JPH0355644B2 - - Google Patents

Info

Publication number
JPH0355644B2
JPH0355644B2 JP15856482A JP15856482A JPH0355644B2 JP H0355644 B2 JPH0355644 B2 JP H0355644B2 JP 15856482 A JP15856482 A JP 15856482A JP 15856482 A JP15856482 A JP 15856482A JP H0355644 B2 JPH0355644 B2 JP H0355644B2
Authority
JP
Japan
Prior art keywords
intake
valve
engine
exhaust
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15856482A
Other languages
Japanese (ja)
Other versions
JPS5946308A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57158564A priority Critical patent/JPS5946308A/en
Publication of JPS5946308A publication Critical patent/JPS5946308A/en
Publication of JPH0355644B2 publication Critical patent/JPH0355644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear

Description

【発明の詳細な説明】 本発明は、エンジンのバルブタイミング制御装
置に関し、特に1つの気筒に対して一対の吸気ポ
ートを備え、該一対の吸気ポートを開弁期間の異
なる一対の吸気弁によりそれぞれ所定のタイミン
グで開閉するようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve timing control device for an engine, and particularly to a valve timing control device for an engine, which is provided with a pair of intake ports for one cylinder, and which is controlled by a pair of intake valves having different opening periods. It relates to something that opens and closes at a predetermined timing.

従来より、例えば特開昭56−44404号公報等に
開示されるように、エンジンの一つの気筒に対し
て一対の吸気ポートを設けるとともに、該各吸気
ポートをそれぞれ所定のタイミングで開閉する一
対の吸気弁を設けたものは知られている。このも
のは、通常の、一つの気筒に対して単一の吸気ポ
ートと該吸気ポートを開閉する単一の吸気弁とを
備えたものと較べて、吸気ポートの有効開口面積
が増大できて吸気の充填効率を高めることができ
ることから、エンジン出力の向上を図る上で好ま
しいものである。
Conventionally, as disclosed in, for example, Japanese Unexamined Patent Publication No. 56-44404, a pair of intake ports are provided for one cylinder of an engine, and a pair of intake ports are provided that open and close each intake port at predetermined timings. Those equipped with an intake valve are known. Compared to the conventional one, which has a single intake port for one cylinder and a single intake valve that opens and closes the intake port, the effective opening area of the intake port can be increased, and the intake air can be This is preferable in terms of improving engine output because it can increase the charging efficiency of the engine.

そして、このような一対の吸気ポートと一対の
吸気弁とを備えたエンジンにおいて、高負荷時吸
気の充填効率の向上を図りながらエンジンの低負
荷時の燃焼性を損なわないようにするため、上記
一対の吸気弁の開弁期間を異ならせ、そのうち開
弁期間の長い吸気弁を排気弁とのオーバラツプ期
間が長くなるように設定し、かつ両吸気弁を吸気
行程終期にほぼ同時に閉じるようにすることによ
り、吸気量が少なく、吸気の慣性速度の遅いエン
ジンの低回転高負荷時、吸気の吹き返しを防止し
て充填効率の向上を図り、上記一対の吸気弁の排
気弁との総オーバラツプ期間を可及的に短くして
残留排気量の比率を小さく抑え良好な燃焼性を確
保することが考えられる。
In an engine equipped with such a pair of intake ports and a pair of intake valves, in order to improve the filling efficiency of intake air at high loads while not impairing the combustibility at low loads of the engine, the above-mentioned measures are taken. The opening periods of a pair of intake valves are made to differ, and the intake valve with the longer opening period is set to have a longer overlap period with the exhaust valve, and both intake valves are closed almost simultaneously at the end of the intake stroke. By doing so, when the intake air amount is small and the intake air inertia speed is slow, the engine is operated at low rotation speeds and high loads, preventing intake air from blowing back, improving charging efficiency, and reducing the total overlap period between the above-mentioned pair of intake valves and the exhaust valve. It is conceivable to make the length as short as possible to keep the ratio of residual exhaust gas to a small value and to ensure good combustibility.

しかるに、このものでは、エンジンの低負荷時
における燃焼性の確保が図れると共に低回転高負
荷時の出力向上が図れる反面、エンジンの高負荷
高回転時、つまり吸気量が多く、また吸気の慣性
速度が速いことにより残留排気量の比率が小さい
とともに吸気の吹き返しが生じ難い高負荷高回転
時には吸気の充填効率の向上が十分に図れないと
いう嫌いがある。
However, while this method can ensure combustibility when the engine is under low load and improve output when the engine is under high load and under high load, on the other hand, when the engine is under high load and high speed, the amount of intake air is large and the inertia speed of the intake air is low. Due to the high speed of the engine, there is a disadvantage that the intake air filling efficiency cannot be sufficiently improved at high loads and high rotations when the ratio of residual displacement is small and blowback of intake air is difficult to occur.

そこで、本発明は斯かる点に鑑みてなされたも
ので、上記の如き一対の吸気ポートと一対の吸気
弁とを備えたエンジンにおいて、エンジンの低負
荷および高負荷低回転時における上記一対の吸気
弁の排気弁との総オーバラツプ期間を可及的に短
くしながら、エンジンの高負荷高回転時における
上記一対の吸気弁の総開弁期間を効果的に長くす
ることにより、エンジンの低負荷時の燃焼性を損
うことなく、エンジンの高負荷低回転時から高負
荷高回転時の充填効率の大巾な向上により出力性
能の向上を十分に図り得るようにすることを目的
とするものである。
Therefore, the present invention has been made in view of the above-mentioned problems, and in an engine equipped with a pair of intake ports and a pair of intake valves as described above, the above-mentioned pair of intake ports are operated at low load and high load and low rotation of the engine. By effectively lengthening the total opening period of the pair of intake valves when the engine is under high load and at high speed, while minimizing the total overlap period between the valves and the exhaust valve, The purpose of this is to make it possible to sufficiently improve output performance by significantly improving charging efficiency from high load and low rotation to high load and high rotation of the engine, without impairing the combustibility of the engine. be.

この目的を達成するため、本発明の構成は、一
対の吸気ポートをそれぞれ開弁期間の異なる一対
の吸気弁で開閉するとともに、該一対の吸気弁の
うち開弁期間の長い吸気弁を排気弁とのオーバラ
ツプ期間が長くなるように設定したエンジンにお
いて、上記一対の吸気弁のうち開弁期間の短い吸
気弁を開閉制御する動弁系に、エンジンの高負荷
高回転時、該吸気弁のバルブタイミングを遅れ側
にずらすように制御する可変機構を設けたもので
ある。そのことにより、上記一対の吸気ポートに
より有効開口面積を増大させながら、エンジンの
低負荷および高負荷低回転時には開弁期間の長い
吸気弁によつて支配されて排気弁との総オーバラ
ツプ期間を短くする一方、エンジンの高負荷高回
転時には開弁期間の短い吸気弁によつて支配され
て総開弁期間を長くするようにしたものである。
In order to achieve this object, the configuration of the present invention is such that a pair of intake ports are opened and closed by a pair of intake valves having different opening periods, and the intake valve with a longer opening period of the pair of intake valves is replaced with an exhaust valve. In an engine that is set to have a long overlap period with the intake valve, the valve train that controls the opening and closing of the intake valve with the shortest opening period out of the pair of intake valves, when the engine is under high load and high speed, the valve of the intake valve is It is equipped with a variable mechanism that controls the timing to be shifted to the delayed side. As a result, while increasing the effective opening area of the pair of intake ports, when the engine is under low load or high load and low speed, the intake valve is dominated by the long opening period, and the total overlap period with the exhaust valve is shortened. On the other hand, when the engine is under high load and speed, the intake valve is dominated by the intake valve, which has a short opening period, and the total valve opening period is lengthened.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図および第2図は一つの気筒に対し一対の
吸気弁と一対の排気弁とを備えたいわゆる4バル
ブ方式の4気筒エンジンに本発明を適用した実施
例を示す。同図において、1はエンジン本体、2
a〜2dはエンジン本体1の中心線lに沿つて直
列状に形成された第1〜第4気筒であつて、各気
筒2a〜2dには各々、第1および第2の一対の
吸気ポート3a,3bと第1および第2の一対の
排気ポート4a,4bとが設けられている。各気
筒2a〜2dにおける第1および第2吸気ポート
3a,3bはエンジン本体1の一方側(吸気側)
から気筒2a〜2dのエンジン本体中心線l方向
(気筒列方向)と略平行な方向に並列して開口し
ているとともに、各気筒2a〜2dにおける第1
および第2排気ポート4a,4bはエンジン本体
1の他方側(排気側)から同じく気筒2a〜2d
のエンジン本体中心線l方向と略平行に並列して
開口しており、両吸気ポート3a,3bと両排気
ポート4a,4bとはエンジン本体中心線lを挟
んで対向するように配置されている。さらに、第
1気筒2aと第2気筒2bとの第2吸気ポート3
b,3b同士および第2排気ポート4b,4b同
士、並びに第3気筒2cと第4気筒2dとの第2
吸気ポート3b,3b同士および第2排気ポート
4b,4b同士はそれぞれ互いに背中合せ状態に
隣接して配置されている。
FIGS. 1 and 2 show an embodiment in which the present invention is applied to a so-called four-valve four-cylinder engine, which has a pair of intake valves and a pair of exhaust valves for one cylinder. In the figure, 1 is the engine body, 2
A to 2d are first to fourth cylinders formed in series along the center line l of the engine body 1, and each cylinder 2a to 2d has a first and second pair of intake ports 3a, respectively. , 3b and a pair of first and second exhaust ports 4a, 4b. The first and second intake ports 3a and 3b in each cylinder 2a to 2d are on one side (intake side) of the engine body 1.
The first opening in each cylinder 2a to 2d is opened in parallel in a direction substantially parallel to the engine body center line l direction (cylinder row direction) of the cylinders 2a to 2d.
And the second exhaust ports 4a, 4b are connected to the cylinders 2a to 2d from the other side (exhaust side) of the engine body 1.
The intake ports 3a, 3b and the exhaust ports 4a, 4b are arranged to face each other across the engine body center line l. . Furthermore, the second intake port 3 of the first cylinder 2a and the second cylinder 2b
b and 3b, between the second exhaust ports 4b and 4b, and between the third cylinder 2c and the fourth cylinder 2d.
The intake ports 3b, 3b and the second exhaust ports 4b, 4b are arranged adjacent to each other, back to back.

さらに、上記各気筒2a〜2dにおける第1お
よび第2吸気ポート3a,3bには該各吸気ポー
ト3a,3bをそれぞれ所定のタイミングで開閉
する第1および第2の一対の吸気弁5a,5bが
エンジン本体1の吸気側に並んで配設されている
とともに、上記各気筒2a〜2dにおける第1お
よび第2排気ポート4a,4bには該各排気ポー
ト4a,4bを所定のタイミングで開閉する第1
および第2の一対の排気弁6a,6bがエンジン
本体1の排気側に並んで配設されており、よつて
エンジン本体1の吸気側においては第1気筒2a
と第2気筒2bとの第2吸気弁5b,5b同士お
よび第3気筒2cと第4気筒2dとの第2吸気弁
5b,5b同士がそれぞれ互いに隣接し、またエ
ンジン本体1の排気側においては第1気筒2aと
第2気筒2bとの第2排気弁6b,6b同士およ
び第3気筒2cと第4気筒2dとの第2排気弁6
b,6b同士がそれぞれ互いに隣接している。
Further, the first and second intake ports 3a and 3b in each of the cylinders 2a to 2d are provided with a pair of first and second intake valves 5a and 5b that open and close the intake ports 3a and 3b at predetermined timings, respectively. They are arranged side by side on the intake side of the engine body 1, and the first and second exhaust ports 4a, 4b in each of the cylinders 2a to 2d have ports that open and close the exhaust ports 4a, 4b at predetermined timings. 1
and a second pair of exhaust valves 6a, 6b are arranged side by side on the exhaust side of the engine body 1, so that on the intake side of the engine body 1, the first cylinder 2a
The second intake valves 5b, 5b of the second cylinder 2b and the second intake valves 5b, 5b of the third cylinder 2c and the fourth cylinder 2d are adjacent to each other, and on the exhaust side of the engine body 1, Second exhaust valves 6b, 6b of the first cylinder 2a and second cylinder 2b, and second exhaust valves 6 of the third cylinder 2c and fourth cylinder 2d
b and 6b are adjacent to each other.

一方、7はエンジン本体1の吸気側に配設さ
れ、各気筒2a〜2dにおける第1および第2吸
気弁5a,5bを開閉制御する第1動弁機構であ
つて、該第1動弁機構7は、エンジン本体1の吸
気側にエンジン本体中心線lと平行に配設されエ
ンジンのクランクシヤフト(図示せず)によつて
回転駆動される第1カムシヤフト8を有し、該第
1カムシヤフト8には各気筒2a〜2dの第1、
第2吸気弁5a,5bに対応するカム面8a,8
bが形成されている。該カム面8a,8bは、第
3図に示すように第1吸気弁5aに対応するカム
面8aが第2吸気弁5に対応するカム面8bに対
して、カム頂部からカムシヤフト8の回転方向X
のリーデイング側部分において大きくなるように
形成されており、よつて第1カムシヤフト8の回
転により各気筒2a〜2dにおいて第1吸気弁5
aを開いたのち第2吸気弁5bを開き、そして第
1、第2吸気弁5a,5bをほぼ同時に閉じるよ
うに開閉制御して、第1吸気弁5aの開弁期間が
長く、第2吸気弁5bの開弁期間が短くなるよう
両者の開弁期間を異ならせるとともに、開弁期間
の長い第1吸気弁5aを排気弁6a,6bとのオ
ーバラツプ期間が長くなるように構成されてい
る。また、9はエンジン本体1の排気側に配設さ
れ、各気筒2a〜2dにおける第1および第2排
気弁6a,6bを開閉制御する第2動弁機構であ
つて、該第2動弁機構9は、エンジン本体1の排
気側にエンジン本体中心線lと平行に配設され同
じくエンジンのクランクシヤフト(図示せず)に
より回転駆動される第2カムシヤフト10を有
し、該第2カムシヤフト10には各気筒2a〜2
dの第1、第2排気弁6a,6bに対応するカム
面10a,10bが同形状に形成されており、該
第2カムシヤフト10の回転により各気筒2a〜
2dにおいて第1、第2排気弁6a,6bを同じ
開弁期間でもつて同時に開閉制御するように構成
されている。
On the other hand, 7 is a first valve mechanism that is disposed on the intake side of the engine body 1 and controls the opening and closing of the first and second intake valves 5a and 5b in each cylinder 2a to 2d. 7 has a first camshaft 8 disposed on the intake side of the engine body 1 in parallel with the engine body center line l and rotationally driven by a crankshaft (not shown) of the engine; The first of each cylinder 2a to 2d,
Cam surfaces 8a, 8 corresponding to second intake valves 5a, 5b
b is formed. As shown in FIG. 3, the cam surfaces 8a and 8b are arranged so that the cam surface 8a corresponding to the first intake valve 5a is oriented in the rotational direction of the camshaft 8 from the top of the cam with respect to the cam surface 8b corresponding to the second intake valve 5. X
The rotation of the first camshaft 8 causes the first intake valve 5 in each cylinder 2a to 2d to be larger.
After the first intake valve 5a is opened, the second intake valve 5b is opened, and the first and second intake valves 5a and 5b are controlled to close almost simultaneously. The opening periods of the two valves are made different so that the opening period of the valve 5b is shortened, and the first intake valve 5a, which has a long opening period, is configured to have a long overlapping period with the exhaust valves 6a and 6b. Reference numeral 9 denotes a second valve mechanism that is disposed on the exhaust side of the engine body 1 and controls opening and closing of the first and second exhaust valves 6a and 6b in each of the cylinders 2a to 2d. 9 has a second camshaft 10 disposed on the exhaust side of the engine body 1 parallel to the engine body center line l and rotationally driven by a crankshaft (not shown) of the engine. is each cylinder 2a~2
Cam surfaces 10a and 10b corresponding to the first and second exhaust valves 6a and 6b of d are formed in the same shape, and the rotation of the second camshaft 10 causes each cylinder 2a to
2d, the first and second exhaust valves 6a and 6b are controlled to open and close simultaneously with the same valve opening period.

さらに、上記第1動弁機構7には、第1気筒2
aと第2気筒2bとの隣接する両第2吸気弁5
b,5bおよび第3気筒2cと第4気筒2dとの
隣接する両第2吸気弁5b,5bのバルブタイミ
ングをそれぞれ可変制御する2つの第1可変機構
11,11が設けられており、また、上記第2動
弁機構9には、第1気筒2aと第2気筒2bとの
隣接する両第2排気弁6b,6bおよび第3気筒
2cと第4気筒2dとの隣接する両第2排気弁6
b,6bのバルブタイミングをそれぞれ可変制御
する2つの第2可変機構12,12が設けられて
いる。
Further, the first valve mechanism 7 includes a first cylinder 2.
Adjacent second intake valves 5 of a and second cylinder 2b
Two first variable mechanisms 11, 11 are provided that respectively variably control the valve timings of the second intake valves 5b, 5b and the adjacent second intake valves 5b, 5b of the third cylinder 2c and fourth cylinder 2d, and The second valve mechanism 9 includes two adjacent second exhaust valves 6b, 6b of the first cylinder 2a and the second cylinder 2b, and both adjacent second exhaust valves of the third cylinder 2c and the fourth cylinder 2d. 6
Two second variable mechanisms 12, 12 are provided to variably control the valve timings of valves b and 6b, respectively.

上記第1可変機構11は、第4図に拡大詳示す
るように、一端(上端)で第1カムシヤフト8の
カム面8b,8bと当接し、他端(下端)で第2
吸気弁5b,5bのバルブステムと当接する2つ
の円筒状のタペツト部材13,13と、該タペツ
ト部材13,13が上下方向に摺動自在に嵌挿保
持される2つの嵌挿孔14a,14aを有すると
ともに下面に上記エンジン本体1に形成した円弧
状のガイド面1aに摺接案内される円弧状の摺接
面14bを有し、上記第1カムシヤフト8に対し
て回動自在に支承されて上記ガイド面1aの案内
補助のもとに第1カムシヤフト8周りを回動する
バケツト状の回動部材14と、該回動部材14を
エンジンの運転状態に応じて上記第1カムシヤフ
ト8の特定角度位置に対するカム面8b,8bと
タペツト部材13,13の一端との接触位置が変
化するように回動させる操作装置15とを備えて
なり、上記回動部材14は第1カムシヤフト8に
支承される部分で上下に分割されてボルト16,
16で一体に結合されている。さらに、上記操作
装置15は、エンジン本体中心線lに平行に配設
され2つの第1可変機構11,11に跨つて両回
動部材14,14の上端部を連結して該回動部材
14,14を回動させる揺動軸17と、エンジン
本体1の中心線l方向中央部において該中心線l
と直交して配設され、上記揺動軸17に係合して
該揺動軸17を揺動させる往復動軸18と、回転
運動を往復動運動に変換して該往復動軸18を往
復動させる駆動モータ19とを備え、該駆動モー
タ19には、エンジンの回転数を検出する回転数
センサ20およびエンジンの負荷状態を検出する
負荷センサ21の各出力が入力されており、エン
ジンの高負荷高回転時、駆動モータ19の作動に
より往復動軸18を第2図右方向に移動させて揺
動軸17を第1カムシヤフト8の回転方向Xと同
方向(第2図で時計方向)に回動させることによ
り、回動部材14,14を第1カムシヤフト8を
中心にその回動方向Xと同方向に回動させるもの
である。以上により、エンジンの高負荷高回転時
には操作装置15により回動部材14,14が第
1カムシヤフト8の回転方向Xと同方向に回動す
ることにより、第1カムシヤフト8の特定角度位
置に対するカム面8b,8bとタペツト部材1
3,13の一端との接触位置が第1カムシヤフト
8の回転方向Xに対して遅れ側に変化して、各第
2吸気弁5b,5b(すなわち開弁期間の短い吸
気弁)のバルブタイミングを遅れ側にずらすよう
制御するように構成されている。
As shown in enlarged detail in FIG. 4, the first variable mechanism 11 is in contact with the cam surfaces 8b, 8b of the first camshaft 8 at one end (upper end) and the second
Two cylindrical tappet members 13, 13 that come into contact with the valve stems of the intake valves 5b, 5b, and two fitting holes 14a, 14a into which the tappet members 13, 13 are fitted and held so as to be slidable in the vertical direction. It also has an arcuate sliding surface 14b on its lower surface that is slidably guided by the arcuate guide surface 1a formed on the engine body 1, and is rotatably supported with respect to the first camshaft 8. A bucket-shaped rotating member 14 that rotates around the first camshaft 8 with the guidance assistance of the guide surface 1a, and a bucket-shaped rotating member 14 that rotates the rotating member 14 at a specific angle of the first camshaft 8 according to the operating state of the engine. The rotating member 14 is supported by the first camshaft 8. Divided into upper and lower parts, bolt 16,
16 and are integrally connected. Further, the operating device 15 is disposed parallel to the center line l of the engine body, bridges the two first variable mechanisms 11, 11, and connects the upper ends of both rotating members 14, 14. , 14, and the center line l of the engine body 1 in the direction of the center line l.
a reciprocating shaft 18 disposed perpendicularly to the reciprocating shaft 18 that engages with the reciprocating shaft 17 to swing the reciprocating shaft 17; The outputs of a rotation speed sensor 20 that detects the rotation speed of the engine and a load sensor 21 that detects the load state of the engine are input to the drive motor 19. When the load rotates at high speed, the reciprocating shaft 18 is moved to the right in FIG. 2 by the operation of the drive motor 19, and the swing shaft 17 is moved in the same direction as the rotational direction X of the first camshaft 8 (clockwise in FIG. 2). By rotating, the rotating members 14, 14 are rotated in the same direction as the rotating direction X around the first camshaft 8. As described above, when the engine is under high load and rotates at high speed, the operating device 15 causes the rotating members 14, 14 to rotate in the same direction as the rotational direction 8b, 8b and tappet member 1
The contact position with one end of the first camshaft 8 changes to the delayed side with respect to the rotational direction It is configured to control to shift to the delay side.

また、上記第2可変機構12は、上記第1可変
機構11と同じ構成部材(第1可変機構11の構
成部材の符号に「′(ダツシユ)」を付けて表わ
す)によつてなるもので、一端で第2カムシヤフ
ト10のカム面10b,10bと当接し、他端で
第2排気弁6b,6bのバルブステムと当接する
2つのタペツト部材13′,13′と、該タペツト
部材13′,13′を嵌挿孔14′a,14′aに嵌
挿保持せしめて第2カムシヤフト10周りを回動
する回動部材14′と該回動部材14′をエンジン
の運転状態に応じて回動させる操作装置15′と
を備えてなる。該操作装置15′は、2つの第2
可変機構12,12の両回動部材14′,14′を
その上端部で連結する揺動軸17′と、該揺動軸
17′を揺動させる第1可変機構11と共用の往
復動軸18と、該往復動軸18を往復動させる同
じく第1可変機構11と共用の駆動モータ19と
を備えており、よつてエンジンの高負荷高回転
時、駆動モータ19の作動により往復動軸18を
介して揺動軸17′を第2カムシヤフト10の回
転方向Xと同方向に回動させることにより、両回
動部材14′,14′を第2カムシヤフト10を中
心としてその回動方向Xと同方向に回動させて、
第2カムシヤフト10の特定角度位置に対するカ
ム面10b,10bとタペツト部材13′,1
3′の一端との接触位置を第2カムシヤフト10
の回転方向Xに対して遅れ側に変化させ、各第2
排気弁6b,6bのバルブタイミングを遅れ側に
ずらすよう制御するものである。
Further, the second variable mechanism 12 is made of the same constituent members as the first variable mechanism 11 (the constituent members of the first variable mechanism 11 are represented by adding a '' (dart) to the reference numerals), Two tappet members 13', 13' which come into contact with the cam surfaces 10b, 10b of the second camshaft 10 at one end and come into contact with the valve stems of the second exhaust valves 6b, 6b at the other end; A rotary member 14' that is inserted and held in the insertion holes 14'a and 14'a and rotates around the second camshaft 10, and the rotary member 14' is rotated according to the operating state of the engine. and an operating device 15'. The operating device 15' has two second
A swing shaft 17' that connects both rotating members 14', 14' of the variable mechanisms 12, 12 at their upper ends, and a reciprocating shaft shared by the first variable mechanism 11 that swings the swing shaft 17'. 18, and a drive motor 19 that is also shared with the first variable mechanism 11 that reciprocates the reciprocating shaft 18. Therefore, when the engine is under high load and rotates at high speed, the reciprocating shaft 18 is moved by the operation of the drive motor 19. By rotating the swing shaft 17' in the same direction as the rotation direction X of the second camshaft 10, both the rotation members 14', 14' are rotated in the rotation direction Rotate in the same direction,
Cam surfaces 10b, 10b and tappet members 13', 1 for a specific angular position of the second camshaft 10
The contact position with one end of 3' is set by the second camshaft 10.
to the lag side with respect to the rotation direction X, and each second
This is to control the valve timing of the exhaust valves 6b, 6b to be delayed.

加えて、上記タペツト部材13又は13′の下
端を第2図の如く第2吸気弁5b又は第2排気弁
6bのバルブステムに直接当接させずに、第5図
に示す如く油圧タペツト装置Aを介装することが
好ましい。すなわぢ、該油圧タペツト装置Aは、
カムシヤフト8(又は10)のカム面8b,10
bと摺接する円形状の閉塞部23aおよび該閉塞
部外周から直角に延び、回動部材14,14′に
設けられたオイル通路22と連通する第1連通孔
23bを有し且つ該回動部材14,14′の嵌挿
孔14a,14′a内を摺動する側部23cを備
えた円筒状のタペツト部材23と、該タペツト部
材23の内周に嵌挿される側壁24aおよび吸、
排気弁5b,6bのバルブステムに当接する底壁
24bを備え、上記タペツト部材23の向きと逆
方向に配設された円筒状の第1部材24と、上記
タペツト部材23と第1部材24との間に外周が
第1部材24の内周に摺接するとともに先端がタ
ペツト部材23の閉塞部23aにスプリング25
により押圧当接するように配設され、一端側(上
部側)はタペツト部材23の閉塞部23aとで該
閉塞部23aに形成した切欠き溝23dを介して
上記第1連通孔23bと連通する油溜り室26を
形成する一方、他端側(下部側)は第1部材24
の底壁24bとで油圧力室27を形成し、且つ中
央に上記油溜り室26と油圧力室27とを連通す
る第2連通孔28aを備えた断面路H字状の第2
部材28と、上記油圧力室27に内蔵され、油圧
力室27の内圧がカムシヤフト8,10のカム面
8b,10bの押圧力によつて急激に圧力上昇し
たときは閉弁して上記第2連通孔28aを閉塞す
る一方、その他のときには開弁して第2連通孔2
8aを開放するように制御するチエツク弁29と
からなり、上記油溜り室26と油圧力室27との
圧力差に応じて第2連通孔28aを開閉して油圧
力室27内の油量を変化させることにより、タペ
ツト部材23の閉塞部23aをカム面8b,10
bに常に摺接せしめるよう追従させて、エンジン
の高回転時においてもバルブクリアランスを生じ
ることなくカム力をバルブステムに伝達するよう
にしたものである。
In addition, without bringing the lower end of the tappet member 13 or 13' into direct contact with the valve stem of the second intake valve 5b or the second exhaust valve 6b as shown in FIG. 2, the hydraulic tappet device A as shown in FIG. It is preferable to intervene. In other words, the hydraulic tappet device A is
Cam surfaces 8b, 10 of camshaft 8 (or 10)
The rotating member has a circular blocking portion 23a that slides in contact with the rotating member b, and a first communication hole 23b that extends perpendicularly from the outer periphery of the blocking portion and communicates with the oil passage 22 provided in the rotating member 14, 14'. A cylindrical tapepet member 23 having a side portion 23c that slides in the fitting holes 14a, 14'a of 14, 14', a side wall 24a fitted into the inner periphery of the tapepet member 23, and a suction
A cylindrical first member 24 including a bottom wall 24b that contacts the valve stems of the exhaust valves 5b, 6b and disposed in a direction opposite to the direction of the tappet member 23, and the tappet member 23 and the first member 24. During this time, the outer periphery of the spring 25 slides into contact with the inner periphery of the first member 24, and the tip of the spring 25 contacts the closed portion 23a of the tapepet member 23.
One end side (upper side) of the tapepet member 23 is connected to the first communication hole 23b through a cutout groove 23d formed in the closure part 23a of the tapepet member 23. While forming a reservoir chamber 26, the other end side (lower side) is a first member 24.
A second hydraulic pressure chamber 27 is formed with the bottom wall 24b of the hydraulic pressure chamber 27, and the second communication hole 28a is provided in the center to communicate the oil reservoir chamber 26 and the hydraulic pressure chamber 27.
The member 28 is built in the hydraulic pressure chamber 27, and when the internal pressure of the hydraulic pressure chamber 27 suddenly increases due to the pressing force of the cam surfaces 8b and 10b of the camshafts 8 and 10, the valve closes and the second valve is closed. While the communication hole 28a is closed, at other times it is opened and the second communication hole 2 is closed.
The second communication hole 28a is opened and closed according to the pressure difference between the oil reservoir chamber 26 and the hydraulic pressure chamber 27 to control the amount of oil in the hydraulic pressure chamber 27. By changing the closed portion 23a of the tappet member 23, the cam surfaces 8b, 10
(b) so that the cam force is always in sliding contact with the valve stem, and the cam force is transmitted to the valve stem without creating any valve clearance even when the engine is running at high speed.

尚、第1図中、30は第1および第2カムシヤ
フト8,10を回転自在に支承する軸受部であつ
て、該軸受部30は第1および第2可変機構1
1,12の各回動部材14,14,14′,1
4′と干渉しないように且つ第1および第2カム
シヤフト8,10の撓みを可及的に抑えるように
エンジン本体1の中心線l方向の両端部および中
央部に配設されている。また、第2図中、31は
各吸、排気弁5a,5b,6a,6bを閉弁方向
に付勢するバルブスプリング、32はバルブガイ
ドである。
In FIG. 1, reference numeral 30 denotes a bearing portion that rotatably supports the first and second camshafts 8, 10, and the bearing portion 30 is a bearing portion that rotatably supports the first and second camshafts 8, 10.
Each rotating member 14, 14, 14', 1 of 1, 12
4' and to suppress the deflection of the first and second camshafts 8, 10 as much as possible at both ends and the center of the engine body 1 in the direction of the center line l. Further, in FIG. 2, 31 is a valve spring that biases each intake and exhaust valve 5a, 5b, 6a, 6b in the valve closing direction, and 32 is a valve guide.

次に、上記実施例の作用について延べるに、エ
ンジンの低負荷あるいは高負荷低回転時には、第
1および第2可変機構11,12が非作動状態に
あり、各気筒2a〜2dにおける第1、第2吸気
弁5a,5bおよび第1、第2排気弁6a,6b
はそれぞれ第1および第2動弁機構7,9によつ
て各々のバルブタイミングが制御され、第6図実
線で示すように先ず第1および第2排気弁6a,
6bが共にピストンの下死点付近で開いたのち上
死点付近で閉じて排気行程を行い、続いて第1お
よび第2吸気弁5a,5bが上死点付近で開いた
のち下死点付近で閉じて吸気行程を行う。その
際、高負荷低回転時には、吸気は第1および第2
の一対の吸気ポート3a,3bから各気筒2a〜
2dに吸入されるため、吸気ポートの有効開口面
積が単一のものと較べて増大して吸気の充填効率
が向上し、エンジンの出力向上を図ることができ
る。しかも、第1、第2吸気弁5a,5bのバル
ブタイミングは第1動弁機構7により、第1吸気
弁5aの開弁期間が長く、第2吸気弁5bの開弁
期間が短いとともに、第1吸気弁5aが先に開い
たのち第2吸気弁5bが開き、そして両者がほぼ
同時に閉じる、つまり開弁期間の長い第1吸気弁
5aの排気弁6a,6bとのオーバラツプ期間が
長くなるように制御されるので、両吸気弁5a,
5bの全体としての排気弁6a,6bとの総オー
バラツプ期間が可及的に短かくなり、そのことに
より吸気量が少ないエンジンの低負荷時における
残留排気(ダイリユーシヨンガス)の持込み量を
小さく抑え、また高負荷低回転時の吸気の吹き返
しを防止することができ、良好な燃焼性を確保す
ることができる。
Next, regarding the operation of the above embodiment, when the engine is under low load or high load and low rotation, the first and second variable mechanisms 11 and 12 are in an inactive state, and the first and second variable mechanisms 11 and 12 in each cylinder 2a to 2d are in a non-operating state. Second intake valves 5a, 5b and first and second exhaust valves 6a, 6b
The respective valve timings are controlled by the first and second valve operating mechanisms 7 and 9, respectively, and as shown by solid lines in FIG. 6, the first and second exhaust valves 6a,
6b both open near the bottom dead center of the piston and then close near the top dead center to perform the exhaust stroke, and then the first and second intake valves 5a and 5b open near the top dead center and then close near the bottom dead center. Close it and perform the intake stroke. At that time, during high load and low rotation, the intake air flows through the first and second
From a pair of intake ports 3a, 3b to each cylinder 2a~
2d, the effective opening area of the intake port is increased compared to a single intake port, improving the intake air filling efficiency and improving the output of the engine. Moreover, the valve timings of the first and second intake valves 5a and 5b are determined by the first valve operating mechanism 7, so that the first intake valve 5a has a long opening period, the second intake valve 5b has a short opening period, and the first intake valve 5a has a short opening period. The first intake valve 5a opens first, then the second intake valve 5b opens, and then both close almost simultaneously. In other words, the overlap period between the first intake valve 5a, which has a long opening period, and the exhaust valves 6a and 6b becomes long. Since both intake valves 5a,
The total overlap period of the exhaust valves 5b with the exhaust valves 6a and 6b as a whole is made as short as possible, thereby reducing the amount of residual exhaust gas (dilution gas) brought in during low load of the engine with a small intake amount. In addition, it is possible to prevent intake air from blowing back at high load and low rotation speeds, and to ensure good combustion performance.

さらに、この場合、各気筒2a〜2dにおいて
第1および第2の一対の排気ポート4a,4bを
それぞれ一対の排気弁6a,6bで開閉するの
で、排気ポートの有効開口面積も単一のものと較
べて増大し、そのことにより排気の掃気効率が向
上し、ひいては上記吸気の充填効率の向上を一層
図ることができる。
Furthermore, in this case, the first and second pair of exhaust ports 4a and 4b in each cylinder 2a to 2d are opened and closed by the pair of exhaust valves 6a and 6b, respectively, so the effective opening area of the exhaust port is also a single one. As a result, the scavenging efficiency of the exhaust gas is improved, and as a result, the filling efficiency of the intake air can be further improved.

一方、エンジンの高回転時であつて高負荷時に
は、第1および第2可変機構11,12が共に作
動して、第6図仮想線で示すように各気筒2a〜
2dにおける一対の吸気弁5a,5bのうち開弁
期間の短い第2吸気弁5bのバルブタイミングが
第1可変機構11によつて遅れ側に、また一対の
排気弁6a,6bのうちの第2排気弁6bのバル
ブタイミングが遅れ側にずれるように可変制御さ
れる。そのことにより、各気筒2a〜2dの吸気
行程において、上記第2吸気弁5bのバルブタイ
ミングの遅れ側のずれ分だけ両吸気弁5a,5b
の全体としての総開弁期間が開口面積を変えるこ
となく長くなり、上記吸気ポートの有効開口面積
の増大と相俟つて吸気の充填効率を著しく向上さ
せることができ、よつて出力を要するエンジンの
高負荷時における出力性能を大巾に向上させるこ
とができる。
On the other hand, when the engine is at high rotation speed and under high load, the first and second variable mechanisms 11 and 12 operate together, and each cylinder 2a to
2d, the valve timing of the second intake valve 5b, which has a shorter opening period among the pair of intake valves 5a, 5b, is delayed by the first variable mechanism 11, and the valve timing of the second intake valve 5b, which has a shorter opening period, is delayed by the first variable mechanism 11, and the valve timing of the second intake valve 5b, which has a shorter opening period, among the pair of intake valves 5a, 5b is delayed. The valve timing of the exhaust valve 6b is variably controlled so as to be shifted to the delayed side. As a result, in the intake stroke of each cylinder 2a to 2d, both intake valves 5a, 5b are adjusted by the amount of the delay side deviation of the valve timing of the second intake valve 5b.
The total valve opening period as a whole becomes longer without changing the opening area, and together with the increase in the effective opening area of the intake port, the intake air filling efficiency can be significantly improved, and therefore the engine that requires output can be Output performance under high loads can be greatly improved.

さらに、この場合、各気筒2a〜2dの排気行
程において、上記第2排気弁6bのバルブタイミ
ングの遅れ側のずれ分だけ、両排気弁6a,6b
の全体としての総開弁期間が長くなるので、上記
排気ポートの有効開口面積の増大と相俟つて排気
の掃気効率を著しく向上させることができ、ひい
ては上記吸気の充填効率をより一層向上でき、出
力性能のより大巾な向上を図ることができる。
Furthermore, in this case, in the exhaust stroke of each cylinder 2a to 2d, both exhaust valves 6a, 6b are adjusted by the amount of the delay side deviation of the valve timing of the second exhaust valve 6b.
Since the total valve opening period as a whole becomes longer, together with the increase in the effective opening area of the exhaust port, the scavenging efficiency of the exhaust gas can be significantly improved, and in turn, the filling efficiency of the intake air can be further improved, It is possible to further improve output performance.

尚、その際、エンジンの高負荷高回転時は吸気
量が多く、また吸気の慣性速度が速いことから、
吸、排気弁5a,5b,6a,6bの総オーバラ
ツプ期間が長くなつても、また吸気弁5bの開弁
期間の圧縮行程へのずれ込みがあつても、残留排
気の持込み量を可及的に少なくできるとともに吸
気の吹き返しが生じ難いので、燃焼性に支障を与
えることはない。
In addition, when the engine is under high load and at high speed, the amount of intake air is large and the inertial speed of the intake air is high.
Even if the total overlap period of the intake and exhaust valves 5a, 5b, 6a, and 6b becomes longer, or even if the opening period of the intake valve 5b lags into the compression stroke, the amount of residual exhaust gas brought in can be minimized. Since the amount of air can be reduced and blowback of intake air is less likely to occur, combustibility is not affected.

また、上記第2吸気弁5bおよび第2排気弁6
bのバルブタイミングを第1および第2可変機構
11,12によつて、エンジンの低回転から高回
転に移行するに従つて漸次遅れ側にずらすように
可変制御すれば、移行時にトルクシヨツクが生じ
ることなくスムーズに可変制御できるので有利で
ある。
Further, the second intake valve 5b and the second exhaust valve 6
If the valve timing of b is variably controlled by the first and second variable mechanisms 11 and 12 so as to be gradually shifted to the retarded side as the engine shifts from low rotation to high rotation, a torque shock will occur during the transition. This is advantageous because variable control can be performed smoothly without any problems.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記実施例では、一対の吸気ポート
3a,3bと一対の吸気弁5a,5bとを備えた
エンジンに適用した場合について述べたが、デユ
アルインダクシヨン方式のエンジンにも適用でき
るものである。この場合、第1図に図示の如く、
通路面積の小さい第1吸気ポート3aを低負荷用
吸気ポートとし、通路面積の大きい第2吸気ポー
ト3bを高負荷用吸気ポートとし、該高負荷用吸
気ポートにエンジンの高負荷時に開作動する開閉
弁33を配設して、エンジンの低負荷時には低負
荷用吸気ポート(第1吸気ポート3a)のみから
吸気を供給し、エンジンの高負荷時には低負荷用
吸気ポートに加えて高負荷用吸気ポート(第2吸
気ポート3b)からも吸気を供給するようにすれ
ばよく、デユアルダクシヨン方式の持つ、低負荷
時の燃焼性の良好化および高負荷時の充填効率の
向上による高出力化をより一層向上、発揮させる
ことができる。また、本発明は単気筒あるいはそ
の他の多気筒エンジンに対しても適用できるのは
言うまでもない。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, a case has been described in which the present invention is applied to an engine equipped with a pair of intake ports 3a, 3b and a pair of intake valves 5a, 5b, but it can also be applied to a dual induction type engine. In this case, as shown in Figure 1,
The first intake port 3a with a small passage area is used as a low-load intake port, the second intake port 3b with a large passage area is used as a high-load intake port, and the high-load intake port has an opening/closing valve that opens and closes when the engine is under high load. A valve 33 is provided to supply intake air only from the low-load intake port (first intake port 3a) when the engine is under low load, and to supply intake air from the high-load intake port in addition to the low-load intake port when the engine is under high load. It is only necessary to supply intake air from the second intake port 3b as well, which makes it possible to achieve higher output by improving combustibility at low loads and improving charging efficiency at high loads, which the dual duct system has. You can further improve and demonstrate your abilities. It goes without saying that the present invention can also be applied to single-cylinder or other multi-cylinder engines.

また、上記第2吸気弁5bおよび第2排気弁6
bのバルブタイミングを可変制御する可変機構と
しては、上記実施例の如き可変機構11,12の
他に、エンジンの出力軸とカムシヤフトとの相対
位置を変化させるもの、あるいは立体カムシヤフ
トをスライドさせるもの等、公知の各種手段が採
用可能であるが、上記実施例の如くタペツト部材
13,13′を嵌挿保持する回動部材14,1
4′をカムシヤフト8,10周りに回動させて該
カムシヤフト8,10の特定角度位置に対するカ
ム面8b,10bとタペツト部材13,13′の
一端との接触位置を変化させるようにした可変機
構11,12は、バルブタイミングの可変制御が
簡単な構造でもつて応答性良く確実に行うことが
でき、また騒音の発生が少ないなどの点で有利で
ある。
Further, the second intake valve 5b and the second exhaust valve 6
In addition to the variable mechanisms 11 and 12 as in the above-mentioned embodiments, the variable mechanism for variable control of the valve timing in b may include a mechanism that changes the relative position of the output shaft of the engine and the camshaft, or a mechanism that slides the three-dimensional camshaft. Although various known means can be adopted, as in the above embodiment, the rotating members 14, 1 which fit and hold the tapepet members 13, 13'
4' is rotated around the camshafts 8, 10 to change the contact position between the cam surfaces 8b, 10b and one end of the tappet members 13, 13' with respect to a specific angular position of the camshafts 8, 10. , 12 are advantageous in that variable control of valve timing can be performed reliably with good responsiveness with a simple structure, and generates little noise.

また、上記実施例では、各気筒2a〜2dにお
ける一対の吸気ポート3a,3bおよび一対の吸
気弁5a,5bと、一対の排気ポート4a,4b
および一対の排気弁6a,6bとをそれぞれエン
ジン本体1の吸気側と排気側に分けて中心線l方
向に平行に配置し、かつ第2吸気弁5b,5b同
士および第2排気弁6b,6b同士を隣接させて
配置したが、その他の配置構成にしてもよいのは
勿論である。しかし、上記実施例の如き配置構成
は、各カムシヤフト8,10の軸受部30,30
…の3点配置に支障を与えることなく、隣り合う
気筒(2aと2b,2cと2d)間の第2吸気弁
5b,5b同士および第2排気弁6b,6b同士
を一つの可変機構11,12で兼用して制御でき
るので有利である。
Further, in the above embodiment, a pair of intake ports 3a, 3b and a pair of intake valves 5a, 5b in each cylinder 2a to 2d, and a pair of exhaust ports 4a, 4b.
and a pair of exhaust valves 6a, 6b are respectively arranged on the intake side and exhaust side of the engine body 1 and arranged parallel to the center line l direction, and the second intake valves 5b, 5b and the second exhaust valves 6b, 6b Although they are arranged adjacent to each other, it goes without saying that other arrangement configurations may be used. However, in the arrangement as in the above embodiment, the bearing portions 30, 30 of each camshaft 8, 10
The second intake valves 5b, 5b between the adjacent cylinders (2a and 2b, 2c and 2d) and the second exhaust valves 6b, 6b are connected to each other by one variable mechanism 11, without interfering with the three-point arrangement. This is advantageous because it can be controlled with 12 units.

以上説明したように、本発明によれば、一対の
吸気ポートをそれぞれ開弁期間の異なる一対の吸
気弁で開閉するとともに、該一対の吸気弁のうち
開弁期間の長い吸気弁を排気弁とオーバラツプ期
間が長くなるように設定したエンジンにおいて、
エンジンの高負荷高回転時、上記一対の吸気弁の
うち開弁期間の短い吸気弁のバルブタイミングを
遅れ側にずらして、吸気ポートの開口面積を変え
ずに吸気弁の総開弁期間を長くするようにしたの
で、エンジンの低負荷時の良好な燃焼性を確保し
ながら、高負荷高回転時の吸気の充填効率を著し
く向上させることができ、よつて燃費性能および
出力性能の優れたエンジンの提供を可能とするも
のである。
As explained above, according to the present invention, a pair of intake ports are opened and closed by a pair of intake valves having different valve opening periods, and the intake valve with a longer opening period among the pair of intake valves is used as an exhaust valve. In an engine set to have a long overlap period,
When the engine is under high load and speed, the valve timing of the intake valve with the shortest opening period of the pair of intake valves is shifted to the delayed side to lengthen the total opening period of the intake valve without changing the opening area of the intake port. As a result, while ensuring good combustion performance at low engine loads, the intake air filling efficiency at high engine speeds and high loads can be significantly improved, resulting in an engine with excellent fuel efficiency and output performance. This makes it possible to provide the following.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を例示し、第1図は4気
筒エンジンに適用した場合の平面図、第2図は第
1図の縦断側面図、第3図は第1カムシヤフトの
断面図、第4図は可変機構部分の拡大斜視図、第
5図は可変機構のタペツト部材部分の変形例を示
す要部縦断側面図、第6図は本発明による吸、排
気弁のバルブタイミングを示す説明図である。 2a〜2d……第1〜第4気筒、3a,3b…
…吸気ポート、4a,4b……排気ポート、5
a,5b……吸気弁、6a,6b……排気弁、
7,9……動弁機構、8,10……カムシヤフ
ト、8a,8b,10a,10b……カム面、1
1……第1可変機構、12……第2可変機構。
The drawings illustrate an embodiment of the present invention, and FIG. 1 is a plan view when applied to a four-cylinder engine, FIG. 2 is a vertical side view of FIG. 1, and FIG. 3 is a sectional view of the first camshaft. FIG. 4 is an enlarged perspective view of the variable mechanism part, FIG. 5 is a vertical sectional side view of the main part showing a modification of the tappet member part of the variable mechanism, and FIG. 6 is an explanatory diagram showing the valve timing of the intake and exhaust valves according to the present invention. It is. 2a to 2d...1st to 4th cylinders, 3a, 3b...
...Intake port, 4a, 4b...Exhaust port, 5
a, 5b...Intake valve, 6a, 6b...Exhaust valve,
7, 9... Valve mechanism, 8, 10... Camshaft, 8a, 8b, 10a, 10b... Cam surface, 1
1...First variable mechanism, 12...Second variable mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の吸気ポートをそれぞれ開弁期間の異な
る一対の吸気弁で開閉するとともに、該一対の吸
気弁のうち開弁期間の長い吸気弁を排気弁とのオ
ーバラツプ期間が長くなるように設定したエンジ
ンにおいて、上記一対の吸気弁のうち開弁期間の
短い吸気弁を開閉制御する動弁系に、エンジンの
高負荷高回転時、該吸気弁のバルブタイミングを
遅れ側にずらすように制御する可変機構を設けた
ことを特徴とするエンジンのバルブタイミング制
御装置。
1. An engine in which a pair of intake ports are opened and closed by a pair of intake valves with different opening periods, and the intake valve with the longer opening period of the pair of intake valves is set to have a longer overlap period with the exhaust valve. In the valve train, which controls the opening and closing of the intake valve of the pair of intake valves that has a short opening period, a variable mechanism is provided to control the valve timing of the intake valve to be delayed when the engine is under high load and at high speed. An engine valve timing control device characterized by being provided with.
JP57158564A 1982-09-10 1982-09-10 Valve timing control device of engine Granted JPS5946308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158564A JPS5946308A (en) 1982-09-10 1982-09-10 Valve timing control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158564A JPS5946308A (en) 1982-09-10 1982-09-10 Valve timing control device of engine

Publications (2)

Publication Number Publication Date
JPS5946308A JPS5946308A (en) 1984-03-15
JPH0355644B2 true JPH0355644B2 (en) 1991-08-26

Family

ID=15674449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158564A Granted JPS5946308A (en) 1982-09-10 1982-09-10 Valve timing control device of engine

Country Status (1)

Country Link
JP (1) JPS5946308A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223510A (en) * 1985-07-22 1987-01-31 Nissan Motor Co Ltd Multi-cylinder internal combustion engine
JPH0610430B2 (en) * 1987-10-22 1994-02-09 本田技研工業株式会社 Engine intake control device
JP2742815B2 (en) * 1989-06-27 1998-04-22 マツダ株式会社 Engine intake and exhaust timing control device
JP2588362B2 (en) * 1993-11-25 1997-03-05 日産自動車株式会社 Multi-cylinder internal combustion engine
JP6008532B2 (en) * 2012-03-27 2016-10-19 ダイハツ工業株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JPS5946308A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPH0131003B2 (en)
CN1965150B (en) Valve gear for multi-cylinder internal combustion engine
JPH0128205B2 (en)
JPH0355644B2 (en)
JPH0355643B2 (en)
JPH0454043B2 (en)
JP2733097B2 (en) Intake and exhaust devices for internal combustion engines
JPH03121207A (en) Valve-controlled internal combusion engine
JPH0220406Y2 (en)
JPH0125881B2 (en)
JP2703994B2 (en) Exhaust system for internal combustion engine
KR100305447B1 (en) Intake/exhaust valve device of engine
JPS5965510A (en) Valve timing control device for engine
JPS633125B2 (en)
JPH0158324B2 (en)
JPH0359244B2 (en)
JPH0729223Y2 (en) Internal combustion engine intake system
JPH0585723B2 (en)
JPS6123809A (en) Valve timing control device for engine
JP2816554B2 (en) Valve train for internal combustion engine
JPS59188011A (en) Valve timing control device for engine
JPS59188008A (en) Valve timing control device for engine
JPS59224411A (en) Valve opening and closing device
JPS6069224A (en) Valve-timing controlling apparatus for engine
JPS59188012A (en) Valve timing control device for engine