JPS6331173B2 - - Google Patents

Info

Publication number
JPS6331173B2
JPS6331173B2 JP58122419A JP12241983A JPS6331173B2 JP S6331173 B2 JPS6331173 B2 JP S6331173B2 JP 58122419 A JP58122419 A JP 58122419A JP 12241983 A JP12241983 A JP 12241983A JP S6331173 B2 JPS6331173 B2 JP S6331173B2
Authority
JP
Japan
Prior art keywords
fish
weight
feed
seaweed
bran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58122419A
Other languages
Japanese (ja)
Other versions
JPS6016554A (en
Inventor
Fujiko Kataoka
Tomio Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58122419A priority Critical patent/JPS6016554A/en
Publication of JPS6016554A publication Critical patent/JPS6016554A/en
Publication of JPS6331173B2 publication Critical patent/JPS6331173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、魚残滓、乾燥魚類、乾燥荒粕又は魚
粉を主原料とし、これに副原料としての海藻を用
い、発酵法により過酸化物価及びTBA価の低い
養殖魚用飼料を製造する方法に関する。 海洋蛋白資源(魚貝類等)は乱獲または海洋環
境の変化等から減少する傾向にあり、そのうえ、
遠洋漁業は燃料不足による経済事情および政治的
漁獲制限等の問題を有していることから、養殖漁
業による海洋蛋白資源の確保の必要性は日増しに
高まつて来ているところである。一方、魚の養殖
には良質にして高蛋白の養殖魚用飼料が要求され
ることから、養殖魚用飼料としては生餌が好まし
いが、生餌は一般に高価であるばかりでなくその
供給には限度がある。従来、生餌にかわる代替飼
料として魚粉が用いられて来ているが、従来の魚
粉は脂質が酸化重合して生成したところの過酸化
脂質が存在し、このものは生物にとつて極めて毒
性の高いものであり、飼料として与えた場合には
肝機能障害やその他の病害を惹き起すこともあ
る。こうしたことから、良質で、安全性が高く、
消化吸収のよい養殖魚用飼料の供給が要求されて
いる。 本発明者らは、こうした要求に応えるべく研究
を重ねた結果、すでに、従来公害の一因にもなつ
ており利用できても肥料程度のものしか用途が見
い出せず商品価値の低い生活廃棄物たる魚残滓を
原材料として有効利用し発酵法により養殖魚用飼
料を製造する方法(特開昭58−9661号公報)、お
よび一般に商業的に提供されている乾燥魚類、乾
燥荒粕または魚粉を原材料として発酵法により養
殖魚用飼料を製造する方法(特公昭59−50299号
公報)を提供しているが、本発明方法は、これら
の発明の方法をさらに改良するものである。すな
わち本発明の方法は、原材料として前述の魚残滓
あるいは乾燥魚類、乾燥荒粕または魚粉を用いる
ほかに、海藻を加え、これらの原料が糸状菌、酵
母および細菌によつて発酵させられることによ
り、魚の嗜好性を高めるとともに、飼料の栄養価
を高め、さらに飼料の粘着性を付与することによ
つてモイストペレツトの形状の保持が促進される
ことを見い出したものである。 本発明は、魚残滓を熱殺菌した後圧力処理によ
り脱脂するとともに水分を30〜50重量%に調整し
たもの、あるいは乾燥魚類の砕化物、乾燥荒粕の
砕化物または魚粉に水を加えて水分を30〜50重量
%に調整した後熱殺菌したものを主原料とし、こ
れに副原料として海藻を細断または粉砕したもの
を加えてよく撹拌し、他方で糸状菌、酵母および
細菌をそれぞれ各別に予備培養して得た菌体を一
緒にしてヌカまたはフスマあるいは両者の混合物
に混ぜ合わせよく混和し、該混合物を前記主原料
と副原料との混合物に加えて良く混合し、二段発
酵、すなわち第1段として30℃の温度条件下通気
撹拌培養し、第2段として40℃の温度条件下通気
撹拌培養し、得られた培養物に60〜70℃の温風を
通気して水分が約10重量%になる程度に乾燥し、
乾燥物を粉砕することにより、過酸化物価および
TBA価の双方が低い養殖魚用飼料として好適な
飼料を得ることを特徴とするものである。以下、
本発明について詳しく述べる。 本発明の方法に用いられる前記魚残滓とは、魚
残滓の呼称で流通される如何なるものも包含する
が、一般には水産加工品工場におけるかまぼこ、
ちくわ等の製造や缶詰製造の際に廃棄される魚残
滓、または魚市場等で魚の解体時に生ずる魚のあ
ら、ひれ、尾等の魚体廃棄物、更には雑魚類をも
包含して意味する。こうした魚残滓は蛋白を凝固
せしめて組織を固化せしめることと殺菌する意味
で、例えばオートクレーブ等の熱蒸気による熱処
理手段で熱処理する。この際の熱処理は、魚残滓
組織の殺菌が行なわれると共に組織中の油脂を遊
離せしめ、それを機械的に搾出できる程度にその
組織を固化すれば事足りることから、品温を150
〜180℃にして25〜45分間、好ましくは約30分間
保持することにより行なわれる。こうした意味か
ら熱処理にかける際の魚残滓の形態は、原形のま
まで勿論よいが、熱殺菌をより効果的に行なう上
からは出来るだけ細かく砕化されていることが望
ましい。かくして熱処理された魚残滓組織は、そ
こから油脂分を除去する目的で圧力処理される。
この圧力処理は、前記熱処理により魚残滓組織中
に遊離した油脂分を除去することと、その後のた
め前記組織中にある程度の水分、即ち30〜50重量
%程度の水分を残存させておく必要のあることか
ら150〜250Kg/cm2の圧力下で公知手段、例えば公
知の油圧法等の手段により搾出処理を行なう。し
たがつてこの圧力処理では完全脱脂は必ずしも行
なわれず幾分かの油脂分が組織中に残存するが、
これは後の発酵処理によりその量は減少され、依
然残存しても後になつて組織を変敗に導くことは
なく、その程度の量の油脂分の残存はかえつて最
終製品に脂肪分を与えることから好都合である。 本発明の方法に用いる前記乾燥魚類、乾燥荒粕
または魚粉は、いずれもそうした商品名で流通さ
れるものを意味し、いずれのものも採用すること
ができる。本発明の方法に適用するに際しては、
前記製品が粉状でないものについては公知の粉砕
手段を介して市販の魚粉程度の粒度に粉砕する。
こうした粉状物は処理に付すに先立ち、水を吸収
させて水分含量を30〜50重量%程度に調整する。
次いで例えばオートクレーブ等の公知の殺菌手段
で殺菌される。 本発明の方法に副原料として用いられる海藻は
特に限定されないが、褐藻類や紅藻類はタイやハ
マチの餌となつているものであり、また大量に存
在し入手が簡単であることから好ましく用いられ
る。例示すれば、褐藻類では、もずく科のもず
く、こんぶ科のこんぶ、あらめ、かじめ、わかめ
等が用いられ、紅藻類では、てんぐさ科のまく
さ、ひらくさ、ゆいきり、すぎのり科のくろはぎ
んなんそう、あかはぎんなんそう、つのまた、ふ
のり科のはなふのり、ふくろふのり、まふのり等
が用いられる。褐藻類は食用となるものが多く高
価格であるので、価格の点では、紅藻類を用いる
のがよい。これらの海藻類は、乾燥したものであ
ればガス殺菌処理した後16〜32メツシユ程度に粉
砕して用い、湿潤状態のものであれば水による洗
浄をよく行なつた後1cm2以下に細断して用いる。
副原料である海藻の添加量は、水分含量を調整し
た主原料に対して、湿潤状態(水分含量約90重量
%)で1〜5重量%、好ましくは約3重量%であ
る。このような海藻の添加量であるため、海藻の
添加による雑菌汚染の問題は殆んど生じないが、
できるだけ上記のごとき殺菌処理をする方が好ま
しい。 次いで上述の主原料と副原料とを混合し、この
混合物は発酵処理に付するが、この発酵にあたつ
ては公知にして容易に入手することのできる微生
物が使用される。それらの微生物は、糸状菌とし
て、アスペルギルス・オリーゼ(Aspergillus
oryzae;IFO 30102、IFO 30103)、アスペルギ
ルス・ソーヤ(Aspergillus sojae;IFO 4241、
IFO 4244)、リゾープス・ジヤポニカス
(Rhizopus japonicus;IFO 5319)、リゾープ
ス・ジヤバニカス(Rhizopus javanicus;IFO
5442)、 酵母として、ハンゼヌラ・アノマラ
(Hanzenula anomala;IFO 0122)、サツカロマ
イセス・セレビシアエ(Saccharomyces
cerevisiae;IFO 0306、IFO 1662)、 細菌として、バチルス・ズブチリス(Bacillus
subtilis;IFO 3007)である。 本発明の方法では、前記糸状菌、酵母および細
菌の三種の微生物を使用する。前記三種の微生物
はそれぞれ公知の特定培養基により予備培養して
使用する。すなわち、糸状菌および酵母の予備培
養についてはMY培地(ポリペプトン、酵母エキ
ス、麦芽エキス、グルコース、水)を使用して振
とう培養を行なう。細菌の予備培養はブイヨン培
地(肉エキス、ポリペプトン、酵母エキス、
NaCl、水)を使用して振とう培養を行なう。か
くして各個に予備培養された三種の微生物は、例
えばオートクレーブ等の公知の手段により滅菌処
理された米あるいは麦のヌカおよびフスマの一方
かあるいは両者の1:1混合物に混入される。こ
の際混入される前記微生物の量は、前記ヌカおよ
びフスマの一方かあるいは両者の1:1混合物1
g中に、糸状菌については2×106cells以上、酵
母と細菌についてはそれぞれ1×106cells以上で
あるようにする。 ここで米あるいは麦のヌカおよびフスマの一方
かあるいは両者の混合物を使用するのは以下の理
由による。すなわち、本発明の飼料の製造方法に
主原料として用いる魚類物質はその成分構成が水
分、粗蛋白、粗脂肪および灰分がほとんどであ
り、糖分をほとんど含まない。また副原料として
加える海藻類は糖分を含んではいるが、それらは
多糖類であつて前記微生物が直接資化しうるもの
ではない。したがつて本発明の方法に用いる主原
料と副原料だけでは微生物が生育するのに必要な
炭素源を欠き、微生物は育たない。したがつて炭
素源として使用するのが主たる理由である。ま
た、米あるいは麦のヌカおよびフスマは可食性に
して糖分の他に各種アミノ酸類、植物性油脂、灰
分、ビタミン類等を含む栄養豊富な複合系であ
り、そのものだけでも微生物の生育条件を具えて
いることの他、最終飼料製品にこうした栄養分を
付与するものであることも重要な理由の一つであ
る。さらに、米あるいは麦のヌカおよびフスマの
混入により、魚類原料からなる培地の気密組織
に、微生物の通気培養に好都合な間隙を与える役
割を果たし、その結果発酵が万遍なく起こるとい
う効果も与える。 本発明において使用する前記米あるいは麦のヌ
カおよびフスマは市販のものでよいが、それ等を
更に微粉化して使用することもできる。また、こ
うした米あるいは麦のヌカおよびフスマには通常
かなりの量の脂肪分が含まれており、脂肪分の過
多は魚の機能障害を惹き起こすおそれのあること
から、これ等は通常の脱脂手段で脱脂して使用す
るのが望ましい。米あるいは麦のヌカおよびフス
マの一方かあるいは両者の1:1混合物の使用量
は、水分含量を50%前後に調整した魚類原料に対
して、1〜15重量%、好ましくは3〜10重量%で
ある。 本発明の方法において、前述の糸状菌、酵母お
よび細菌の三種の微生物を使用して魚類原料を発
酵せしめる理由は以下のところにある。本発明の
方法において主原料として用いる魚類原料、すな
わち魚残滓あるいは乾燥魚類、乾燥荒粕または魚
粉は、養殖魚に対して毒性のある過酸化脂質を含
んでおり、その含有量は時間の経過とともに増大
し、悪臭を放つものである。こうしたことから、
これらの魚類原料を養殖魚用飼料として用いるた
めには、これらの魚類原料の脂質の酸化重合を抑
制し、特に生体に対して毒性を持つ過酸化脂質を
分解し、悪臭を芳香に変えると共に、一部蛋白質
をアミノ酸に、脂質を遊離脂肪酸に分解する必要
がある。こうした観点から前記三種の微生物が共
存した発酵法が用いられるものであり、この点に
ついては前述したところの本発明者らが以前に提
供した方法(特開昭58−9661号公報及び特公昭59
−50299号公報)において見い出したものである。
すなわち、糸状菌は好気的に原料中の過酸化脂質
を分解するとともに、前記米あるいは麦のヌカお
よびフスマを直接資化せしめる作用を有し、酵母
は脂質を分解するとともにその悪臭を芳香に変換
し、さらに菌体中にビタミン類を蓄積する。細菌
は原料中の蛋白質をアミノ酸に分解し、前記糸状
菌や酵母の生育を助け、更には製品たる飼料の魚
体内での消化吸収を高める作用を有する。したが
つて本発明の方法における三種の微生物を共存せ
しめて行なう発酵法は、製品について過酸化物価
およびTBA価が著しく低いものをもたらし、こ
の他、個々の微生物についてそれぞれ各別に発酵
を行なうより短時間で発酵を終了することができ
るという利点も与えるものである。 また、副原料として海藻を加える理由は以下の
ところによる。本来魚類は蛋白性餌料以外に海中
に生棲する海藻類を摂取しており、それは栄養的
な面からみるとカロチンのようなビタミン類、カ
リウムのようなミネラルの摂取と消化吸収を促進
する作用を有している。このため魚類原料にある
程度、好ましくは1〜5重量%の海藻を加え、こ
れらの原料に糸状菌、酵母および細菌を培養して
発酵させることは養殖魚用飼料としての栄養価を
高める意味がある。また本発明の発酵飼料を生餌
と混合したり、あるいは単独でモイストペレツト
を形成する際に水分を添加して撹拌すると、前記
褐藻類に含まれているアルギン酸や紅藻類に含ま
れている寒天などの粘着物により粘着性が出て、
モイストペレツトの形状の保持が促進され、養殖
魚の摂食作用を助けるとともに、さらに海水の汚
染を防ぐという効果を奏するものである。さら
に、発酵処理中には海藻類に含まれている食塩の
影響により腐敗菌の増殖を抑制するとともに、発
酵に用いる三種の微生物の生育を助ける栄養素を
供給するという利点も有している。 さて、本発明の方法にあつては、発酵は二段階
に行なう。第一段階では30℃で8〜12時間通気撹
拌培養する。この第一段発酵の終了は原料表面に
糸状菌の菌糸が肉眼で観察できるようになつたと
ころで確認する。第二段階では温度を40℃に上げ
て6〜8時間通気撹拌培養する。かくして得られ
る培養物は公知の熱風乾燥手段を介して60〜70℃
の温風による乾燥に付され、水分含量が約10重量
%になつたところで系外に取り出し、公知の粉砕
機にかけて粉砕しメツシユ16〜32の篩により篩別
して篩下の粉子をもつて製品とする。 ハマチの飼料とする時はモイストペレツトを形
成するが、その方法は、上記製品に水分を添加し
て撹拌し、それをある程度の大きさ、すなわち魚
の大きさにもよるが、直径1cm、長さ2〜3cmの
ペレツトに形成する。この際に魚油やビタミン類
等を添加することも可能である。 本発明による製品が水中での崩壊が長時間防止
されることを示すため次の実験を行つた。 実験1 製品の粘着性試験 海藻無添加発酵魚粉と、副原料として海藻を湿
重量としてそれぞれ3%及び5%添加して発酵さ
せた発酵魚粉とに、それぞれ水を加え水分含量50
%とした後、これらを直径12mm、長さ30mmのペレ
ツトに形成し、水中に入れてペレツトが崩壊する
までの時間を測定した。この結果を表に示す。 崩壊までの時間(分) 発酵魚粉 3 海藻3%入発酵魚粉 12 海藻5%入発酵魚粉 15 これから判るように、海藻入発酵魚粉でペレツ
トを形成すると、海藻発酵物の存在しないものに
くらべて粘着性が増大し、その結果ペレツトの崩
壊するまでの時間が4〜5倍延長される。 実施例 1 サバおよびイワシの缶詰工場からの残滓500Kg
を粗砕し、オートクレーブ中で150〜180℃の熱蒸
気により30分間熱処理して殺菌を行なつた後、取
り出して油圧式圧搾機により水分が約40%になる
まで圧力処理した。他方、乾燥したてんぐさ(水
分含量5〜6重量%)を粉砕機にかけ16〜32メツ
シユに粉砕したもの2Kgを前記圧力処理した魚残
滓組織と混ぜ合わせ良く混和した。一方、MY培
地を用いてアスペルギルス・オリーゼとハンゼヌ
ラ・アノマラを個々に予備培養し、またバチル
ス・ズブチリスをブイヨン培地を用いて予備培養
し、3種の予備培養菌体を脱脂米ヌカ12Kg+米フ
スマ12Kgの混合物の滅菌処理したものに混入せし
め、これを前記魚残滓組織と海藻を混合したもの
に混ぜ合わせ良く混和した。この混合物を30℃で
通気撹拌しながら保持したところ約8時間後にア
スペルギルス・オリーゼの菌糸が肉眼で観察され
た。ここで温度を40℃に上げ6時間通気撹拌下で
保持した。こうして得られたものを60〜70℃の温
風で通気加熱乾燥し、水分が約10重量%になつた
ところで乾燥を止め、乾燥物を粉砕機にかけて粉
砕し、32メツシユの篩にかけて篩分けして32メツ
シユの粒子を得た。この得られたものの成分組成
を出発材料の魚残滓乾燥物および海藻を加えずに
製造した発酵魚粉(対照)の成分組成と比較する
と次の第1表に示すとおりである。
The present invention relates to a method for producing feed for farmed fish with a low peroxide value and TBA value by a fermentation method using fish residue, dried fish, dried meal, or fishmeal as the main raw material and seaweed as an auxiliary raw material. . Marine protein resources (fish and shellfish, etc.) tend to decrease due to overfishing and changes in the marine environment.
Since deep-sea fishing has problems such as economic conditions due to fuel shortages and political catch restrictions, the need to secure marine protein resources through aquaculture is increasing day by day. On the other hand, since fish farming requires high-quality, high-protein feed for farmed fish, raw food is preferred as feed for farmed fish, but raw food is generally expensive and its supply is limited. There is. Traditionally, fishmeal has been used as an alternative feed to live bait, but conventional fishmeal contains lipid peroxide, which is produced by oxidative polymerization of lipids, and this is extremely toxic to living organisms. It is expensive, and when fed as feed, it can cause liver dysfunction and other diseases. For these reasons, high quality, highly safe,
There is a need to supply feed for farmed fish that is easily digested and absorbed. As a result of repeated research in response to these demands, the inventors of the present invention have found that waste materials that have traditionally contributed to pollution and can only be used as fertilizer can be found as household waste with low commercial value. A method for producing feed for cultured fish by fermentation using fish residue as a raw material (Japanese Unexamined Patent Publication No. 1983-9661), and a method using commercially available dried fish, dried meal, or fishmeal as a raw material. Although a method for producing feed for cultured fish using a fermentation method (Japanese Patent Publication No. 59-50299) has been provided, the method of the present invention further improves these methods. That is, in the method of the present invention, in addition to using the aforementioned fish residue, dried fish, dried meal, or fish meal as raw materials, seaweed is added, and these raw materials are fermented by filamentous fungi, yeast, and bacteria. It has been discovered that maintaining the shape of moist pellets can be promoted by increasing the palatability of fish, increasing the nutritional value of the feed, and adding stickiness to the feed. The present invention can be made by heat-sterilizing fish residue, degreasing it by pressure treatment, and adjusting the water content to 30 to 50% by weight, or by adding water to crushed dried fish, crushed dried lees, or fish meal. The main raw material was adjusted to 30 to 50% by weight and then heat sterilized. Shredded or crushed seaweed was added as an auxiliary raw material and stirred well. On the other hand, filamentous fungi, yeast, and bacteria were added to each. The microbial cells obtained by pre-culture separately are mixed together with bran or bran or a mixture of both and mixed well, and the mixture is added to the mixture of the main raw material and auxiliary raw material and mixed well, and the two-stage fermentation is carried out. That is, the first stage is aeration-stirring culture at a temperature of 30°C, the second stage is aeration-stirring culture at a temperature of 40°C, and the resulting culture is aerated with warm air at 60 to 70°C to remove moisture. Dried to about 10% by weight,
By grinding the dry matter, the peroxide value and
The present invention is characterized by obtaining feed suitable as feed for cultured fish that has low TBA values. below,
The present invention will be described in detail. The fish residue used in the method of the present invention includes anything distributed under the name of fish residue, but generally kamaboko from a seafood processing factory,
This term also includes fish residues discarded during the production of chikuwa and canned foods, fish body waste such as guts, fins, and tails produced when fish are butchered at fish markets, and even small fish. These fish residues are heat-treated using a heat treatment means using hot steam, such as an autoclave, in order to coagulate the proteins and solidify the tissue, as well as to sterilize them. The heat treatment at this time is sufficient to sterilize the fish residue tissue, liberate the fats and oils in the tissue, and solidify the tissue to the extent that it can be mechanically squeezed out.
This is carried out by heating to ~180°C and holding for 25 to 45 minutes, preferably about 30 minutes. From this point of view, it is of course possible to leave the fish residue in its original form during heat treatment, but from the standpoint of more effective heat sterilization, it is desirable that it be crushed as finely as possible. The thus heat-treated fish residue tissue is subjected to pressure treatment for the purpose of removing fat and oil therefrom.
This pressure treatment removes the oil and fat released in the fish residue tissue by the heat treatment, and it is necessary to leave a certain amount of moisture in the tissue for subsequent use, that is, about 30 to 50% by weight. Therefore, the squeezing process is carried out under a pressure of 150 to 250 kg/cm 2 by a known means, such as a known hydraulic method. Therefore, complete degreasing is not necessarily achieved in this pressure treatment, and some fat remains in the tissue; however,
The amount of this oil is reduced by the subsequent fermentation process, so even if it still remains, it will not lead to deterioration of the tissue later on, and the remaining amount of fat and oil will instead add fat content to the final product. Therefore, it is convenient. The dried fish, dried meal, or fishmeal used in the method of the present invention means those distributed under such trade names, and any of them can be employed. When applied to the method of the present invention,
If the product is not in powder form, it is ground to a particle size comparable to that of commercially available fish meal using a known grinding means.
Before such powders are subjected to treatment, they are made to absorb water to adjust their moisture content to approximately 30 to 50% by weight.
It is then sterilized using known sterilization means such as an autoclave. The seaweed used as an auxiliary raw material in the method of the present invention is not particularly limited, but brown algae and red algae are used as food for sea bream and yellowtail, and are preferably used because they exist in large quantities and are easy to obtain. It will be done. For example, for brown algae, mozuku of the family Mozuku, konbu, arame, kajime, wakame, etc. of the kelp family are used, and for red algae, mozuku of the family Acanthaceae, hirakusa, yukiri, and suginori are used. Used include Nokuroha Ginnansou, Red Haginnansou, Tsunomata, Hanafunori, Fukurofunori, and Mafunori. Since many brown algae are edible and expensive, it is better to use red algae in terms of price. If these seaweeds are dry, they should be sterilized with gas and crushed into 16 to 32 mesh pieces, and if they are wet, they should be thoroughly washed with water and then shredded into pieces of 1 cm 2 or less. and use it.
The amount of seaweed as an auxiliary raw material added is 1 to 5% by weight, preferably about 3% by weight in a wet state (water content about 90% by weight), based on the main raw material whose water content has been adjusted. Due to the amount of seaweed added, there is almost no problem of bacterial contamination due to the addition of seaweed.
It is preferable to perform the above sterilization treatment as much as possible. Next, the above-mentioned main raw material and auxiliary raw material are mixed, and this mixture is subjected to fermentation treatment, and known and easily available microorganisms are used for this fermentation. These microorganisms are filamentous fungi such as Aspergillus oryzae.
oryzae; IFO 30102, IFO 30103), Aspergillus sojae; IFO 4241,
IFO 4244), Rhizopus japonicus (IFO 5319), Rhizopus javanicus (IFO)
5442), as yeasts, Hanzenula anomala (IFO 0122), Saccharomyces cerevisiae
cerevisiae; IFO 0306, IFO 1662), Bacillus subtilis as a bacterium.
subtilis; IFO 3007). In the method of the present invention, three types of microorganisms are used: filamentous fungi, yeast, and bacteria. Each of the three types of microorganisms mentioned above is used after being precultured using a known specific culture medium. That is, for pre-culture of filamentous fungi and yeast, shaking culture is performed using MY medium (polypeptone, yeast extract, malt extract, glucose, water). Preliminary culture of bacteria is carried out in bouillon medium (meat extract, polypeptone, yeast extract,
Perform shaking culture using NaCl, water). The three types of microorganisms thus individually precultured are mixed into a 1:1 mixture of rice or wheat bran and/or bran that has been sterilized by known means such as an autoclave. The amount of the microorganisms mixed in at this time is 1:1 of one of the bran and bran, or a 1:1 mixture of both.
2 x 10 6 cells or more for filamentous fungi, and 1 x 10 6 cells or more for yeast and bacteria each. The reason why one or a mixture of rice or wheat bran and bran is used here is as follows. That is, the fish material used as the main raw material in the method for producing feed of the present invention consists of mostly water, crude protein, crude fat, and ash, and contains almost no sugar. Although the seaweed added as an auxiliary raw material contains sugar, it is a polysaccharide and cannot be directly assimilated by the microorganisms. Therefore, the main raw materials and auxiliary raw materials used in the method of the present invention alone lack the carbon source necessary for the growth of microorganisms, and the microorganisms will not grow. Therefore, the main reason is to use it as a carbon source. In addition, rice or wheat bran and wheat bran are edible and contain a variety of amino acids, vegetable oils and fats, ash, vitamins, etc. in addition to sugar. One of the important reasons is that it provides these nutrients to the final feed product. Furthermore, the incorporation of rice or wheat bran and bran serves to provide gaps in the airtight structure of the medium made of fish material, which are favorable for aerated culture of microorganisms, resulting in the effect that fermentation occurs evenly. The rice or wheat bran and bran used in the present invention may be commercially available products, but they can also be used after being further pulverized. In addition, these rice or wheat bran and bran usually contain a considerable amount of fat, and excessive fat content may cause functional problems in fish, so these cannot be removed using normal fat removal methods. It is preferable to use it after degreasing. The amount of the 1:1 mixture of rice or wheat bran and/or bran used is 1 to 15% by weight, preferably 3 to 10% by weight, based on the fish material whose moisture content has been adjusted to around 50%. It is. In the method of the present invention, the reason why the above-mentioned three types of microorganisms, filamentous fungi, yeast, and bacteria, are used to ferment the fish raw material is as follows. The fish raw materials used as the main raw materials in the method of the present invention, i.e., fish residues, dried fish, dried meal, or fish meal, contain lipid peroxides that are toxic to farmed fish, and the content decreases over time. It grows and gives off a bad smell. For these reasons,
In order to use these fish raw materials as feed for aquaculture fish, it is necessary to suppress the oxidative polymerization of lipids in these fish raw materials, decompose lipid peroxides that are particularly toxic to living organisms, and convert bad odors into aromas. It is necessary to break down some proteins into amino acids and lipids into free fatty acids. From this point of view, a fermentation method in which the above three types of microorganisms coexist is used, and in this regard, the method previously provided by the present inventors (Japanese Patent Application Laid-Open No. 58-9661 and Japanese Patent Publication No. 59-198) is used.
-50299 Publication).
In other words, filamentous fungi aerobically decompose lipid peroxides in raw materials and also have the ability to directly assimilate the rice or wheat bran and bran, while yeast decomposes lipids and converts the bad odor into aroma. converts and further accumulates vitamins in the bacterial body. Bacteria decompose proteins in raw materials into amino acids, help the growth of the filamentous fungi and yeast, and furthermore have the effect of increasing the digestion and absorption of the feed product in the fish body. Therefore, the fermentation method in which the three types of microorganisms coexist in the method of the present invention provides a product with significantly lower peroxide and TBA values, and is also faster than fermenting each microorganism separately. Another advantage is that fermentation can be completed in a short period of time. Moreover, the reason for adding seaweed as an auxiliary raw material is as follows. In addition to protein-based food, fish normally ingest seaweed that lives in the sea, and from a nutritional standpoint, this has the effect of promoting the ingestion of vitamins such as carotene and minerals such as potassium, as well as digestion and absorption. have. For this reason, it is meaningful to add a certain amount of seaweed, preferably 1 to 5% by weight, to fish raw materials and to ferment these raw materials by culturing filamentous fungi, yeast, and bacteria to increase the nutritional value as feed for aquaculture fish. . In addition, when the fermented feed of the present invention is mixed with raw feed or added with water and stirred alone to form moist pellets, alginic acid contained in the brown algae and alginic acid contained in the red algae can be absorbed. Sticky substances such as agar can cause stickiness,
This promotes retention of the shape of the moist pellets, aids in the feeding action of cultured fish, and also has the effect of preventing seawater contamination. Furthermore, during the fermentation process, the salt contained in seaweed suppresses the growth of spoilage bacteria, and it also has the advantage of supplying nutrients that help the growth of the three types of microorganisms used in fermentation. Now, in the method of the present invention, fermentation is carried out in two stages. In the first stage, the culture is carried out at 30°C for 8 to 12 hours with aeration and stirring. The completion of this first stage fermentation is confirmed when hyphae of filamentous fungi can be observed with the naked eye on the surface of the raw material. In the second stage, the temperature is raised to 40°C and culture is carried out with aeration for 6 to 8 hours. The culture thus obtained is dried at 60-70℃ using known hot air drying means.
When the moisture content reaches approximately 10% by weight, it is taken out of the system, crushed by a known crusher, and sieved through a sieve with a mesh size of 16 to 32, and the powder at the bottom of the sieve is collected to produce a product. shall be. Moist pellets are formed when used as feed for yellowtail.The method is to add water to the above product, stir it, and then divide it into pellets of a certain size, i.e., 1 cm in diameter and long, depending on the size of the fish. Form into pellets 2-3 cm wide. At this time, it is also possible to add fish oil, vitamins, etc. The following experiments were carried out to demonstrate that the products according to the invention are prevented from disintegrating in water for a long time. Experiment 1 Product Adhesiveness Test Water was added to fermented fishmeal without the addition of seaweed and fermented fishmeal with 3% and 5% wet weight of seaweed added as an auxiliary material, respectively, to reduce the water content to 50.
%, these were formed into pellets with a diameter of 12 mm and a length of 30 mm, and the time taken for the pellets to disintegrate was measured by placing them in water. The results are shown in the table. Time until disintegration (minutes) Fermented fishmeal 3 Fermented fishmeal with 3% seaweed 12 Fermented fishmeal with 5% seaweed 15 As can be seen, when pellets are formed with fermented fishmeal with seaweed, they are more sticky than those without fermented seaweed. The resulting pellet disintegration time is increased by a factor of 4 to 5. Example 1 500Kg of residue from a mackerel and sardine cannery
was crushed and sterilized by heat treatment in an autoclave with hot steam at 150 to 180°C for 30 minutes, then taken out and pressure treated in a hydraulic press until the water content was reduced to about 40%. On the other hand, 2 kg of dried tengusa (moisture content: 5 to 6% by weight) was crushed into 16 to 32 meshes using a pulverizer and mixed with the pressure-treated fish residue tissue and mixed well. On the other hand, Aspergillus oryzae and Hansenula anomala were individually pre-cultured using MY medium, and Bacillus subtilis was pre-cultured using bouillon medium, and three types of pre-cultured bacterial bodies were prepared using 12 kg of defatted rice bran + 12 kg of rice bran. This was mixed into the mixture of fish residue tissue and seaweed and mixed well. When this mixture was maintained at 30° C. with aeration and stirring, Aspergillus oryzae hyphae were observed with the naked eye after about 8 hours. The temperature was then raised to 40° C. and maintained under aeration and stirring for 6 hours. The product obtained in this way was dried by ventilation and heating with hot air at 60 to 70°C, and the drying was stopped when the moisture content reached about 10% by weight. 32 mesh particles were obtained. The composition of the obtained product is compared with the composition of dried fish residue as a starting material and the composition of fermented fish meal prepared without adding seaweed (control) as shown in Table 1 below.

【表】 実施例 2 乾燥荒粕の砕化物200Kgに水分が40重量%にな
るように水を添加し、オートクレーブで熱殺菌を
25分間行なつた。これに湿潤状態(水分含量約90
重量%)のぎんなんそうの細断したもの9Kgを加
え、撹拌機を用いて両者をよく混和せしめた。他
方、MY培地を用いてアスペルギルス・ソーヤと
サツカロマイセス・セレビシアエを個々に予備培
養し、またバチルス・ズブチリスをブイヨン培地
を用いて予備培養し、3種の予備培養菌体を脱脂
米ヌカ10Kg+麦フスマ10Kgの混合物を滅菌処理し
たものに混入せしめ、これを前記熱殺菌した荒粕
に海藻を混和させたものと混ぜ合わせ良く混和し
た。この混和物を30℃で通気撹拌しながら保持し
たところ、約10時間後にアスペルギルス・ソーヤ
の菌糸が肉眼で観察できるように生育した。ここ
で温度を40℃に上げて6時間通気撹拌下に保持し
た。このようにして得られたものを60℃の温風で
通気加熱乾燥し、水分が約10重量%になつたとこ
ろで乾燥を止めた。乾燥物を粉砕機にかけて粉砕
した後、粉砕物を32メツシユの篩にかけて篩分け
し、32メツシユの粒子を得た。この得られたもの
の成分組成を出発材料の荒粕および海藻を加えず
に製造した発酵魚粉(対照)の成分組成と比較す
ると次の第2表に示すとおりである。
[Table] Example 2 Water was added to 200 kg of crushed dried rough lees so that the moisture content was 40% by weight, and heat sterilized in an autoclave.
It lasted 25 minutes. This is added to the wet state (moisture content approximately 90
% by weight) of shredded Japanese daikon nan (9 kg) was added, and the two were thoroughly mixed using a stirrer. On the other hand, Aspergillus sojae and Satucharomyces cerevisiae were individually pre-cultured using MY medium, and Bacillus subtilis was pre-cultured using bouillon medium, and the three pre-cultured bacterial bodies were mixed with 10 kg of defatted rice bran + 10 kg of wheat bran. This mixture was mixed into the sterilized material, and this was mixed with the heat-sterilized coarse lees mixed with seaweed and mixed well. When this mixture was kept at 30° C. with aeration and stirring, Aspergillus sawjae mycelium grew so that it could be observed with the naked eye after about 10 hours. The temperature was then raised to 40°C and kept under aeration and stirring for 6 hours. The material obtained in this manner was dried by heating with hot air at 60°C, and the drying was stopped when the moisture content reached approximately 10% by weight. After pulverizing the dried product using a pulverizer, the pulverized product was sieved through a 32-mesh sieve to obtain 32-mesh particles. The composition of the obtained product is compared with that of fermented fishmeal (control) produced without adding the raw lees and seaweed as starting materials, as shown in Table 2 below.

【表】【table】

【表】 6時間通気撹拌下で保持した。かくして得られ
たものを60℃の温風で通気加熱乾燥し、水分が約
10重量%になつたところで乾燥をとめ、乾燥物を
粉砕機にかけて粉砕した後、粉砕物を32メツシユ
の篩にかけて篩分けして32メツシユの粒子を得
た。この得られたものの成分組成を出発材料の魚
粉と比較すると下記の表(第3表)に示す通りで
ある。 実施例 3 品質の低下した魚粉100Kgに水分を50重量%に
なるよう添加し、オートクレーブ中で150〜180℃
の熱蒸気により20分間熱殺菌を行なつた。生ふの
り4Kg(水分含量90重量%)の細断したものをこ
れに加えよく混和撹拌した。他方、MY培地を用
いてリゾープス・ジヤバニカスとハンゼヌラ・ア
ノマラを個々に予備培養し、またバチルス・ズブ
チリスをブイヨン培地を用いて予備培養し、3種
の予備培養菌体を脱脂米ヌカ5Kg+米フスマ5Kg
の混合物の滅菌処理したものに混入せしめ、これ
を前記海藻を混和させた熱殺菌処理した魚粉と混
ぜ合わせ良く混和した。この混和物を30℃で通気
撹拌しながら保持したところ、10時間後にリゾー
プス・ジヤバニカスの菌糸が肉眼で観察された。
ここで温度を40℃に上げて6時間通気撹拌下に保
持した。かくして得られたものを60℃の温風で通
気加熱乾燥し、水分が約10重量%になつたところ
で乾燥をとめ、乾燥物を粉砕機にかけて粉砕した
後、粉砕物を32メツシユの篩にかけて篩分けして
32メツシユの粒子を得た。この得られたものの成
分組成を出発材料の魚粉と比較すると下記の表
(第3表)に示す通りである。
[Table] Maintained under aeration and stirring for 6 hours. The material obtained in this way was heated and dried with hot air at 60°C until the water content was reduced to approx.
Drying was stopped when the concentration reached 10% by weight, and the dried product was pulverized using a pulverizer, and the pulverized product was sieved through a 32-mesh sieve to obtain 32-mesh particles. The composition of the obtained product is compared with that of the starting material, fishmeal, as shown in the table below (Table 3). Example 3 Water was added to 100 kg of degraded fishmeal to make it 50% by weight, and the mixture was heated at 150 to 180°C in an autoclave.
Heat sterilization was carried out using hot steam for 20 minutes. 4 kg of fresh funori (moisture content: 90% by weight) shredded was added to this and thoroughly mixed and stirred. On the other hand, Rhizopus jabanicas and Hansenula anomala were individually pre-cultured using MY medium, Bacillus subtilis was pre-cultured using bouillon medium, and the three pre-cultured bacterial bodies were mixed with 5 kg of defatted rice bran + 5 kg of rice bran.
This was mixed with the heat-sterilized fish meal mixed with the seaweed and mixed well. When this mixture was kept at 30° C. with aeration and stirring, Rhizopus jabanicas hyphae were observed with the naked eye after 10 hours.
The temperature was then raised to 40°C and kept under aeration and stirring for 6 hours. The product obtained in this way is heated and dried through ventilation with hot air at 60°C, and the drying is stopped when the moisture content reaches approximately 10% by weight.The dried product is crushed using a pulverizer. divide it up
32 mesh particles were obtained. The composition of the obtained product is compared with that of the starting material, fishmeal, as shown in the table below (Table 3).

【表】 飼育テスト 1 タイの飼育テスト 使用餌:実施例1および2の製品 対照:(1) 人工配合飼料(○は(登録商標)配合
飼料≪たい用≫)p−3 粗蛋白 47.0重量%以上 粗脂肪 3.0重量%以上 粗繊維 3.0重量%以下 粗灰分 17.0重量%以下 Ca 2.5重量%以上 P 1.5重量%以上 その他 ビタミンA、D3、B1、B2
B6などを含む (2) 魚肉餌料 サバすり身 給餌法:実施例1、2製品、対照1、2製品、
人工配合飼料はペレツターにかけ径1mm、長
さ6mmの円筒形ペレツトにして、魚肉餌料は
サバのすり身をミンチしたものを、1日数回
に分けて、摂餌するだけ与えた。 使用魚:体重約50gのタイを各群50尾づつ用い
た。 測定:摂取量と体重の増加から飼料効率を算出
した。 結果:下表(第4表)の通り本製品は人工配合
飼料、魚肉摂取に比較して飼料効率が高く、
良好であつた。
[Table] Breeding test 1 Breeding test in Thailand Feed used: Products of Examples 1 and 2 Control: (1) Artificial compound feed (○ indicates (registered trademark) compound feed <<Taiyo>>) p-3 Crude protein 47.0% by weight Crude fat 3.0% or more Crude fiber 3.0% or less Crude ash 17.0% or less Ca 2.5% or more P 1.5% or more Other Vitamins A, D 3 , B 1 , B 2 ,
Contains B 6 , etc. (2) Fish feed Surimi mackerel Feeding method: Example 1 and 2 products, Control 1 and 2 products,
The artificial compound feed was made into cylindrical pellets with a diameter of 1 mm and a length of 6 mm using a pelletizer, and the fish meat feed was minced mackerel minced meat, which was divided into several portions a day and fed as many times as needed. Fish used: 50 sea breams weighing approximately 50 g were used in each group. Measurement: Feed efficiency was calculated from intake and body weight increase. Results: As shown in the table below (Table 4), this product has higher feed efficiency than artificially formulated feed or fish meat intake.
It was good and warm.

【表】 2 ハマチの飼育テスト 使用餌:実施例1および3の製品 対照:実施例1と同じ原料で海藻を加えずに製
造した発酵魚粉(対照1)およびアジ生餌 給餌法:実施例1製品および対照1は水分添加
してモイストペレツトを形成したもの、実施
例3製品は生餌1に対し3の割合で混合した
もの、生餌はミンチにしたものを、1日2
回、摂餌するだけ与えた。 測定:摂取量と体重増加から飼料効率を算出し
た。 使用魚:体重約100gのハマチを各群100尾づつ
用いた。 結果:下記(第5表)の通り。 ハマチの場合も本製品は飼料効率が高く、良
好であつた。特に生餌と混合して用いること
が有効であつた。また、海藻を混合したた
め、ペレツトの結合性が高く、飼料投与量も
少なくてすみ海水の汚染が減少した。
[Table] 2 Yellowtail rearing test Feed used: Products of Examples 1 and 3 Control: Fermented fishmeal (Control 1) produced from the same raw materials as Example 1 without adding seaweed and horse mackerel live bait Feeding method: Example 1 Product and Control 1 were made by adding water to form moist pellets, Example 3 was a mixture of 1 part raw food and 3 parts, and the raw food was minced and fed twice a day.
The animals were fed as many times as they needed to be fed. Measurement: Feed efficiency was calculated from intake and body weight gain. Fish used: 100 yellowtails weighing approximately 100 g were used in each group. Results: As shown below (Table 5). In the case of yellowtail, this product also had high feed efficiency and was good. It was particularly effective to use it in combination with live bait. In addition, since the seaweed was mixed in, the pellets had high binding properties, and the amount of feed administered was small, reducing seawater pollution.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 魚残滓を熱殺菌した後圧力処理により脱脂す
るとともに水分を30〜50重量%に調整したもの、
あるいは乾燥魚類の砕化物、乾燥荒粕の砕化物ま
たは魚粉に水分を加えて水分を30〜50重量%に調
整した後熱殺菌処理した物を主原料とし、これに
副原料として海藻を加えて撹拌混合し、別に糸状
菌、酵母および細菌を予備培養して得られる菌体
を一緒にして米あるいは麦のヌカまたはフスマあ
るいは両者の混合物と混和し、これを上記混合物
とよく混合し、30℃で通気撹拌培養した後、40℃
にて再び通気撹拌培養を行い、生成した培養物を
水分が8〜12重量%になるまで温風乾燥すること
を特徴とする養殖魚用飼料の製造方法。
1 Fish residue is heat sterilized, degreased by pressure treatment, and the moisture content is adjusted to 30 to 50% by weight,
Alternatively, the main raw material is crushed dried fish, crushed dried coarse lees, or fish meal that has been heat sterilized after adding water to adjust the moisture to 30 to 50% by weight, and adding seaweed as an auxiliary raw material. Mix by stirring, separately pre-cultivate filamentous fungi, yeast, and bacteria, and mix together with rice or wheat bran or bran, or a mixture of both, mix well with the above mixture, and incubate at 30°C. After aeration and agitation culture at 40℃
A method for producing feed for cultured fish, characterized by carrying out aeration-stirring culture again at the same time, and drying the resulting culture with warm air until the moisture content becomes 8 to 12% by weight.
JP58122419A 1983-07-07 1983-07-07 Production of pisciculture feed by fermentation Granted JPS6016554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122419A JPS6016554A (en) 1983-07-07 1983-07-07 Production of pisciculture feed by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122419A JPS6016554A (en) 1983-07-07 1983-07-07 Production of pisciculture feed by fermentation

Publications (2)

Publication Number Publication Date
JPS6016554A JPS6016554A (en) 1985-01-28
JPS6331173B2 true JPS6331173B2 (en) 1988-06-22

Family

ID=14835357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122419A Granted JPS6016554A (en) 1983-07-07 1983-07-07 Production of pisciculture feed by fermentation

Country Status (1)

Country Link
JP (1) JPS6016554A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990046663A (en) * 1999-04-12 1999-07-05 차만수 Fish soble adsorption ferment feed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633063A (en) * 1979-08-29 1981-04-03 Shinto Paint Co Ltd Coating method for steel structure
JPS589661A (en) * 1981-07-04 1983-01-20 Fujiko Kataoka Preparation of feed for pisciculture by fermentation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633063A (en) * 1979-08-29 1981-04-03 Shinto Paint Co Ltd Coating method for steel structure
JPS589661A (en) * 1981-07-04 1983-01-20 Fujiko Kataoka Preparation of feed for pisciculture by fermentation

Also Published As

Publication number Publication date
JPS6016554A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
JP5047337B2 (en) Production method of feed materials for fish, echinoderms or crustaceans
IE45611B1 (en) Feedstuff or feedstuff additive and process for its producion
KR101090381B1 (en) The livestock feed additive for high DHA and low cholesterol egg and method of manufacturing thereof
Yone et al. Effect of fermented and fermented-resteamed scrap meals on growth and feed efficiency of red sea bream
KR101923553B1 (en) Bass power and manufacturing method thereof
JPH0851937A (en) Feed for cultured shrimp and method for culturing shrimp
KR102333548B1 (en) Animal feed composition comprising bass extract and preparation method thereof
JPS5910783B2 (en) Method for producing feed for cultured fish using fermentation method
JPS6225018B2 (en)
JPH04131047A (en) Fermented feed and fermented fertilizer
JPS6331173B2 (en)
CA2205712A1 (en) Process for converting waste protein sources into a balanced animal feed
JPS5950299B2 (en) Method for producing fishmeal feed using fermentation method
KR20180047628A (en) Livestock feed for Sea Cucumber and the feed of manufacturing
JPS61282042A (en) Feed for pisciculture
KR101815626B1 (en) Frozen Feed for Elver&#39;s Initial Feeding
JPH0571216B2 (en)
CN117121986B (en) Special feed for low-cholesterol high-protein eggs and preparation method thereof
KR19990037793A (en) Manufacture method of fermentation fodder utilizing the scrapped material
JP5380140B2 (en) Mixture for fish feed, method for producing the same, and saltwater fish feed
JP3402763B2 (en) Formula feed for fish farming
KR101830340B1 (en) A Manufacturing Method of Health Food Using Fermented Rice Bran
JPH10276682A (en) Use of raw soybean curd refuse as deodorant, feed, food and promotor for fermentation of human bone
米康夫 et al. Studies on utilization of fish waste. I. Effect of fermented and fermented-resteamed scrap meals on growth and feed efficiency of red sea bream.
JPH0956337A (en) Production of feed additive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees