JPH0472967B2 - - Google Patents

Info

Publication number
JPH0472967B2
JPH0472967B2 JP4018483A JP4018483A JPH0472967B2 JP H0472967 B2 JPH0472967 B2 JP H0472967B2 JP 4018483 A JP4018483 A JP 4018483A JP 4018483 A JP4018483 A JP 4018483A JP H0472967 B2 JPH0472967 B2 JP H0472967B2
Authority
JP
Japan
Prior art keywords
valve
oil
tappet
camshaft
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4018483A
Other languages
Japanese (ja)
Other versions
JPS59188006A (en
Inventor
Toshiharu Masuda
Yasuyuki Morita
Hiroyuki Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58040184A priority Critical patent/JPS59188006A/en
Publication of JPS59188006A publication Critical patent/JPS59188006A/en
Publication of JPH0472967B2 publication Critical patent/JPH0472967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve lubricating efficiency by changing by changing the contact position between a cam face of a cam shaft and a pressure-receiving part of a tappet on the basis of the rotation of a rotational member round a cam shaft for changing the timing of a vlave and supplying oil to the rotational member from the side of the cam shaft. CONSTITUTION:When a reciprocating shaft 18 is moved to the right by a driving unit, a rotational member 14 is oscillated round a cam shaft 9 via an oscillating shaft 17, and a vlave timing of a suction (exhaust) valve 5 is slided to the side of delay by changing the contact position between a cam face 9a and a tappet pressure-receiving part 13a in a rotational direction X of a cam shaft. An oil route 14d extended between both end faces in touch with an engine main body 1 and an oil route 14c to connect the oil route 14d through to a circular route 9d provided on the cam shaft 9 are furnished in the rotational member 14, and the circular route 9d is connected to the oil pump via a radial route and an axial route 9c.

Description

【発明の詳細な説明】 本発明は、エンジンのバルブタイミング制御装
置に関し、特に吸、排気弁を開閉制御する動弁系
においてエンジンの運転状態に応じてバルブタイ
ミングを可変制御するための可変機構に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine valve timing control device, and more particularly to a variable mechanism for variably controlling valve timing in accordance with engine operating conditions in a valve train that controls the opening and closing of intake and exhaust valves. It is something.

一般に、エンジンにおける吸、排気弁のバルブ
タイミングは、エンジンの運転状態に応じて可変
制御することがエンジンの運転性能上好ましい。
例えば、エンジンの低負荷運転時には吸、排気弁
のオーバラツプ期間を短くすることが残留排気量
を少なく迎えて燃焼安定性を向上させるので好ま
しい。また、エンジンの高負荷低回転運転時には
吸、排気弁のオーバラツプ期間を短くすると、吸
気の吹き返しを防止して充填効率を向上できる。
一方、エンジンの高負荷高回転運転時には吸気弁
の開弁期間を長く設定することが充填効率を上げ
てエンジン出力を向上できるので好ましい。
In general, it is preferable from the viewpoint of engine operating performance that the valve timing of intake and exhaust valves in an engine be variably controlled depending on the operating state of the engine.
For example, when the engine is operated at low load, it is preferable to shorten the overlap period of the intake and exhaust valves because this reduces the amount of residual exhaust gas and improves combustion stability. Furthermore, when the engine is operated at high load and low speed, by shortening the overlap period of the intake and exhaust valves, blowback of intake air can be prevented and charging efficiency can be improved.
On the other hand, when the engine is operated at high load and high speed, it is preferable to set the opening period of the intake valve to be long because this increases the filling efficiency and improves the engine output.

このため、従来、エンジンの動弁系においてバ
ルブタイミングを可変制御するための可変機構が
種々提案されている。例えば、特公昭52−35819
号公報に開示されているようにエンジンの出力軸
とカムシヤフトとの間に遠心カバナを有する遊星
歯車を介在させてエンジンの出力軸とカムシヤフ
トとの相対位置を変化させるようにしたもの、あ
るいはカムシヤフトを立体カムシヤフトとし該立
体カムシヤフトをスライドさせるようにしたもの
等がある。
For this reason, various variable mechanisms for variably controlling valve timing in the valve train of an engine have been proposed. For example, Special Public Interest Publication No. 52-35819
As disclosed in the above publication, a planetary gear having a centrifugal cover is interposed between the output shaft of the engine and the camshaft to change the relative position between the output shaft of the engine and the camshaft, or a camshaft. There is a three-dimensional camshaft in which the three-dimensional camshaft is slidable.

しかるに、上記従来のものは何れも、構造が複
雑で大がかりなものとなるとともに、可変制御の
応答性,信頼性が悪く、また大きな騒音を発生し
やすいなど、実用性に欠けるものであつた。
However, all of the above-mentioned conventional devices have complicated and large-scale structures, have poor variable control response and reliability, and tend to generate large noises, and thus lack practicality.

本発明は斯かる点に鑑みてなされたもので、既
存の動弁機構を有効に利用して、カムシヤフトの
特定角度位置に対するカム面とバルブステムに当
接するタペツトの受圧部との接触位置をエンジン
の運転状態に応じて変化させるようにすることに
より、構造が簡単で、応答性,信頼性良く可変制
御でき、また騒音の発生の少ないなど、実用性に
優れた可変機構を備えたバルブタイミング制御装
置の提供を目的とするものである。
The present invention has been made in view of the above, and effectively utilizes the existing valve mechanism to adjust the contact position between the cam surface and the pressure-receiving portion of the tappet that contacts the valve stem for a specific angular position of the camshaft. Valve timing control is equipped with a highly practical variable mechanism that has a simple structure, provides responsive and reliable variable control, and generates little noise. The purpose is to provide equipment.

この目的を達成するため、本発明のエンジンの
バルブタイミング制御装置の構成は、嵌挿孔を有
しカムシヤフトに相互に回転を許すように回動自
在に支承された回動部材の上記嵌挿孔内に、カム
シヤフトのカム面から力を受ける受圧部および上
記カム面からの力をバルブステムに伝達する押圧
部を有するタペツトが摺動自在に嵌挿され、上記
回動部材をカムシヤフトの回りに揺動させてバル
ブタイミングを変更するようにしたエンジンのバ
ルブタイミング制御装置であつて、上記回動部材
に、カムシヤフトに設けたオイル通路から嵌挿孔
にオイルを導くオイル通路を設けたことを特徴と
するものである。
In order to achieve this object, the configuration of the engine valve timing control device of the present invention is such that a rotating member having a fitting hole and rotatably supported on the camshaft so as to allow mutual rotation is inserted into the fitting hole. A tappet having a pressure receiving part that receives force from the cam surface of the camshaft and a pressing part that transmits the force from the cam surface to the valve stem is slidably inserted into the valve stem, and the rotating member is pivoted around the camshaft. The valve timing control device for an engine is configured to change valve timing by moving the camshaft, and is characterized in that the rotating member is provided with an oil passage that guides oil from an oil passage provided in the camshaft to a fitting hole. It is something to do.

このことにより、本発明では、回動部材をカム
シヤフト回りに回動させることによつて、カムシ
ヤフトの特定角度位置に対するカム面とタペツト
の受圧部との接触位置をカムシヤフト回りに変化
させてバルブタイミングを可変制御するようにし
たものである。そして、上記回動部材がその回動
中心であるカムシヤフトに直接回動可能に支承さ
れていることから、上記回動部材のオイル通路に
よつて嵌挿孔に確実にオイルが導かれて、該嵌挿
孔とタペツトとの摺動部分を潤滑するようにした
ものである。
Accordingly, in the present invention, by rotating the rotating member around the camshaft, the contact position between the cam surface and the pressure receiving part of the tappet for a specific angular position of the camshaft is changed around the camshaft, thereby adjusting the valve timing. It is designed to be variably controlled. Since the rotating member is rotatably supported directly on the camshaft, which is the center of rotation, oil is reliably guided to the insertion hole by the oil passage of the rotating member. This is designed to lubricate the sliding part between the insertion hole and the tapepet.

以下、図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は多気筒エンジンに本発明を適用した実
施例を示す。エンジン本体1には、直列状に複数
の気筒2,2…が形成されており、各気筒2には
各々2つの吸気ポート3,3と2つの排気ポート
4,4が開口するように設けられている。上記各
吸気ポート3,3の気筒2への開口部には該吸気
ポート3,3を所定のタイミングで開閉する2つ
の吸気弁5,5が配設されているとともに、各排
気ポート4,4の気筒2への開口部には該排気ポ
ート4,4を所定のタイミングで開閉する2つの
排気弁6,6が配設されており、該各吸、排気弁
5,6はそれぞれバルブスプリング7,7によつ
て閉弁方向に付勢されている。
FIG. 1 shows an embodiment in which the present invention is applied to a multi-cylinder engine. The engine body 1 is formed with a plurality of cylinders 2, 2, . ing. Two intake valves 5, 5 for opening and closing the intake ports 3, 3 at predetermined timing are disposed at the openings of each of the intake ports 3, 3 to the cylinder 2, and each exhaust port 4, 4 Two exhaust valves 6, 6 for opening and closing the exhaust ports 4, 4 at predetermined timing are disposed at the opening to the cylinder 2, and each of the intake and exhaust valves 5, 6 is provided with a valve spring 7. , 7 in the valve closing direction.

エンジン本体1上部には、各吸気弁5を開閉制
御する吸気側動弁機構8aと、各排気弁6を開閉
制御する排気側動弁機構8bとが設けられてい
る。
An intake valve mechanism 8a that controls the opening and closing of each intake valve 5 and an exhaust valve mechanism 8b that controls the opening and closing of each exhaust valve 6 are provided in the upper part of the engine body 1.

吸気側動弁機構8aは、エンジンのクランクシ
ヤフト(図示せず)によつて回動駆動される吸気
側カムシヤフト9を有し、該吸気側カムシオフト
9には吸気弁5に対応するカム面9aが形成され
ており、この吸気側カムシヤフト9の回転により
吸気弁5が開閉されるようになつている。一方、
排気側動弁機構8bは、同じくエンジンのクラン
クシヤフトによつて回動駆動される排気側カムシ
ヤフト10を有し、該排気側カムシヤフト10に
は排気弁6に対応するカム面10aが形成されて
おり、この排気側カムシヤフト10の回転により
排気弁6が開閉されるようになつている。
The intake side valve mechanism 8a has an intake side camshaft 9 that is rotatably driven by an engine crankshaft (not shown), and the intake side camshaft 9 has a cam surface 9a corresponding to the intake valve 5. The rotation of the intake camshaft 9 opens and closes the intake valve 5. on the other hand,
The exhaust side valve mechanism 8b has an exhaust side camshaft 10 which is also rotationally driven by the engine crankshaft, and a cam surface 10a corresponding to the exhaust valve 6 is formed on the exhaust side camshaft 10. The exhaust valve 6 is opened and closed by the rotation of the exhaust side camshaft 10.

上記吸気側動弁機構8aには、隣接する気筒
2,2における一方の吸気弁5,5同士のバルブ
タイミングをそれぞれ可変制御する、本発明に係
る第1可変機構11が設けられており、また排気
側動弁機構8bにも、隣接する気筒2,2におけ
る一方の排気弁6,6同士のバルブタイミングを
それぞれ可変制御する、本発明に係る第2可変機
構12が設けられている。
The intake side valve operating mechanism 8a is provided with a first variable mechanism 11 according to the present invention that variably controls the valve timing of one of the intake valves 5, 5 in the adjacent cylinders 2, 2, respectively. The exhaust side valve operating mechanism 8b is also provided with a second variable mechanism 12 according to the present invention that variably controls the valve timing of one exhaust valve 6, 6 in the adjacent cylinders 2, 2, respectively.

これら第1および第2可変機構11,12は、
第2図に拡大図示するように同じ構成によつてな
る。すなわち、第1可変機構11は、中空円筒体
状であつて上端面で吸気側カムシヤフト9のカム
面9a,9sと当接する受圧部(受圧面)13a
とその反対側の下端面で吸気弁5,5のバルブス
テム5s,5sと当接する押圧部(押圧面)13
bと上記受圧部13aと押圧部13bとを連結す
る円筒状の摺動部13cとを有するタペツト1
3,13と、該タペツト13,13が上下方向に
摺動自在に嵌挿保持される2つの嵌挿孔14a,
14aを有するととに上記エンジン本体1の円弧
状面1aに対応して円弧状に形成された下面14
bを有し、上記吸気側カムシヤフト9に相互に回
転を許すように回動自在に支承されて該吸気側カ
ムシヤフト9の回りを回動しうる回動部材14
と、該回動部材14をエンジンの運転状態に応じ
て上記吸気側カムシヤフト9の回転軸回りに揺動
させる操作装置15を備えてなる(尚、第2可変
機構12は第1可変機構11の構成要素に「′」
(ダツシユ)を付して表わし、6sは排気弁6の
バルブステムである)。
These first and second variable mechanisms 11 and 12 are
As shown in an enlarged view in FIG. 2, they have the same structure. That is, the first variable mechanism 11 has a pressure receiving part (pressure receiving surface) 13a which has a hollow cylindrical shape and comes into contact with the cam surfaces 9a and 9s of the intake side camshaft 9 at its upper end surface.
and a pressing portion (pressing surface) 13 that comes into contact with the valve stems 5s, 5s of the intake valves 5, 5 at the lower end surface on the opposite side.
a tappet 1 having a cylindrical sliding portion 13c connecting the pressure receiving portion 13a and the pressing portion 13b;
3, 13, and two fitting holes 14a into which the tapepets 13, 13 are fitted and held so as to be slidable in the vertical direction.
14a, and a lower surface 14 formed in an arcuate shape corresponding to the arcuate surface 1a of the engine main body 1.
b, and is rotatably supported by the intake camshaft 9 so as to allow mutual rotation, and is capable of rotating around the intake camshaft 9.
and an operating device 15 that swings the rotating member 14 around the rotation axis of the intake camshaft 9 according to the operating state of the engine (the second variable mechanism 12 is the same as the first variable mechanism 11). “′” in the component
6s is the valve stem of the exhaust valve 6).

上記タペツト13の押圧面13bは球面状に形
成されており、該球面の中心は、タペツト13が
カム9aの基準円部分9′aに当接しているとき、
カムシヤフト9の回転軸にバルブステム5sの軸
線が交わる点に設定されている。押圧面13bを
このように球面の一部で形成することはタペツト
13の回転を考慮したためで、回転を規制する場
合には、カムシヤフト9の回転軸を中心とする円
弧面とすればよい。
The pressing surface 13b of the tappet 13 is formed into a spherical shape, and the center of the spherical surface is located at the center of the spherical surface when the tappet 13 is in contact with the reference circle portion 9'a of the cam 9a.
It is set at a point where the axis of rotation of the camshaft 9 and the axis of the valve stem 5s intersect. The pressing surface 13b is formed as a part of a spherical surface in consideration of the rotation of the tappet 13, and if rotation is to be restricted, it may be formed into a circular arc surface centered on the rotation axis of the camshaft 9.

上記回動部材14は、吸気側カムシヤフト9に
支承される部分において上下に分割されており、
ボルト16,16で一体に結合されている。ま
た、上記操作装置15は、気筒列方向に延び回動
部材14の上端部に連結された揺動軸17と、こ
の揺動軸17に対して直角に配され該揺動軸17
に係合するとともに第1図中左右方向に往復動自
在に設けられた往復運動に変換して上記往復軸1
8を、例えばモータの回転運動を往復動軸18を
上記方向に往復動させ、揺動軸17を介して回動
部材14を前記のように回動させる駆動装置19
とを備えてなる。この駆動装置19には、エンジ
ンの回転数を検出する回転数センサ20が出力す
る回転数信号S1と、エンジン負荷を検出する負荷
センサ21が出力する負荷信号S2が入力され、エ
ンジンの特定運転時に該駆動装置19は、前記往
復動軸18を第1図中右方向に移動させるように
駆動され、この往復動軸18の移動により揺動軸
17は吸気側カムシヤフト9の回転方向×と同方
向(第1図中時計方向)に回動し、回動部材1
4,14が吸気側カムシヤフト9を中心に上記×
方向に回動される。
The rotating member 14 is divided into upper and lower parts at the portion supported by the intake side camshaft 9,
They are integrally connected by bolts 16, 16. The operating device 15 also includes a swing shaft 17 extending in the cylinder row direction and connected to the upper end of the rotating member 14, and a swing shaft 17 disposed perpendicular to the swing shaft 17.
The reciprocating shaft 1 is engaged with the reciprocating shaft 1 and converted into reciprocating motion, which is provided so as to be able to reciprocate in the left-right direction in FIG.
8, for example, a drive device 19 that causes the rotational movement of a motor to cause the reciprocating shaft 18 to reciprocate in the above-mentioned direction, and rotates the rotating member 14 as described above via the swinging shaft 17.
It will be equipped with. The drive device 19 receives a rotation speed signal S 1 output from a rotation speed sensor 20 that detects the engine rotation speed, and a load signal S 2 output from a load sensor 21 that detects the engine load, and identifies the engine. During operation, the drive device 19 is driven to move the reciprocating shaft 18 rightward in FIG. The rotating member 1 rotates in the same direction (clockwise in Fig. 1).
4 and 14 are the above × centered around the intake side camshaft 9.
rotated in the direction.

よつて、一方の吸気弁5は通常の吸、排気弁と
同様に、バルブガイド22に摺動自在に支承され
バルブスプリング7によつて上方すなわち閉弁方
向に付勢されており、吸気側カムシヤフト9が上
記×方向に回転してそのカム面9aがタペツト1
3の受圧部13aを押圧し、該タペツト13が嵌
挿孔14a内を押し下げられると、上記バルブス
プリング7の付勢力に抗して該タペツト13の押
圧部13bによつて押し下げられて吸気ポート3
を開く。一方、回動部材14が上述のように×方
向に回動されると、タペツト13,13も回動部
材14とともに移動し、吸気側カムシヤフト9の
特定角度位置に対するカム面9a,9aとタペツ
ト受圧部13a,13aの接触位置が吸気側カム
シヤフト9の回転方向×に対して遅れ側に変化し
て、各一方の吸気弁5,5のバルブタイミングが
遅れ側にずらされる。以上の動作は第2可変機構
12により、同様に一方の排気バルブ6に対して
も行なわれる。尚、図示していないが、各気筒2
における他方の吸気弁5および他方の排気弁6
は、通常通り各動弁機構8a,8bにより固定さ
れたバルブタイミングで開閉制御される。
Therefore, one of the intake valves 5 is slidably supported by the valve guide 22 and biased upward, that is, in the valve closing direction, by the valve spring 7, just like a normal intake and exhaust valve, and the intake valve 5 9 rotates in the above x direction, and its cam surface 9a touches the tappet 1.
When the tappet 13 is pushed down in the insertion hole 14a by pressing the pressure receiving part 13a of the valve spring 7, the pressure receiving part 13b of the tappet 13 pushes down against the biasing force of the valve spring 7, and the intake port 3 is pushed down.
open. On the other hand, when the rotating member 14 is rotated in the x direction as described above, the tappets 13, 13 also move together with the rotating member 14, and the cam surfaces 9a, 9a and the tappet receiving pressure for a specific angular position of the intake side camshaft 9 are The contact position of the portions 13a, 13a changes to the lag side with respect to the rotational direction x of the intake side camshaft 9, and the valve timing of each intake valve 5, 5 is shifted to the lag side. The above operation is similarly performed for one exhaust valve 6 by the second variable mechanism 12. Although not shown, each cylinder 2
The other intake valve 5 and the other exhaust valve 6 in
As usual, the opening and closing of the valve mechanisms 8a and 8b are controlled at fixed valve timings.

そして、本発明の特徴として、第2図および第
3図に示すように、上記吸気側カムシヤフト9の
中心部には、通常のカムシヤフトに設けられてい
るものと同様のオイル通路9cがオイルポンプ
(図示せず)に連通されて形成されている。また、
吸気側カムシヤフト9の回動部材支承部9bの外
周面には環状のオイル通路9dが刻設され、該オ
イル通路9dは、上記オイル通路9cに、半径方
向に延びるオイル通路9eを介して連通されてい
る。また、上記オイル通路9cには、半径方向に
延びてカム面9aに開口するオイル通路9fが連
通されており、該オイル通路9fによつてカム面
9aとタペツト13の受圧部(受圧面)13aと
の間に潤滑用オイルが導かれて潤滑する。また、
図示していない別のオイル通路によつてカムシヤ
フト軸受部等に潤滑用オイルを導いて潤滑するよ
うにしている。排気側のオイル供給通路も吸気側
と同様に構成されており、排気側カムシヤフト1
0には吸気弁側カムシヤフト9の各オイル通路に
対応するオイル通路10c,10d,10e,1
0fが設けられている。
As a feature of the present invention, as shown in FIGS. 2 and 3, an oil passage 9c similar to that provided in a normal camshaft is provided in the center of the intake camshaft 9 for an oil pump ( (not shown). Also,
An annular oil passage 9d is carved on the outer peripheral surface of the rotating member support portion 9b of the intake side camshaft 9, and the oil passage 9d communicates with the oil passage 9c via an oil passage 9e extending in the radial direction. ing. Further, an oil passage 9f extending in the radial direction and opening at the cam surface 9a is communicated with the oil passage 9c. Lubricating oil is introduced between and lubricates. Also,
Lubricating oil is introduced to the camshaft bearing portion and the like through another oil passage (not shown) to lubricate the camshaft bearing portion and the like. The oil supply passage on the exhaust side is also configured in the same way as the intake side, and the exhaust side camshaft 1
0 includes oil passages 10c, 10d, 10e, 1 corresponding to each oil passage of the intake valve side camshaft 9.
0f is provided.

一方、回動部材14,14′には、前記環状の
オイル通路9dに対向するオイル通路14c,1
4′cと、このオイル通路14c,14′cに連通
して嵌挿孔14a,14a,14′a,14′a並
置方向に延びるオイル通路14d,14′dと、
このオイル通路14d,14′dに連通し嵌挿孔
14a,14a,14′a,14′aの内周壁に開
口するオイル通路14e,14e,14′e,1
4′eが穿設されている。オイル通路14d,1
4′dの両端は盲栓22によつて閉塞されている。
上記オイル通路14e,14′eは、回動部材1
4,14′の回動によりタペツト13,13′の摺
動方向に対してカム面9a,10aからのカム力
をタペツト13,13′を介してバルブステム5
s,6sに伝達する作用力線方向(タペツト1
3,13′とバルブステム5s,6sの当接点)
がずれる方向とは反対側、つまりタペツト13,
13′の摺動方向とバルブ5,6の移動方向がず
れたときスプリング7,7の反力によつてタペツ
ト13,13′にかかる横力に対向する側におい
て、嵌挿孔14a,14′aに開口するように形
成されている。よつて上記カムシヤフト9,10
のオイル通路9c,10cからのオイルはオイル
通路9e,10e,9d,10d,14c,1
4′c,14d,14′d,14e,14′eを介
して回動部材14,14′の嵌挿孔14a,1
4′a、特にタペツト13,13′にかかる横力に
対向する側に導かれて、該嵌挿孔14a,14′
aとタペツト13,13との間を潤滑するように
構成されている。ここで、上記オイル通路14
e,14′eは、操作装置15,15′の作動によ
る特定運転時に上記作用力線方向がタペツト摺動
方向に対して回動部材14,14′の回転方向×
のトレーリング側(第1図では右側)にずれるよ
うに設定されているため、回動部材14の回動方
向×のリーデイング側(第1図では左側)に設け
られている。
On the other hand, the rotating members 14, 14' have oil passages 14c, 1 facing the annular oil passage 9d.
4'c, and oil passages 14d, 14'd communicating with the oil passages 14c, 14'c and extending in the juxtaposed direction of the fitting holes 14a, 14a, 14'a, 14'a,
Oil passages 14e, 14e, 14'e, 1 communicate with these oil passages 14d, 14'd and open on the inner peripheral walls of the fitting holes 14a, 14a, 14'a, 14'a.
4'e is drilled. Oil passage 14d, 1
Both ends of 4'd are closed with blind plugs 22.
The oil passages 14e, 14'e are connected to the rotating member 1
4, 14', the cam force from the cam surfaces 9a, 10a is applied to the valve stem 5 via the tappets 13, 13' in the sliding direction of the tappets 13, 13'.
Direction of acting force transmitted to s, 6s (tapepet 1
3, 13' and the contact point of valve stem 5s, 6s)
on the opposite side to the direction in which the tappet 13,
The fitting holes 14a, 14' are located on the side opposite to the lateral force applied to the tappets 13, 13' by the reaction force of the springs 7, 7 when the sliding direction of the valves 13' and the moving direction of the valves 5, 6 deviate. It is formed to open at a. Therefore, the above camshafts 9 and 10
The oil from the oil passages 9c, 10c flows through the oil passages 9e, 10e, 9d, 10d, 14c, 1.
4'c, 14d, 14'd, 14e, 14'e through the fitting holes 14a, 1 of the rotating members 14, 14'.
4'a, in particular the fitting holes 14a, 14' are guided to the side opposite to the lateral force acting on the tappets 13, 13'.
It is configured to lubricate between the tappet a and the tappets 13, 13. Here, the oil passage 14
e and 14'e indicate that the direction of the acting force line is the rotational direction of the rotating members 14 and 14' with respect to the tapepet sliding direction during a specific operation by the operation of the operating devices 15 and 15'.
Since it is set to be shifted to the trailing side (right side in FIG. 1) of the rotating member 14, it is provided on the leading side (left side in FIG. 1) in the rotation direction x of the rotating member 14.

さらに、上記タペツト13の受圧部13a中央
にはタペツト13の内部空洞部13dに連通する
オイル孔13eが上記オイル通路9fと合致する
ように形成され、またタペツト13の押圧部13
bの外周寄りには該内部空洞部13dに連通する
例えば2つのオイル孔13f,13fがそれぞれ
吸気弁5のバルブステム5sと摺接する領域をさ
けて形成されており、上記カム面9aとタペツト
受圧部13aとの間を潤滑した潤滑用オイルが上
記オイル孔13eからタペツト13の内部空洞部
13dに流入したのち、オイル孔13f,13f
からタペツト押圧部13b(押圧面)に導かれて、
該押圧部13bと吸気弁5のバルブステム5sと
の間を潤滑するようにしている。上記排気側のタ
ペツト13′への潤滑用オイル供給系統も吸気側
と同様に構成されており、排気側タペツト13′
には吸気側タペツト13の各オイル孔に対応する
オイル孔13′e,13′fが設けられている。
Furthermore, an oil hole 13e communicating with the internal cavity 13d of the tappet 13 is formed in the center of the pressure receiving part 13a of the tappet 13 so as to coincide with the oil passage 9f.
For example, two oil holes 13f, 13f communicating with the internal cavity 13d are formed near the outer periphery of b, avoiding the area in which they come into sliding contact with the valve stem 5s of the intake valve 5, and are connected to the cam surface 9a and the tappet receiving pressure. After the lubricating oil that has lubricated the gap between the tappet 13a and the tappet 13a flows into the internal cavity 13d of the tapepet 13 from the oil hole 13e,
is guided from the tappet pressing part 13b (pressing surface),
The space between the pressing portion 13b and the valve stem 5s of the intake valve 5 is lubricated. The lubricating oil supply system to the exhaust side tappet 13' is constructed in the same way as the intake side, and the exhaust side tappet 13'
Oil holes 13'e and 13'f corresponding to the oil holes of the intake tappet 13 are provided in the intake tappet 13.

次に上記実施例の装置の作用について説明す
る。エンジンの通常運転時には、第1および第2
可変機構11,12が非作動状態にあり、各気筒
2の吸気弁5および排気弁6はそれぞれ吸気側お
よび排気側弁機構8a,8bによつて各々所定の
バルブタイミングで開閉制御される。一方、エン
ジンの特定運転時(例えば高負荷高回転時)に
は、第1および第2可変機構11,12が共に作
動し、各気筒2における一方の吸気弁5のバルブ
タイミングが第1可変機構11によつて遅れ側
に、また一方の排気弁6のバルブタイミングが第
2可変機構12によつて遅れ側にずれるように制
御される。このことにより、吸気弁5,5の開弁
期間が吸気の慣性作用の大きい遅れ側に延び、か
つ排気弁6,6の総開弁期間が長くなつたことに
より、吸気の充填効率が向上するとともに掃気効
率が向上し、出力性能の向上が図られる。
Next, the operation of the apparatus of the above embodiment will be explained. During normal operation of the engine, the first and second
The variable mechanisms 11 and 12 are in a non-operating state, and the intake valve 5 and exhaust valve 6 of each cylinder 2 are controlled to open and close at predetermined valve timings by the intake side and exhaust side valve mechanisms 8a and 8b, respectively. On the other hand, during a specific operation of the engine (for example, during high load and high rotation), the first and second variable mechanisms 11 and 12 operate together, and the valve timing of one intake valve 5 in each cylinder 2 is controlled by the first variable mechanism. 11, and the valve timing of one exhaust valve 6 is controlled to be delayed by a second variable mechanism 12. As a result, the opening period of the intake valves 5, 5 is extended to the lag side where the inertial action of the intake air is large, and the total opening period of the exhaust valves 6, 6 is lengthened, thereby improving the filling efficiency of the intake air. At the same time, scavenging efficiency is improved and output performance is improved.

このように、上記各可変機構11,12は、一
般の動弁機構(直接駆動方式オーバーヘドカム機
構)に、タペツト13,13′を嵌挿保持する回
動部材14,14′および該回動部材14,1
4′をカムシヤフト9,10まわりに回動させる
操作装置15,15′を設けるだけで形成される
ので、構造が簡単であり、製造容易かつ安価なも
のとなる。
In this way, each of the variable mechanisms 11 and 12 has rotating members 14 and 14' that fit and hold the tappets 13 and 13' in a general valve mechanism (direct drive type overhead cam mechanism), and the rotating members 14 and 14', Member 14,1
4' around the camshafts 9 and 10, the structure is simple, easy to manufacture, and inexpensive.

しかも、上記可変機構11,12の可変制御
は、カムシヤフト9,10の特定角度位置に対す
るカム面9a,10aとタペツト受圧部13a,
13′aとの接触位置をカムシヤフト9,10ま
わりに変化させて行なうので、可変制御を応答性
良くかつ信頼性良く安定して行うことができる。
Moreover, the variable control of the variable mechanisms 11, 12 is performed by controlling the cam surfaces 9a, 10a, the tapepet pressure receiving portion 13a,
Since the contact position with 13'a is changed around the camshafts 9 and 10, variable control can be performed stably with good responsiveness and reliability.

そして、上記回動部材14,14′はカムシヤ
フト9,10に相互に回転を許すように直接支承
されており、該支承部材であるカムシヤフト9,
10の回転軸を中心として回動するものであるの
で、この回動部材14,14′の支承部分におい
て、オイルポンプからカムシヤフト9,10のオ
イル通路9c,10cに圧送されたオイルを、該
カムシヤフト9,10のオイル通路9d,10
d,9e,10eを介して、回動部材14,1
4′のオイル通路14c,14′cに簡易にかつ確
実に導くことができ、その後回動部材14,1
4′のオイル通路14d,14′d,14e,1
4′eを介して嵌挿孔14a,14′aに導いて、
該嵌挿孔14a,14′aとタペツト13,1
3′の摺動部13c,13′cとの間を潤滑するこ
とができ、よつて簡単な構造でもつて嵌挿孔14
a,14′aとタペツト13,13′との間の摺動
を円滑に行うことができる。
The rotating members 14, 14' are directly supported by the camshafts 9, 10 so as to allow mutual rotation, and the camshafts 9, 10, which are the supporting members,
10, the oil pumped from the oil pump to the oil passages 9c, 10c of the camshafts 9, 10 is transferred from the oil pump to the oil passages 9c, 10c of the camshafts 9, 10 at the supporting portions of the rotating members 14, 14'. 9, 10 oil passages 9d, 10
Rotating members 14, 1 via d, 9e, 10e
4' can be easily and reliably guided to the oil passages 14c, 14'c, and then the rotating members 14, 1
4' oil passages 14d, 14'd, 14e, 1
4'e to the insertion holes 14a, 14'a,
The fitting holes 14a, 14'a and the tappets 13,1
It is possible to lubricate between the sliding parts 13c and 13'c of 3', and the fitting hole 14 can be
A, 14'a and the tapepets 13, 13' can slide smoothly.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、第4図は第3図のタペツト13,1
3′の代わりに油圧タペツト33を用いた場合の
構造を示す断面図である。この第4図に示される
ように油圧タペツト33は、前述した受圧部13
aと摺動部13cとを有する有底円筒状の第1部
材34と、連通孔35aが設けられた仕切板を中
央部に有する第2部材35と、この第2部材35
と第1部材34に対して液密に摺動可能で底板が
前記押圧部(押圧面)13bとされた有底円筒状
の第3部材36とからなる。第2部材35と第3
部材36との間にはスプリング37が縮装され、
該スプリング37により第2部材35は押圧部1
3aの裏面に押圧当接されている。また第2部材
35の仕切板下方(すなわち第3部材36側)に
は、連通孔35aに着座可能なチエツクボールと
該チエツクボールを連通孔35a側に付勢するス
プリングとからなるチエツクバルブ38が配され
ている。第1部材34の摺動部13cを形成する
周壁には、前記オイル通路9cにオイル通路9
d,9e,14c,14dを介して連通し嵌挿孔
14aに開口するオイル通路14eと対向する位
置において第1連通孔34aが設けられ、また受
圧部13aの裏面の、第2部材35に当接する部
分の一部には第2連通孔34bが設けられてい
る。したがつて第2部材35の内部と第1部材3
4の受圧部13a裏面によつて画成された油溜り
室39は、上記第2連通孔34b、第2部材35
と第1部材34周壁との間の空間35c、それに
第1連通孔34aを介して回動部材14に削設さ
れたオイル通路14eに連通する。よつて、オイ
ルポンプによりオイル通路9cに圧送される潤滑
用オイルは、前述の如くカム面9aと油圧タペツ
ト33の受圧部13aとの間を潤滑するととも
に、オイル通路14eを介して上記油溜り室39
に圧送される。バルブクリアランスが生じると、
油溜り室39のオイルが連通孔35aとチエツク
バルブ38を通過して、第2部材35と第3部材
36とにより画成された油圧室40に流入し、第
3部材36は第1部材34から離れるように摺動
する。それによつて油圧タペツト33が全体的に
伸長し、第3部材36の押圧部13bがバルブス
テム5s上端に当接し、他方第1部材34の受圧
部13aがカム面9aに当接すると、油圧室40
の圧力が上昇して該油圧室40へのオイル流入が
停止する。油圧室40内に流入したオイルは、油
圧タペツト33がカム面9aとバルブステム5s
とによつて上下から押圧されても、チエツクバル
ブ38の作用により油溜り室39に逆流しないか
ら油圧タペツト33が縮化することはなく、該油
圧タペツト33はカムシヤフト9の運動を確実に
バルブステム5sに伝達するようにしたものであ
る。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, FIG. 4 shows the tappets 13, 1 in FIG.
FIG. 3 is a sectional view showing a structure in which a hydraulic tappet 33 is used instead of the hydraulic tappet 3'. As shown in FIG. 4, the hydraulic tappet 33 is connected to the pressure receiving section 13 described above.
a first member 34 having a cylindrical shape with a bottom and a sliding portion 13c; a second member 35 having a partition plate provided with a communication hole 35a in the center;
and a third member 36 in the shape of a cylinder with a bottom, which is slidable liquid-tightly with respect to the first member 34 and whose bottom plate serves as the pressing portion (pressing surface) 13b. The second member 35 and the third
A spring 37 is compressed between the member 36 and
The spring 37 causes the second member 35 to press the pressing portion 1
It is pressed into contact with the back surface of 3a. Further, below the partition plate of the second member 35 (that is, on the third member 36 side), there is a check valve 38 consisting of a check ball that can be seated in the communication hole 35a and a spring that biases the check ball toward the communication hole 35a. It is arranged. The peripheral wall forming the sliding portion 13c of the first member 34 has an oil passage 9 connected to the oil passage 9c.
A first communication hole 34a is provided at a position opposite to the oil passage 14e that communicates with the oil passage 14e and opens into the fitting hole 14a through the holes 14c and 14d. A second communication hole 34b is provided in a part of the contacting portion. Therefore, the inside of the second member 35 and the first member 3
The oil reservoir chamber 39 defined by the back surface of the pressure receiving part 13a of No. 4 is connected to the second communication hole 34b and the second member 35.
The space 35c between the first member 34 and the peripheral wall of the first member 34 communicates with the oil passage 14e cut in the rotating member 14 through the first communication hole 34a. Therefore, the lubricating oil pumped into the oil passage 9c by the oil pump lubricates between the cam surface 9a and the pressure receiving part 13a of the hydraulic tappet 33 as described above, and also flows into the oil reservoir chamber via the oil passage 14e. 39
is pumped to. When valve clearance occurs,
Oil in the oil reservoir chamber 39 passes through the communication hole 35a and the check valve 38, and flows into the hydraulic chamber 40 defined by the second member 35 and the third member 36, and the third member 36 is connected to the first member 34. Slide away from the As a result, the hydraulic tappet 33 is expanded as a whole, and the pressing part 13b of the third member 36 comes into contact with the upper end of the valve stem 5s, and when the pressure receiving part 13a of the first member 34 comes into contact with the cam surface 9a, the hydraulic pressure chamber 40
The pressure increases and the flow of oil into the hydraulic chamber 40 is stopped. The oil that has flowed into the hydraulic chamber 40 is transferred to the hydraulic tappet 33 between the cam surface 9a and the valve stem 5s.
Therefore, even if pressure is applied from above and below, the check valve 38 prevents the oil from flowing back into the reservoir chamber 39, so the hydraulic tappet 33 does not contract, and the hydraulic tappet 33 ensures that the movement of the camshaft 9 is controlled by the valve stem. 5s.

そして、この場合、上記回動部材14のオイル
通路14c,14d,14eは、油圧タペツト3
3の伸長時に第1部材34の特に該タペツト33
にかかる横力に対向する側にオイルを導くことも
兼ねるように形成されており、上記油圧タペツト
33と嵌挿孔14aとの間を潤滑して両者間の摺
動を円滑にするようにしている。
In this case, the oil passages 14c, 14d, 14e of the rotating member 14 are connected to the hydraulic tappet 3.
3 of the first member 34, especially the tapepet 33.
It is also formed to guide oil to the side opposite to the lateral force applied to it, and is designed to lubricate the space between the hydraulic tappet 33 and the insertion hole 14a, thereby smoothing the sliding movement between the two. There is.

また、上記実施例では2つの吸気ポート3と2
つの排気ポート4とを有する4バルブ式多気筒エ
ンジンに適用した例を示したが、各々一つの吸気
ポートと排気ポートとを有する2バルブ式等、各
種型式の単気筒ないし多気筒エンジンに対しても
適用可能である。
In addition, in the above embodiment, two intake ports 3 and 2 are provided.
Although an example of application to a four-valve multi-cylinder engine having two exhaust ports 4 has been shown, it is applicable to various types of single-cylinder or multi-cylinder engines, such as a two-valve type each having one intake port and one exhaust port. is also applicable.

以上詳細に説明した通り、本発明のエンジンの
バルブタイミング制御装置は、簡単な構造でもつ
て、エンジンのバルブタイミングを応答性、信頼
性良く確実に可変制御できるもであり、バルブタ
イミングの可変制御の容易実施化に大いに寄与す
るものとなる。しかも、回動部材をカムシヤフト
に相互に回転を許すように支承し、該支承部分を
介してカムシヤフトのオイル通路からタペツトを
嵌挿保持する回動部材の嵌挿孔にオイルを導くよ
うにしたので、簡単な構造でもつてタペツトと嵌
挿孔との間にオイルを確実に導くことができ、両
者間の摺動の円滑化を容易に行うことができる。
As explained in detail above, the engine valve timing control device of the present invention is capable of reliably variable control of engine valve timing with good responsiveness and reliability even though it has a simple structure. This will greatly contribute to ease of implementation. Moreover, the rotary member is supported on the camshaft so as to allow mutual rotation, and oil is guided from the oil passage of the camshaft to the fitting hole of the rotary member into which the tappet is inserted and held through the supporting portion. Even with a simple structure, oil can be reliably guided between the tappet and the fitting hole, and the sliding movement between the two can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を多気筒エンジンに適用した実
施例を示す縦断面図、第2図は第1図の実施例の
可変機構部分の拡大斜視図、第3図は第1図のタ
ペツトまわりを示す拡大縦断面図、第4図は変形
例を示す第3図相当図である。 5……吸気弁、5s……バルブステム、6……
排気弁、9,10……カムシヤフト、9a,10
a……カム面、9c,9d,9e,10c,10
d,10e……オイル通路、11……第1可変機
構、12……第2可変機構、13,13′,33
……タペツト、13a,13′a……タペツト受
圧部、13b,13′b……タペツト押圧部、1
4,14′……回動部材、14a,14′a……嵌
挿孔、14c,14d,14e,14′c,1
4′d,14′e……オイル通路、15,15′…
…操作装置。
Fig. 1 is a vertical sectional view showing an embodiment in which the present invention is applied to a multi-cylinder engine, Fig. 2 is an enlarged perspective view of the variable mechanism portion of the embodiment of Fig. 1, and Fig. 3 is a section around the tappet of Fig. 1. FIG. 4 is an enlarged longitudinal cross-sectional view showing a modified example, and FIG. 4 is a view corresponding to FIG. 3 showing a modification. 5...Intake valve, 5s...Valve stem, 6...
Exhaust valve, 9, 10...Camshaft, 9a, 10
a...Cam surface, 9c, 9d, 9e, 10c, 10
d, 10e... Oil passage, 11... First variable mechanism, 12... Second variable mechanism, 13, 13', 33
... Tappet, 13a, 13'a... Tappet pressure receiving part, 13b, 13'b... Tappet pressing part, 1
4, 14'... Rotating member, 14a, 14'a... Fitting hole, 14c, 14d, 14e, 14'c, 1
4'd, 14'e...Oil passage, 15, 15'...
...Operating device.

Claims (1)

【特許請求の範囲】[Claims] 1 カムシヤフトのカム面から力を受ける受圧部
および上記カム面からの力をバルブステムに伝達
する押圧部を有するタペツトと、該タペツトが摺
動自在に嵌挿される嵌挿孔を有し、上記カムシヤ
フトに相互に回転を許すように回動自在に支承さ
れた回動部材とを備え、該回動部材をカムシヤフ
トの回りに揺動させてバルブタイミングを変更す
るようにしたエンジンのバルブタイミング制御装
置であつて、上記回動部材に、カムシヤフトに設
けたオイル通路から嵌挿孔にオイルを導くオイル
通路を設けたことを特徴とするエンジンのバルブ
タイミング制御装置。
1. A tappet having a pressure receiving part that receives force from the cam surface of the camshaft and a pressing part that transmits the force from the cam surface to the valve stem, and a fitting hole into which the tappet is slidably inserted; A valve timing control device for an engine, comprising a rotating member rotatably supported to allow mutual rotation, and the rotating member is swung around a camshaft to change valve timing. A valve timing control device for an engine, wherein the rotating member is provided with an oil passage that guides oil from an oil passage provided in the camshaft to the fitting hole.
JP58040184A 1983-03-10 1983-03-10 Valve timing control device for engine Granted JPS59188006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58040184A JPS59188006A (en) 1983-03-10 1983-03-10 Valve timing control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58040184A JPS59188006A (en) 1983-03-10 1983-03-10 Valve timing control device for engine

Publications (2)

Publication Number Publication Date
JPS59188006A JPS59188006A (en) 1984-10-25
JPH0472967B2 true JPH0472967B2 (en) 1992-11-19

Family

ID=12573693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58040184A Granted JPS59188006A (en) 1983-03-10 1983-03-10 Valve timing control device for engine

Country Status (1)

Country Link
JP (1) JPS59188006A (en)

Also Published As

Publication number Publication date
JPS59188006A (en) 1984-10-25

Similar Documents

Publication Publication Date Title
US6343581B2 (en) Variable valve timing and lift structure for four cycle engine
JPH0131003B2 (en)
US5529032A (en) Valve-operation control system for internal combustion engine
JPH0941924A (en) Power transmitting mechanism and variable valve system provided with power transmitting mechanism
JPH0346643B2 (en)
JPH0551762B2 (en)
JPH0318003B2 (en)
JPS59188007A (en) Valve timing control device for engine
JPH0252085B2 (en)
JPH0472967B2 (en)
JP3287610B2 (en) Variable valve timing / lift mechanism
JP3383988B2 (en) Variable lift valve
JPS59188008A (en) Valve timing control device for engine
JPH0125881B2 (en)
JPS5946308A (en) Valve timing control device of engine
JPH0232447B2 (en)
JPH0312208B2 (en)
JPH037525Y2 (en)
JPS59160016A (en) Apparatus for controlling valve timing of engine
JPH0160650B2 (en)
JPH0355643B2 (en)
JPS5965510A (en) Valve timing control device for engine
JP2599698B2 (en) Valve train for internal combustion engine
JPH06264708A (en) Valve system for internal combustion engine
JPS59188009A (en) Valve timing control device for engine