9a, 9b, 10a, 10b... Cam surface, 1
1...First variable mechanism, 12...Second variable mechanism, 1
3, 13'... Tappet member, 13a, 13'a...
...Pressure receiving part, 13b, 13'b...Pressing part, 14,
14'... Rotating member, 14a, 14'a... Fitting hole, 15, 15'... Operating device, A... Hydraulic tappet device, 33... Variable device, 34... Rotating member, 34b... ...Insertion hole, 35...Camshaft,
35a...Cam surface, 36...Valve stem, 37
... Tappet member, 38 ... Operating device.

Claims (1)

【特許請求の範囲】[Claims] 1 隣接する気筒のバルブとそれに対応するカム
シヤフトのカム面との間の動力伝達系路中にそれ
ぞれ介装され、上記カム面から力を受ける受圧部
およびカム面から受けた力をバルブステム側に伝
達する押圧部を備えた複数のタペツトと、該各タ
ペツトが摺動自在に嵌挿される複数の嵌挿孔を有
し、かつ上記カムシヤフト周りを回動可動な回動
部材と、該回動部材をエンジンの運転状態に応じ
て上記カムシヤフトの特定角度位置に対する各カ
ム面と各タペツトの受圧部との接触位置が変化す
るように回動させる操作装置とを備えてなること
を特徴とするエンジンのバルブタイミング制御装
置。
1 A pressure receiving part is installed in the power transmission path between the valve of an adjacent cylinder and the cam surface of the corresponding camshaft, and receives the force from the cam surface, and the pressure receiving part receives the force from the cam surface and transfers it to the valve stem side. A plurality of tappets each having a pressure transmitting portion, a plurality of fitting holes into which each of the tappets is slidably fitted, and a rotating member rotatably movable around the camshaft; and the rotating member. an operating device for rotating the camshaft so that the contact position between each cam surface and the pressure receiving part of each tappet changes with respect to a specific angular position of the camshaft according to the operating state of the engine. Valve timing control device.
JP17557982A 1982-10-05 1982-10-05 Valve timing control device for engine Granted JPS5965510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17557982A JPS5965510A (en) 1982-10-05 1982-10-05 Valve timing control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17557982A JPS5965510A (en) 1982-10-05 1982-10-05 Valve timing control device for engine

Publications (2)

Publication Number Publication Date
JPS5965510A JPS5965510A (en) 1984-04-13
JPS633126B2 true JPS633126B2 (en) 1988-01-22

Family

ID=15998546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17557982A Granted JPS5965510A (en) 1982-10-05 1982-10-05 Valve timing control device for engine

Country Status (1)

Country Link
JP (1) JPS5965510A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167103U (en) * 1984-04-17 1985-11-06 トヨタ自動車株式会社 Camshaft support structure for multi-valve internal combustion engine

Also Published As

Publication number Publication date
JPS5965510A (en) 1984-04-13

Similar Documents

Publication Publication Date Title
JPH0131003B2 (en)
US4727830A (en) Valve operating mechanism for internal combustion engine
JPH036801Y2 (en)
CA1074197A (en) Valve timing mechanisms
JPS6119911A (en) Valve operation suspending device for internal-combustion engine
JP3198772B2 (en) Cam switching mechanism in a valve train of an internal combustion engine
JPS633126B2 (en)
JPS6357805A (en) Valve mechanism for internal combustion engine
JPH0355644B2 (en)
JPS633125B2 (en)
JPH0355643B2 (en)
JPH0318005B2 (en)
JPH0454043B2 (en)
JPH0125881B2 (en)
JPH0321727B2 (en)
JP4157649B2 (en) Variable valve operating device for internal combustion engine
JPS59188007A (en) Valve timing control device for engine
JPH0220406Y2 (en)
JPH0359244B2 (en)
JPH0232447B2 (en)
JPS59188008A (en) Valve timing control device for engine
JPH0158324B2 (en)
JPH0472967B2 (en)
JPH0450457Y2 (en)
JPH0160650B2 (en)