JPS63312588A - Slow moving solenoid valve - Google Patents

Slow moving solenoid valve

Info

Publication number
JPS63312588A
JPS63312588A JP14415787A JP14415787A JPS63312588A JP S63312588 A JPS63312588 A JP S63312588A JP 14415787 A JP14415787 A JP 14415787A JP 14415787 A JP14415787 A JP 14415787A JP S63312588 A JPS63312588 A JP S63312588A
Authority
JP
Japan
Prior art keywords
pressure
valve body
bellows
valve element
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14415787A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuno
博 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP14415787A priority Critical patent/JPS63312588A/en
Publication of JPS63312588A publication Critical patent/JPS63312588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To slowly move a main valve element at the time of opening and closing operation by controlling a connecting path between a pressure intensifying chamber provided with buffer means for controlling the moving speed of the main valve element and the secondary port side by a pilot valve element. CONSTITUTION:When a pilot valve element 13 is operated by electromagnetic driving to open a valve seat 12, pressure in the periphery of a bellows 7 decreases to be lowered to the secondary pressure P2, so that force in the valve opening direction acts on a main valve element 6. A fluid with pressure P1, however, remains in the bellows 7 to resist the valve opening operation of the main valve element 6. The residual pressure in the bellows 7 gradually escapes through an equalizing hole 8 to the outside of the bellows 7 and finally becomes equal to the secondary pressure P2. As the pressure in the bellows 7 is lowered, the main valve element 6 is gradually separated from a valve seat 5.

Description

【発明の詳細な説明】 皮果上■■旦分立 本発明は、流体の通路の開閉に用いられる電磁弁に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solenoid valve used for opening and closing a fluid passage.

従来生技歪 電磁弁は、ソレノイドコイルに対する通電のオン、オフ
によって弁体を直ちに全開又は全閉動作させているもの
で、その1次口と2次口間において急激に差圧を発生さ
せたり、差圧を消滅させたりしている。
Conventional production technology strain solenoid valves operate the valve body fully open or fully closed immediately by turning on and off the power to the solenoid coil, which causes a sudden pressure difference between the primary and secondary ports. , and eliminate the differential pressure.

が”°しよ゛と るμ 占 電磁弁の開閉に伴う差圧の発生又は消滅は、該差圧が大
きい場合には流体回路全体の動作を不安定にしたり、或
いは弁体に耳障りな擦過音を生ぜしめたりする場合があ
る。
When the differential pressure occurs or disappears when the solenoid valve opens and closes, if the differential pressure is large, it may cause unstable operation of the entire fluid circuit or cause unpleasant scratches on the valve body. It may cause noise.

本発明は上記した点に着目して為されたものであり、ソ
レノイドコイルに対する通電のオン、オフ時において、
弁体を徐動させることにより差圧の急激な発生又は消滅
を避けるようにしたものである。
The present invention has been made with attention to the above points, and when the solenoid coil is energized or turned off,
By slowly moving the valve body, sudden generation or disappearance of differential pressure is avoided.

。 占  ゛ るための 上記の目的を達成するため、本発明においては、弁本体
に、その1次口と2次口間に設けた弁座に接離する主弁
体を設け、弁本体に対し1次口を開口した弁室に連通ず
る圧力変換室を設けると共に該圧力変換室において流体
の流路抵抗により主弁体の移動速度を制御する緩衝手段
を設け、該圧力変換室と2次口側を接続する通路を電T
61WIA動のパイロット弁体により開閉する構成を採
用した。
. In order to achieve the above-mentioned objective of occupying the valve body, the present invention provides a main valve body that approaches and separates from the valve seat provided between the primary port and the secondary port of the valve body. A pressure conversion chamber communicating with the valve chamber with the primary port open is provided, and a buffer means for controlling the moving speed of the main valve element by fluid flow path resistance in the pressure conversion chamber is provided, and the pressure conversion chamber and the secondary port are connected to each other. Connect the passage connecting the sides to the electric T.
A configuration is adopted in which the valve is opened and closed using a 61WIA-operated pilot valve body.

ス崖■ 第1図において、弁本体1内の弁室2に対して1次口3
と2次口4が設けられ、該1次口3と2次口4間の弁座
5に接離するニードル型の主弁体6が摺動自在に設けら
れている。
■ In Figure 1, the primary port 3 is connected to the valve chamber 2 in the valve body 1.
and a secondary port 4 are provided, and a needle-shaped main valve body 6 is slidably provided to move toward and away from a valve seat 5 between the primary port 3 and the secondary port 4.

7は衝撃手段としての伸縮性を有するベローズであり、
一端が半田付けにより主弁体6に、他端がスポット溶接
により弁本体1にそれぞれ接合される。ベローズ7には
、直径30μm程度の微小な均圧孔8が形成される。衝
撃手段としてのベローズ7は、主弁体6と弁本体1間の
微小間隙Gを介して1次口3側に開口した弁室2と連通
ずる圧力変換室2′に設けられる。
7 is a bellows having elasticity as an impact means;
One end is joined to the main valve body 6 by soldering, and the other end is joined to the valve body 1 by spot welding. A minute pressure equalizing hole 8 having a diameter of about 30 μm is formed in the bellows 7 . A bellows 7 serving as an impact means is provided in a pressure conversion chamber 2' that communicates with a valve chamber 2 that opens toward the primary port 3 through a minute gap G between the main valve body 6 and the valve body 1.

弁本体lにおける衝撃手段の側方部分の開口9と出口管
4′の開口10とを連結する管路11゜11′間には弁
座12が介設され、該弁座12に接離する電磁駆動のパ
イロット弁体13がプランジャー管14’内において摺
動自在に設けられる。
A valve seat 12 is interposed between the pipe line 11° 11' connecting the opening 9 of the side portion of the impact means in the valve body l and the opening 10 of the outlet pipe 4', and the valve seat 12 approaches and separates from the valve seat 12. An electromagnetically driven pilot valve body 13 is slidably provided within the plunger pipe 14'.

14はソレノイドコイル、15は吸引鉄心、16はスプ
リングである。
14 is a solenoid coil, 15 is a suction core, and 16 is a spring.

第1図の状態において、1次圧P、は主弁体6と弁本体
1との間隙Gから均圧孔8を通ってベローズ7の内部に
及んで該圧力の流体で満たされ、主弁体6は弁座5に圧
接する。
In the state shown in FIG. 1, the primary pressure P extends from the gap G between the main valve body 6 and the valve body 1 through the pressure equalizing hole 8 to the inside of the bellows 7, which is filled with fluid at this pressure, and the main valve The body 6 is pressed against the valve seat 5.

次に、電磁駆動によりパイロット弁体13を作動させて
弁座12を開口すると、弁座12の口径が前記間隙Gの
流量よりも大きな流量を許容するので、先ず圧力変換室
2′におけるベローズ7の周囲の圧力が減少して2火工
P2に下がり、主弁体6に対して開弁方向の力が作用す
る。しかし、ベローズ7内には圧力P、の流体が残留し
ており、主弁体6の該開弁動作に抵抗する。ベローズ7
内の残留圧力は均圧孔8からベローズ7外に徐々に抜は
出し、ベローズ7内の圧力が低下して最終的には2火工
P2と等しくなる。ベローズ7内の圧力が低下するにつ
れて、主弁体6も徐々に弁座から離れ、弁の開口が徐々
にされて第2図の状態となる。
Next, when the pilot valve body 13 is actuated by electromagnetic drive to open the valve seat 12, the diameter of the valve seat 12 allows a larger flow rate than the flow rate in the gap G, so first, the bellows 7 in the pressure conversion chamber 2' The surrounding pressure decreases to 2 pyrotechnics P2, and a force in the valve opening direction acts on the main valve body 6. However, fluid at a pressure P remains in the bellows 7 and resists the opening operation of the main valve body 6. bellows 7
The residual pressure inside the bellows 7 is gradually released from the pressure equalizing hole 8 to the outside of the bellows 7, and the pressure inside the bellows 7 decreases until it finally becomes equal to the 2 pyrotechnics P2. As the pressure inside the bellows 7 decreases, the main valve body 6 also gradually moves away from the valve seat, and the valve is gradually opened to the state shown in FIG. 2.

第2図の状態からパイロット弁体13を閉じると、圧力
変換室2′の圧力が上昇して1火工P1となり、主弁体
6の2次口4に面した部分は低い2火工P2となるので
、受圧面積の差から主弁体6は閉弁方向に移動する。し
かし、ベローズ7内は未だ圧力P8のままであるので、
主弁体6が弁座5側に動く量はわずかであり、直ちに弁
座5を閉じることができない、即ち、ベローズ7に設け
られた均圧孔8からベローズ7内に徐々に流体が流入し
、やがてベローズ7内も圧力P1に上昇してこの上昇に
したがって主弁体6は徐々に弁座5に接近して弁閉する
に至る。
When the pilot valve body 13 is closed from the state shown in FIG. Therefore, the main valve body 6 moves in the valve closing direction due to the difference in pressure receiving area. However, since the pressure inside the bellows 7 is still at P8,
The amount by which the main valve body 6 moves toward the valve seat 5 is small, and the valve seat 5 cannot be closed immediately. In other words, fluid gradually flows into the bellows 7 from the pressure equalizing hole 8 provided in the bellows 7. Then, the pressure inside the bellows 7 also rises to P1, and as the pressure rises, the main valve body 6 gradually approaches the valve seat 5 and the valve is closed.

第3図及び第4図は本発明の他の実施例を示し、別の緩
衝手段を用いている以外は第1,2図の実施例と同様で
あって、対応する構成には同一の符号を付して示しであ
る。
3 and 4 show other embodiments of the invention, which are similar to the embodiments of FIGS. 1 and 2 except that different buffering means are used, and corresponding components have the same reference numerals. It is shown with .

弁室2内において、弁本体1に円筒7′を固設し、主弁
体6の軸方向の他側にこの円筒7′が摺動可能に挿入さ
れる空所6aを形成する。円筒7′と空所6a間には微
小間隙8′が設けて流体の流入、流出の速度を制限する
もので、この円筒7′、空所6a及び微小間隙8′によ
り緩衝手段を構成する。
In the valve chamber 2, a cylinder 7' is fixed to the valve body 1, and a cavity 6a is formed on the other side of the main valve body 6 in the axial direction into which the cylinder 7' is slidably inserted. A minute gap 8' is provided between the cylinder 7' and the cavity 6a to limit the speed of inflow and outflow of fluid, and the cylinder 7', the cavity 6a, and the minute gap 8' constitute a buffer means.

第5図及び第6図は本発明の更に他の実施例を示し、弁
室2内において、弁本体1にピストン7“を支柱部7a
″を介して固設し、主弁体6にはこのピストン7′が摺
動可能に挿入されるシリンダ状の空所63′を形成する
。ピストン7“には空所6a′側において皿状のパツキ
ン7b“が設けられ、ピストン7′とパツキン7b“の
固着部分に均圧孔8Nが形成され、この均圧孔8“によ
り流体の流入流出の速度を制限する。ピストン7′、パ
ツキン7b“、空所6a′及び均圧孔8′によって緩衝
手段を構成する。
FIGS. 5 and 6 show still another embodiment of the present invention, in which a piston 7'' is attached to the valve body 1 in the valve chamber 2 at the strut portion 7a.
The main valve body 6 has a cylindrical cavity 63' into which the piston 7' is slidably inserted. A pressure-equalizing hole 8N is formed in the fixed portion of the piston 7' and the gasket 7b'', and this pressure-equalizing hole 8'' limits the speed of inflow and outflow of fluid. , the cavity 6a' and the pressure equalizing hole 8' constitute a buffer means.

上記各側において、均圧孔等の径や間隙の幅、緩衝手段
の容積等を変更することにより、弁体の摺動速度を適宜
設定することができる。
On each side, the sliding speed of the valve body can be set as appropriate by changing the diameter of the pressure equalizing hole, the width of the gap, the volume of the buffer means, etc.

第7図は本発明にがかる徐動電磁弁を1台の室外ユニッ
トと複数台の室内ユニットからなるヒートポンプ利用の
マルチエアコンに組み入れた使用例を示す。
FIG. 7 shows an example of use in which the slow-acting solenoid valve according to the present invention is incorporated into a multi-air conditioner using a heat pump, which consists of one outdoor unit and a plurality of indoor units.

Aは室外ユニット、Bは室内ユニット、Cは圧縮機、D
は4方逆転弁、Eは冷媒の液化防止に用いる徐動電磁弁
、Fは電気式膨張弁である。図中符号の実線は冷房時、
破線は暖房時の冷媒の流れを示している。このシステム
では、暖房時には徐動電磁弁Eを開けて室内ユニッ)B
へ高温高圧状態の冷媒を供給する。冷房時においてもこ
の徐動電磁弁Eを開いて加熱蒸気となった冷媒を圧縮機
Cに流す。
A is an outdoor unit, B is an indoor unit, C is a compressor, D
is a four-way reversing valve, E is a slow-acting electromagnetic valve used to prevent liquefaction of the refrigerant, and F is an electric expansion valve. The solid line with the symbol in the figure is during cooling;
The broken line shows the flow of refrigerant during heating. In this system, during heating, the slow-acting solenoid valve E is opened and the indoor unit
A high-temperature, high-pressure refrigerant is supplied to the Even during cooling, this slow-acting electromagnetic valve E is opened to allow the refrigerant, which has become heated vapor, to flow into the compressor C.

このマルチシステムにおいて、暖房時に使用しない室内
ユニットBがある場合、対応する電磁弁Eを閉じて冷媒
の供給を止める。この場合には、該室内ユニットBに冷
媒が溜るのを防ぐために対応する膨張弁Fは開放とする
が、この場合には圧縮機Cの高圧側に接続されている該
電磁弁Eの両側には大きな圧力差がかかるようになり、
次に該室内ユニッI−Bを使用するために電磁弁を開口
すると、急激に大量の冷媒が通過しようとし、従来の全
閉−全開式作動の電磁弁を用いた場合には耳ざわりな冷
媒擦過音が発生することとなるが、本発明の徐動電磁弁
Eを用いることにより、かかる擦過音の発生を阻止する
ことができる。
In this multi-system, if there is an indoor unit B that is not used during heating, the corresponding solenoid valve E is closed to stop the supply of refrigerant. In this case, the corresponding expansion valve F is opened to prevent refrigerant from accumulating in the indoor unit B, but in this case, both sides of the solenoid valve E connected to the high pressure side of the compressor C are A large pressure difference will be applied to the
Next, when the solenoid valve is opened to use the indoor unit I-B, a large amount of refrigerant suddenly tries to pass through, causing unpleasant refrigerant friction when using a conventional fully closed-fully open type solenoid valve. Although noise will be generated, by using the slowly moving solenoid valve E of the present invention, it is possible to prevent the generation of such scraping noise.

光皿曵汰果 本発明は上記した如(に、弁本体に、その1次口と2次
口間に設けた弁座に接離する主弁体を設け、弁本体に対
し1次口を開口した弁室に連通ずる圧力変換室を設ける
と共に該圧力変換室において流体の流路抵抗により主弁
体の移動速度を制御する緩衝手段を設け、該圧力変換室
と2次口側を接続する通路を電磁駆動のパイロット弁体
により開閉するようにして成るものであるから、開閉動
作時において主弁体を徐動させることが出来、差圧の発
生又は消滅を徐々に制御できる特長を有する。
As described above, the present invention provides a main valve element that comes into contact with and separates from a valve seat provided between a primary port and a secondary port in the valve body, and the primary port is connected to the valve body. A pressure conversion chamber communicating with the opened valve chamber is provided, and a buffer means for controlling the moving speed of the main valve body by fluid flow path resistance is provided in the pressure conversion chamber, and the pressure conversion chamber and the secondary port side are connected. Since the passage is opened and closed by an electromagnetically driven pilot valve element, the main valve element can be moved gradually during the opening and closing operation, and the generation or disappearance of differential pressure can be gradually controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の徐動電磁弁の一実施例を示す断面図、 第2図は同上の作動状態の断面図、 第3図は他の実施例を示す断面図、 第4図は同上の作動状態の断面図、 第5図は更に他の実施例を示す断面図、第6図は同上の
作動状態の断面図、 第7図は本発明にかかる徐動電磁弁の使用例についての
説明図である。 1・・・弁本体、2′・・・圧力変換室、3・・・1次
口、4・・・2次口、5・・・弁座、6・・・主弁体、
7・・・緩衝手段、13・・・パイロット弁体。 特許出願人   株式会社鷺宮製作所 第3図
Fig. 1 is a cross-sectional view showing one embodiment of the slow acting solenoid valve of the present invention, Fig. 2 is a cross-sectional view of the same operating state, Fig. 3 is a cross-sectional view showing another embodiment, and Fig. 4 is the same as the above. 5 is a sectional view showing still another embodiment; FIG. 6 is a sectional view showing the same operating state; FIG. It is an explanatory diagram. 1... Valve body, 2'... Pressure conversion chamber, 3... Primary port, 4... Secondary port, 5... Valve seat, 6... Main valve body,
7...Buffer means, 13...Pilot valve body. Patent applicant: Saginomiya Seisakusho Co., Ltd. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 弁本体に、その1次口と2次口間に設けた弁座に接離す
る主弁体を設け、弁本体に対し1次口を開口した弁室に
連通する圧力変換室を設けると共に該圧力変換室におい
て流体の流路抵抗により主弁体の移動速度を制御する緩
衝手段を設け、該圧力変換室と2次口側を接続する通路
を電磁駆動のパイロット弁体により開閉することを特徴
とする徐動電磁弁。
The valve body is provided with a main valve body that comes into contact with and separates from a valve seat provided between the primary port and the secondary port, and a pressure conversion chamber is provided that communicates with the valve chamber with the primary port open to the valve body. A buffer means is provided in the pressure conversion chamber to control the moving speed of the main valve body by fluid flow resistance, and a passage connecting the pressure conversion chamber and the secondary port side is opened and closed by an electromagnetically driven pilot valve body. slow acting solenoid valve.
JP14415787A 1987-06-11 1987-06-11 Slow moving solenoid valve Pending JPS63312588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14415787A JPS63312588A (en) 1987-06-11 1987-06-11 Slow moving solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14415787A JPS63312588A (en) 1987-06-11 1987-06-11 Slow moving solenoid valve

Publications (1)

Publication Number Publication Date
JPS63312588A true JPS63312588A (en) 1988-12-21

Family

ID=15355526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14415787A Pending JPS63312588A (en) 1987-06-11 1987-06-11 Slow moving solenoid valve

Country Status (1)

Country Link
JP (1) JPS63312588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100916A (en) * 2009-11-01 2013-05-23 Zhejiang Sanhua Climate & Appliance Controls Group Co Ltd Flow path opening/closing control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913175A (en) * 1982-07-09 1984-01-23 Matsushita Refrig Co Fluid control valve
JPS60162782A (en) * 1984-02-03 1985-08-24 Daijietsuto Kogyo Kk Coated hard alloy tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913175A (en) * 1982-07-09 1984-01-23 Matsushita Refrig Co Fluid control valve
JPS60162782A (en) * 1984-02-03 1985-08-24 Daijietsuto Kogyo Kk Coated hard alloy tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100916A (en) * 2009-11-01 2013-05-23 Zhejiang Sanhua Climate & Appliance Controls Group Co Ltd Flow path opening/closing control device

Similar Documents

Publication Publication Date Title
JP5019862B2 (en) Pilot type control valve
JP3145233B2 (en) Two-way solenoid valve
JP2006316852A (en) Pilot operated solenoid valve and heat exchange system using the same
JP2966597B2 (en) Two-way solenoid valve
JPS63312588A (en) Slow moving solenoid valve
JP7367972B2 (en) pilot valve
JPS63293373A (en) Two stage operating type solenoid valve
JP3387586B2 (en) Expansion valve with solenoid valve
JPS5842876A (en) Selector valve
JP2000227171A (en) Two-way solenoid valve
JPH0894211A (en) Step type pilot solenoid valve
JPH0718494B2 (en) Four-way valve for refrigeration cycle
CN221569601U (en) Electromagnetic valve
JPS63219973A (en) Three-way solenoid valve
JPS61218883A (en) Four way type reversing valve for reversible refrigerating cycle
JP2011080654A (en) Heat pump device
JP4446628B2 (en) Bypass valve and air conditioner using the same
JPH034082A (en) Solenoid valve
JP2761414B2 (en) Reversible valve
JPS62196477A (en) Four-way valve for refrigerating cycle
JP2758943B2 (en) Reversible valve
JPH0547754B2 (en)
JPH04258585A (en) Electromagnetic valve
JPS61114065A (en) Pilot type dynamic pressure valve
JPH05302687A (en) Reversible valve