JPS5913175A - Fluid control valve - Google Patents

Fluid control valve

Info

Publication number
JPS5913175A
JPS5913175A JP12006082A JP12006082A JPS5913175A JP S5913175 A JPS5913175 A JP S5913175A JP 12006082 A JP12006082 A JP 12006082A JP 12006082 A JP12006082 A JP 12006082A JP S5913175 A JPS5913175 A JP S5913175A
Authority
JP
Japan
Prior art keywords
valve
pressure
bellows
ball valve
fluid control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12006082A
Other languages
Japanese (ja)
Inventor
Hitoshi Nasu
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP12006082A priority Critical patent/JPS5913175A/en
Publication of JPS5913175A publication Critical patent/JPS5913175A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To improve a response characteristic for a change of pressure in a valve device opened and closed in accordance with the displacement of a pressure responsive element such as bellows or the like, by constituting the device such that a ball valve is adsorbed by a permanent magnet secured to the pressure responsive element. CONSTITUTION:In a fluid control valve 1 provided to a refrigerating circuit, its high pressure inlet 7 is connected to a condenser 3, and high pressure outlet 8 is connected to a capillary tube 4, while a low pressure inlet 9 and a low pressure outlet 10 are respectively connected to suction lines 6 connected to a discharge side of a compressor 2. The inside of this fluid control valve 1 is separated into high and low pressure sides by a bellows 13, and a high pressure valve device 11 and a low pressure valve device 12 are provided in the control valve 1. Then the low pressure valve device 12 is constituted by a housing 14 and a ball valve 15, and the ball valve 15 is attractively held by a permanent magnet 16 secured to the upper end of said bellows 13. In this way, a follow up characteristic of the ball valve 15 for the displacement of the bellows 13 is increased.

Description

【発明の詳細な説明】 本発明は流体の圧力変化に応動して変位するベローズ等
の圧力応動素子(以下ベローズと称す)の変位に応じて
弁装置を開閉する流体制御弁の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a fluid control valve that opens and closes a valve device in response to the displacement of a pressure responsive element (hereinafter referred to as bellows) such as a bellows that is displaced in response to changes in fluid pressure.

2ページ この種の流体制御弁の例としては本出願人がすでに出願
している。特願昭56−187640号「冷凍装置用流
体制御弁」があり、ロータリーコンプレッサを採用する
冷凍装置のサイクリング運転停止時にエバポレータに流
入するスーパーヒートガスをカットするため、ロータリ
ーコンプレッサ吸入部の圧力変化で圧力応動素子(以下
ベローズと呼ぶ)を変位させ、コンデンサ出口に設けた
弁装置を開閉するものである。これは第3図に示すよう
に、入口管101と出口管102間に設けた弁装置10
3の弁座104を形成した流体制御弁1oOのケーシン
グ106内に気密にロー付さレタベローズ106と、と
のベローズ106を図中上方に付勢するコイルバネ1o
7、更にコイルバネ107の下端保持とベローズ106
の過度の動きを規制するリティナ−108と、ケーシン
グ105のガイド部105 a内を摺動し、上部に弁体
1o9、下部に凸部1o9bを形成したヂランジャ10
9とを有している。そして、ベローズ106の凹部10
6aとプランジャ下部凸部109’b3ページ とは求心のだめの隙間106bを設けてサイジング加工
にて連結的に挟着支持したものである。この構成は第3
図に示すように、ベローズ106の下部が傾斜していて
もプランジャ109はガイド部106aと軸芯を同一に
して摺動可能に保持しており、弁装置104に対し求心
を可能としている。周知のようにベローズ106やコイ
ルバネ107等のバネ性部材というものは、その平行度
等を正確に作製することが難しく、この種の求心機構を
必要とするが、スーパーヒートガスをカットするための
流体制御弁としては前記ベロー・ズ106を変位させる
ためのベローズ106内外の差圧ΔPを大きくする程そ
の効果は大となるが、運転保障のためにはΔPを小さく
する方が良い。
Page 2 An example of this type of fluid control valve has already been filed by the present applicant. There is a patent application No. 56-187640 entitled "Fluid control valve for refrigeration equipment", which is designed to cut the superheat gas flowing into the evaporator when the cycling operation of a refrigeration equipment employing a rotary compressor is stopped. A pressure-responsive element (hereinafter referred to as a bellows) is displaced to open and close a valve device provided at the outlet of the capacitor. As shown in FIG.
A letter bellows 106 is hermetically soldered inside the casing 106 of the fluid control valve 1oO forming the valve seat 104 of No. 3, and a coil spring 1o that urges the bellows 106 upward in the figure.
7. Further holding the lower end of the coil spring 107 and the bellows 106
a retainer 108 that restricts excessive movement of the diranjar 10, which slides within the guide portion 105a of the casing 105, and has a valve body 1o9 at the top and a convex portion 1o9b at the bottom.
9. Then, the recess 10 of the bellows 106
6a and the plunger lower convex portion 109'b page 3 are connected and supported by sizing processing with a centripetal gap 106b provided. This configuration is the third
As shown in the figure, even if the lower part of the bellows 106 is inclined, the plunger 109 is slidably held with the same axis as the guide part 106a, and can be centripetal to the valve device 104. As is well known, spring members such as the bellows 106 and the coil spring 107 are difficult to manufacture with accurate parallelism and require this kind of centripetal mechanism. As a fluid control valve, the larger the differential pressure ΔP between the outside and the outside of the bellows 106 for displacing the bellows 106, the greater the effect, but in order to ensure operation, it is better to reduce ΔP.

しかし、前述のように、求心機構のため隙間1o6bを
設けると第4図aに示すように弁装置104を開放する
ときにはベローズ106が伸張しプランジャ109の凸
部109bの上面を下方に押下げ、+ 逆に弁装置104を閉鎖するときには第6図すに示すよ
うにベローズ凹部106a下面でプランジャ109の凸
部109b下面を押上げることになる。つまり、差圧Δ
Pと弁装置104の流量Qとの関係を示すと第6図のよ
うになり、差圧ΔPを上げて行くときは図の実線に示す
流量を示し、逆に差圧ΔPを下げて行くときは図中一点
鎖線に示す流量特性を示す。つまり、弁装置104の開
放する差圧ΔPはAであり、閉鎖する差圧ΔPはBとな
る。従って、運転を保障するためA圧力は必然的に決定
され、B圧力は低くなることになり、結果的に、流体制
御弁100の本来の目的であるサイクリング運転停止後
、スーパーヒートガスをカットするために弁装置104
が閉路する時間が延くなシ、効果が減少してしまうとい
う欠点を有していた。
However, as described above, if the gap 1o6b is provided for the centripetal mechanism, as shown in FIG. + Conversely, when closing the valve device 104, the lower surface of the convex portion 109b of the plunger 109 is pushed up by the lower surface of the bellows recess 106a, as shown in FIG. In other words, the differential pressure Δ
The relationship between P and the flow rate Q of the valve device 104 is shown in Figure 6. When increasing the differential pressure ΔP, the flow rate is indicated by the solid line in the figure, and conversely, when decreasing the differential pressure ΔP indicates the flow rate characteristics shown by the dashed-dotted line in the figure. That is, the differential pressure ΔP at which the valve device 104 opens is A, and the differential pressure ΔP at which the valve device 104 closes is B. Therefore, the A pressure is inevitably determined to ensure operation, and the B pressure is lowered.As a result, the original purpose of the fluid control valve 100, which is to cut off the superheat gas after the cycling operation is stopped. Valve device 104 for
This has the disadvantage that the time it takes for the circuit to close is extended, and the effectiveness is reduced.

tたベローズ106とプランジャ109とは挟着保持し
ているため、ベローズ106の下面が傾斜してもプラン
ジャ109は摺動軸と平行に保持可能としている。しか
し、周知のようにベローズ−106,コイルバネ107
等のバネ性部材というものは圧縮時には特に座屈を生じ
やすく、この種5 ページ の流体制御弁1oOに彎用した場合には第6図に示すよ
うな座屈による偏心を生じる。この偏心によりプランジ
ャ109はでローズ106に挟着保持された下部凸部1
09bは側方に変位せしめられ(図中下方の矢印)、プ
ランジャ109は略中央でガイド105a下端に当接し
この点を支蔗とする、てこの原理によりプランジャ10
9先端の弁体109aは前記の偏心方向と逆方向に付勢
変位せしめられる(図中上方の矢印)。こめ時、弁体1
’ 09 aと弁座104は付勢壺位部にて接するのみ
となり、結局、弁装置103としては第6図のように閉
弁不可能な状態にならざるを得す、ぺ□ 1oOとしては弁装置10’3を閉路できず、スーパー
ヒートガスのカットが不可能となる。これをの摺動精度
を極端に向上し、プランジャ′109の傾きを規制する
ぼとが考えられるが、逆にこの方式は加工・組立工数の
増加という欠点を有していた。′ 6ページ かかる点に鑑み、本発明はベローズに永久磁石を固着し
、磁力にてボール弁をベローズ平面部に磁着して弁装置
を開閉するもので、ベローズとボール弁を分離して構成
することにより上記欠点を改・ 、、□ □゛    
   1□。
Since the bellows 106 and the plunger 109 are sandwiched and held, the plunger 109 can be held parallel to the sliding axis even if the lower surface of the bellows 106 is inclined. However, as is well known, the bellows 106 and the coil spring 107
Springy members such as the above are particularly prone to buckling when compressed, and when used in this kind of fluid control valve 1oO, page 5, eccentricity due to buckling occurs as shown in FIG. Due to this eccentricity, the plunger 109 is held by the lower convex portion 1 held by the rose 106.
09b is displaced laterally (lower arrow in the figure), and the plunger 109 abuts the lower end of the guide 105a at approximately the center and is supported by this point.
The valve body 109a at the tip 9 is biased and displaced in a direction opposite to the eccentric direction described above (arrow above in the figure). When closing, valve body 1
' 09 a and the valve seat 104 only come into contact at the biasing pot position, and as a result, the valve device 103 is forced to become unable to close as shown in Fig. 6. The valve device 10'3 cannot be closed, and the superheat gas cannot be cut. Although it is conceivable to use a method to extremely improve the sliding accuracy and restrict the inclination of the plunger '109, this method has the drawback of increasing the number of processing and assembly steps. ' In view of the above, the present invention opens and closes the valve device by fixing a permanent magnet to the bellows and magnetically attaching the ball valve to the flat surface of the bellows, and the bellows and ball valve are separated. By doing so, the above drawbacks will be improved.
1□.

良するものである。It is good.

以下に本鼻明の二実施例を図面を参考にして説明□する
之 、4′流体″制御弁、2は・−タリー・ンプレ・す、・
 : 3はコンデンサ、4はキャピラリチューブ、5はエバポ
レータ、6はサクションラインで、流体制御弁1の高圧
入ロア、高圧出口8をコンデンサ3・ : ゛ とキャピラリチューブ4の間に、また、低圧入口9−□
低ホ所ロ10をサクションライン6の一部に薯E それぞれ介在接待せしめて冷凍回路を構成してい□ る。
Two embodiments of the present invention will be explained below with reference to the drawings.The 4' fluid control valve 2 is...
: 3 is a condenser, 4 is a capillary tube, 5 is an evaporator, 6 is a suction line, and the high pressure inlet lower and high pressure outlet 8 of the fluid control valve 1 are connected between the condenser 3 and the capillary tube 4, and also the low pressure inlet. 9-□
A refrigeration circuit is constructed by intervening the low-pressure holes 10 and 10 in a part of the suction line 6, respectively.

流体制御弁1は内部に高圧弁装置11と低圧弁装置12
を備え、高圧と低圧との分離はベローズ13□ を気密に保持することにより行なっている。高圧弁装置
11ば弁座14aを先端に、ネジ部14bを外周に形成
し上面に高圧出口8を保持したハウ7N−ジ ジンク14とボール弁15とで構成し、ベローズ13の
変位部である先端凹部13a内に永久磁石16(以下マ
グネットという)を固着し、磁性材料であるボール弁1
5を磁着せしめている。当然であるがマグネット16の
磁力は高圧弁装置11前後の圧力差によるボール弁16
の弁座14aへの吸着力より大としている、またベロー
ズ13とポール弁16以外は非磁性材である銅または銅
合金を使用している。ベローズ13とボール弁16との
当接部である先端凹部13aの外表面凸部13dはボー
ル弁16の摺動軸に対して直角な平面に形成している。
The fluid control valve 1 has a high pressure valve device 11 and a low pressure valve device 12 inside.
The high pressure and low pressure are separated by keeping the bellows 13□ airtight. The high-pressure valve device 11 is composed of a valve seat 14a at the tip, a screw portion 14b formed on the outer periphery, and a ball valve 15 and a ball valve 15, with a threaded portion 14b formed on the outer periphery and a high-pressure outlet 8 held on the upper surface. A permanent magnet 16 (hereinafter referred to as magnet) is fixed in the recess 13a, and the ball valve 1 made of magnetic material is attached.
5 is magnetically attached. Naturally, the magnetic force of the magnet 16 is caused by the pressure difference between the front and rear of the high pressure valve device 11.
The attraction force to the valve seat 14a is greater than that of the bellows 13 and the pole valve 16, and non-magnetic materials such as copper or copper alloy are used for the parts other than the bellows 13 and the pole valve 16. An outer surface convex portion 13d of the tip recess 13a, which is a contact portion between the bellows 13 and the ball valve 16, is formed in a plane perpendicular to the sliding axis of the ball valve 16.

ボール弁16はケーシング17の上部の略円筒部17a
内に収納され、この円筒部17a内径はボール弁15よ
り若干大きく形成し、ボール弁16が摺動可能としてい
る。また円筒部17aの上端には内面にネジを形成し、
ハウジング14のネジ部14bを螺合せしめている。
The ball valve 16 has a substantially cylindrical portion 17a in the upper part of the casing 17.
The inner diameter of this cylindrical portion 17a is slightly larger than that of the ball valve 15, so that the ball valve 16 can slide. Further, a screw is formed on the inner surface of the upper end of the cylindrical portion 17a,
The threaded portion 14b of the housing 14 is screwed together.

低圧弁装置12は低圧ハウジング18の上面中央に弁座
19を形成し、下部中央に低圧入口9を保持している。
The low pressure valve device 12 has a valve seat 19 formed in the center of the upper surface of the low pressure housing 18, and holds a low pressure inlet 9 in the center of the lower part.

低圧ハウジング18の上部外周には溝部18aが形成さ
れ、この溝部18aに係合し、円板状のリーフ弁2oの
外周に若干の隙を有する位置に複数のストッパ21.2
1を有し、このストッパ21.21はり−フ弁2o上方
に延在し、各々の先端を中央下方に臨ませ、先端とリー
フ弁2oとの間に一定の隙ができるよう構成している。
A groove 18a is formed on the outer periphery of the upper part of the low pressure housing 18, and a plurality of stoppers 21.2 are engaged with the groove 18a and positioned with a slight gap around the outer periphery of the disc-shaped leaf valve 2o.
1, the stoppers 21 and 21 extend above the leaf valve 2o, with each tip facing downward to the center, and configured so that a certain gap is created between the tip and the leaf valve 2o. .

つまり低圧弁装置12は逆止弁機構であり、リーフ弁2
oが上方に浮上した時は各ストッパ21゜21の先端と
各々点で保持され、動作するときは各ストッパ21.2
1の軸内部を摺動し弁座19とでシールするものである
In other words, the low pressure valve device 12 is a check valve mechanism, and the leaf valve 2
When o floats upward, it is held at the tip of each stopper 21.21, and when it moves, each stopper 21.2
It slides inside the shaft of 1 and seals with the valve seat 19.

ベローズ13はボス22とキャップ23により保持され
ている。つまりボス22は中央孔部22aの上端をベロ
ーズ13の開口部外周13bと略同−とし、この孔部2
2aの上端以外はこれより若干大に形成しており、キャ
ップ23は中央に孔部9ページ 成し、このボス中央孔部22a下部とキャブ23のテー
パ23b下端との隙は前記ベローズ13の開口部13b
の肉厚より僅かに小なるように形成されている。従って
、ボス22の中央孔部22aにベローズ13の開口部1
3bを臨ませ、キャップ23を圧入することによりベロ
ーズ13は気密に保持することを可能としている。ベロ
ーズ13の開口部13bの即上部の凹部13cはこの開
口部13bより小なる寸法に形成されている。ボス22
の外周には全周にわたる凹部22bが形成され、ケーシ
ング17内に挿入した後ケーシング17を展進加工して
この凹部22bに沿わせることによシケーシング17内
をボス22にて気密に分離している。
The bellows 13 is held by a boss 22 and a cap 23. In other words, the boss 22 has the upper end of the central hole 22a approximately the same as the outer circumference 13b of the opening of the bellows 13, and this hole 2
The cap 23 has nine holes in the center, and the gap between the lower part of the boss center hole 22a and the lower end of the taper 23b of the cab 23 is the opening of the bellows 13. Part 13b
The wall thickness is slightly smaller than that of the Therefore, the opening 1 of the bellows 13 is located in the central hole 22a of the boss 22.
3b facing the bellows 13 and press-fitting the cap 23 allows the bellows 13 to be held airtight. A recess 13c immediately above the opening 13b of the bellows 13 is formed to have a smaller size than the opening 13b. boss 22
A recess 22b is formed around the entire circumference of the casing 17, and after being inserted into the casing 17, the casing 17 is expanded to fit along the recess 22b, thereby airtightly separating the inside of the casing 17 with the boss 22. ing.

高圧弁装置170ボール弁15の付勢力はベローズ13
のバネ性を利して行々い、ケーシング17にベローズ1
3を保持したボス22を保持した後ボール弁15を収納
してハウジング14のネジ部14bの螺合位置を調整し
てベローズ13を圧縮することによシ付勢力を得るもの
であシ、付勢力10ページ を所定の力に設定した後ハウジング14とケーシング1
7を気密にロー付するものである。
The urging force of the high pressure valve device 170 and the ball valve 15 is the bellows 13
The bellows 1 is attached to the casing 17 by taking advantage of its spring properties.
After retaining the boss 22 that holds the bellows 13, the ball valve 15 is housed, the screwing position of the threaded portion 14b of the housing 14 is adjusted, and the bellows 13 is compressed to obtain a biasing force. After setting force 10 to the specified force, housing 14 and casing 1
7 is brazed airtightly.

次に上記構成による動作について説明する。Next, the operation of the above configuration will be explained.

ロータリーコンプレッサ2の運転中はコンデンサ3及び
高圧弁装置11内は高圧圧力に、エバポレータ6サクシ
ヨンライン6及び低圧弁装置12内は低圧圧力となり、
ベローズ13内外に圧力差が生じ、ベローズ13は下方
へ圧縮されている。このときボール弁16は高圧弁装置
11前後の圧力差による吸着力で弁座14aに吸着され
るがマグネット16による磁着力はこの吸着力より大で
あるだめ、マグネット16の磁力にてベローズ13の先
端13aに磁着しているボール弁16もベローズ13の
圧縮と共に下方へ移動し、高圧弁装置11は開路してい
るつまり、ボール弁16はベローズ13に固着されてい
るような動きをするものである。一方低圧弁装置12は
冷凍装置内を循環する冷媒によりリーフ弁2oはストッ
パ21の先端まで吹上げられ、リーフ弁2oの外周とケ
ーシング17との間隙を冷媒ガスが流れ正常運転が行1
16−ジ なわれている。
While the rotary compressor 2 is in operation, the condenser 3 and high pressure valve device 11 are at high pressure, and the evaporator 6 suction line 6 and low pressure valve device 12 are at low pressure.
A pressure difference is generated between the inside and outside of the bellows 13, and the bellows 13 is compressed downward. At this time, the ball valve 16 is attracted to the valve seat 14a by the attraction force caused by the pressure difference before and after the high-pressure valve device 11. However, since the magnetic attraction force by the magnet 16 is greater than this attraction force, the magnetic force of the magnet 16 causes the bellows 13 to be attracted to the valve seat 14a. The ball valve 16 magnetically attached to the tip 13a also moves downward as the bellows 13 is compressed, and the high-pressure valve device 11 is opened.In other words, the ball valve 16 moves as if it were fixed to the bellows 13. It is. On the other hand, in the low pressure valve device 12, the leaf valve 2o is blown up to the tip of the stopper 21 by the refrigerant circulating in the refrigeration device, and the refrigerant gas flows through the gap between the outer periphery of the leaf valve 2o and the casing 17, and normal operation is performed.
16- It's been a long time.

次に停止時について説明すると先ず、ロータリーコンプ
レッサ2の停止により冷媒の循環が停止する。これによ
りリーフ弁2oを吹上げる力がなくなりリーフ弁は減下
し弁座19に着座シールする。
Next, when the rotary compressor 2 is stopped, the circulation of the refrigerant is stopped. As a result, the force that blows up the leaf valve 2o disappears, and the leaf valve decreases and is seated and sealed on the valve seat 19.

このとき低圧回路内はガス冷媒と冷凍機油とが分離した
状態で存在し、リーフ弁2oにも冷凍機油が付着してい
るがストッパ21.21とは各々先端の一点で接してい
るのみであり冷凍機油による吸着は発生せず停止と同時
にリーフ弁20は部落下する。その後、ロータリーコン
プレッサ2から高圧ガスが低圧弁装置12内に流入し、
ベローズ13内外の圧力差は近似となりがローズ13自
体の伸張力により伸張し、ボール弁16も上方へ変位せ
しめられ高圧弁装置11を閉路する。このとiベローズ
13のボール弁15との当接部1saはボール弁16の
摺動軸に対して直角な平面に形成して磁着せしめている
ため、第2図に示すようにベローズ13に多少の座屈変
形等が生じてもボ。
At this time, the gas refrigerant and refrigerating machine oil exist in a separated state in the low-pressure circuit, and although the refrigerating machine oil is also attached to the leaf valve 2o, it is only in contact with the stopper 21 and 21 at one point at the tip of each leaf valve 2o. Adsorption by refrigerating machine oil does not occur, and the leaf valve 20 partially falls at the same time as the engine stops. After that, high pressure gas flows into the low pressure valve device 12 from the rotary compressor 2,
The pressure difference between the inside and outside of the bellows 13 is approximate, but it expands due to the expansion force of the rose 13 itself, and the ball valve 16 is also displaced upward, closing the high pressure valve device 11. The contact portion 1sa of the i-bellows 13 with the ball valve 15 is formed in a plane perpendicular to the sliding axis of the ball valve 16 and is magnetically attached, so that Even if some buckling deformation etc. occurs, it will not work.

−ル弁16は外表面凸部13dの平面上を移動可能であ
り、この平面は軸方向に直角であるため、ボール弁16
に付勢される力は常に軸方向のみの力となり、ボール弁
15は弁座14aの中央に常に直角に付勢され確実なシ
ールが可能となっている。
- The ball valve 16 is movable on the plane of the outer surface convex portion 13d, and since this plane is perpendicular to the axial direction, the ball valve 16
The force applied to the ball valve 15 is always applied only in the axial direction, and the ball valve 15 is always applied perpendicularly to the center of the valve seat 14a to ensure reliable sealing.

以上の説明からも明らかであるように本発明による流体
制御弁は非磁性体の本体内に圧力応動素子と弁装置とを
備え、圧力応動素子には永久磁石を固着し、弁装置は略
円筒状のガイド上面中央に弁座を形成し、上記ガイド内
径よシ若干径の小なる磁性材料より成るボール弁を収納
し、前記圧力応動素子に固着した永久磁石にて上記ボー
ル弁を磁着保持して成るものであるから、圧力変化によ
り圧力応動素子が圧縮されると磁着されているボール弁
は圧力応動素子に固着されているものと同−道 に圧力応動素子の圧縮に通従するため、圧力応動素子の
変位開始圧力と弁装置の開弁圧力とは一致する。逆に圧
力応動素子が伸張するときは直接ボール弁を押上げるた
め弁装置の開閉弁圧力はポカ応動素子の変位圧力と同一
になり、例えば冷凍装置37.−ッ 置の圧力変化を迅速に弁装置の動作とすることが可能と
なり例えばスーパーヒートガスをカットする効果は最大
限に発揮することができるも、、のであ。
As is clear from the above description, the fluid control valve according to the present invention includes a pressure-responsive element and a valve device within a non-magnetic body, a permanent magnet is fixed to the pressure-responsive element, and the valve device has a substantially cylindrical shape. A valve seat is formed in the center of the upper surface of the shaped guide, and a ball valve made of a magnetic material having a diameter slightly smaller than the inner diameter of the guide is accommodated, and the ball valve is held magnetically by a permanent magnet fixed to the pressure responsive element. Therefore, when the pressure-responsive element is compressed due to a pressure change, the magnetically attached ball valve follows the compression of the pressure-responsive element in the same way as the ball valve that is fixed to the pressure-responsive element. Therefore, the displacement start pressure of the pressure responsive element and the valve opening pressure of the valve device match. Conversely, when the pressure-responsive element expands, it directly pushes up the ball valve, so the opening/closing valve pressure of the valve device becomes the same as the displacement pressure of the pressure-responsive element. -It is possible to quickly convert the pressure change into the operation of the valve device, and the effect of cutting off superheat gas, for example, can be maximized.

る。さらに、圧力応動素子とボール弁との磁着面を平面
に形成することにより、圧力応動素子に座屈変形が生じ
てもボール弁はこの平面上を移動可能であるため、ボー
ル弁は確実に弁座に付勢され、確実なシールを可能とす
るものである。
Ru. Furthermore, by forming the magnetically attached surfaces of the pressure-responsive element and the ball valve into a plane, the ball valve can move on this plane even if buckling deformation occurs in the pressure-responsive element. It is biased against the valve seat and enables reliable sealing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流体制御弁の断面図お
よび冷凍装置の配管図、、第2図は第1図の動作時の要
部拡大断面図で、aは開時、bは閉時を示す、第3図は
従来例を示す流体制御弁の要部断面図、第4図a、bは
第3図の動作時の要部拡大断面図、第6図は第3図の従
来例の動作時の一状況を示す断面図、第6図は従来例の
圧力特性図である。 1・・・・・・流体制御弁、11・・・・・・弁装置、
13・・・・・・圧力応動素子(ベローズ)、13a・
・・・・・先端凹部、15・・・・・・ボール弁、17
・・・・・・本体(ケーシング)、14ページ 17a・・・・・・内筒部(ガイド)、16・・・・・
・永久磁石、13d・・・・・・外表面凸部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第4図
Fig. 1 is a sectional view of a fluid control valve and a piping diagram of a refrigeration system showing an embodiment of the present invention, and Fig. 2 is an enlarged sectional view of the main part of Fig. 1 during operation, a is when open, b is 3 shows the main part of a fluid control valve showing a conventional example; FIGS. 4a and b are enlarged sectional views of the main part during operation of FIG. FIG. 6 is a cross-sectional view showing a situation during operation of the conventional example, and FIG. 6 is a pressure characteristic diagram of the conventional example. 1... Fluid control valve, 11... Valve device,
13...Pressure responsive element (bellows), 13a.
...Tip recess, 15...Ball valve, 17
...Body (casing), page 14 17a...Inner tube (guide), 16...
- Permanent magnet, 13d... Convex portion on outer surface. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性体の本体内に圧力応動素子と弁装置とを備
え、圧力応動素子には永久磁石を固着し、前記弁装置は
略円筒状のガイド上面中央に弁座を形成し、このガイド
内径より若干径の小なる磁性材料より成るボール弁を収
納し、前記圧力応動素子に固着した永久磁石にて上記ボ
ール弁を磁着保持した流体制御弁。
(1) A pressure-responsive element and a valve device are provided in a non-magnetic body, a permanent magnet is fixed to the pressure-responsive element, and the valve device has a valve seat formed in the center of the upper surface of the approximately cylindrical guide. A fluid control valve in which a ball valve made of a magnetic material having a diameter slightly smaller than the inner diameter of the guide is housed, and the ball valve is magnetically held by a permanent magnet fixed to the pressure responsive element.
(2)前記永久磁石は前記圧力応動素子内部の凹部に固
着し、この四部の外表面凸部を平面に形成し、この凸部
平面にて前記ボール弁を磁着保持した特許請求の範囲第
1項記載の流体制御弁。
(2) The permanent magnet is fixed to a recess inside the pressure-responsive element, and the four outer surface projections are formed into a flat surface, and the ball valve is held magnetically on the flat surface of the projection. The fluid control valve according to item 1.
JP12006082A 1982-07-09 1982-07-09 Fluid control valve Pending JPS5913175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12006082A JPS5913175A (en) 1982-07-09 1982-07-09 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12006082A JPS5913175A (en) 1982-07-09 1982-07-09 Fluid control valve

Publications (1)

Publication Number Publication Date
JPS5913175A true JPS5913175A (en) 1984-01-23

Family

ID=14776891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12006082A Pending JPS5913175A (en) 1982-07-09 1982-07-09 Fluid control valve

Country Status (1)

Country Link
JP (1) JPS5913175A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188376U (en) * 1983-06-01 1984-12-13 株式会社 日本気化器製作所 Diaphragm type on-off valve
JPS61152764U (en) * 1985-03-13 1986-09-20
JPS63312588A (en) * 1987-06-11 1988-12-21 Saginomiya Seisakusho Inc Slow moving solenoid valve
EP0408220A2 (en) * 1989-07-10 1991-01-16 ZENECA Corp. Mould control in forage
WO2000015990A1 (en) * 1998-09-16 2000-03-23 Kabushiki Kaisha Saginomiya Seisakusho Bellows type pressure responding valve
EP1420163A2 (en) * 2002-11-12 2004-05-19 Fujikoki Corporation Control valve for variable capacity compressor
CN102155574A (en) * 2011-04-06 2011-08-17 宣伯民 Isolated control device for ball float valve
JP2020169691A (en) * 2019-04-03 2020-10-15 株式会社不二工機 Valve device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188376U (en) * 1983-06-01 1984-12-13 株式会社 日本気化器製作所 Diaphragm type on-off valve
JPS61152764U (en) * 1985-03-13 1986-09-20
JPS63312588A (en) * 1987-06-11 1988-12-21 Saginomiya Seisakusho Inc Slow moving solenoid valve
EP0408220A2 (en) * 1989-07-10 1991-01-16 ZENECA Corp. Mould control in forage
WO2000015990A1 (en) * 1998-09-16 2000-03-23 Kabushiki Kaisha Saginomiya Seisakusho Bellows type pressure responding valve
EP1030092A1 (en) * 1998-09-16 2000-08-23 Kabushiki Kaisha Saginomiya Seisakusho Bellows type pressure responding valve
US6250600B1 (en) 1998-09-16 2001-06-26 Kabushiki Kaisha Saginomiya Seisakusho Bellows-type pressure responsive valve
EP1030092A4 (en) * 1998-09-16 2004-07-14 Saginomiyaseisakusho Kk Bellows type pressure responding valve
EP1420163A2 (en) * 2002-11-12 2004-05-19 Fujikoki Corporation Control valve for variable capacity compressor
EP1420163A3 (en) * 2002-11-12 2005-08-24 Fujikoki Corporation Control valve for variable capacity compressor
CN102155574A (en) * 2011-04-06 2011-08-17 宣伯民 Isolated control device for ball float valve
JP2020169691A (en) * 2019-04-03 2020-10-15 株式会社不二工機 Valve device

Similar Documents

Publication Publication Date Title
JP5167121B2 (en) Capacity control valve
JPS58158382A (en) Displacement variable compressor
JPS5913175A (en) Fluid control valve
US2434734A (en) Compressor valve
CN107035912A (en) Valve gear
WO2015037208A1 (en) Expansion valve
JP6774577B2 (en) Solenoid valve
JP2001099340A (en) Check valve
JP2001012824A (en) Control valve
EP2664869A1 (en) Refrigerating system and thermostatic expansion valve thereof
JP2001099350A (en) Check valve
JP3046668B2 (en) Expansion valve
JPS58224283A (en) Control valve for fluid
JPH02254270A (en) Temperature actuating type expansion valve
US1494966A (en) Diaphragm valve
JPS62151672A (en) Ultra-high vacuum valve
WO2017170836A1 (en) Control valve
JP6011496B2 (en) Expansion valve
JPS58203373A (en) Control valve for fluid
JP3321520B2 (en) solenoid
JPS58208566A (en) Control valve for fluid
JP2001124441A (en) Expansion valve
JP2017137797A (en) Control valve for variable capacity compressor
JPS59173669A (en) Expansion valve
JPS59229143A (en) Intake device for expansion engine