JPS63311133A - Quartz-crystal temperature sensor - Google Patents

Quartz-crystal temperature sensor

Info

Publication number
JPS63311133A
JPS63311133A JP14736287A JP14736287A JPS63311133A JP S63311133 A JPS63311133 A JP S63311133A JP 14736287 A JP14736287 A JP 14736287A JP 14736287 A JP14736287 A JP 14736287A JP S63311133 A JPS63311133 A JP S63311133A
Authority
JP
Japan
Prior art keywords
temperature
frequency
crystal oscillator
filter
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14736287A
Other languages
Japanese (ja)
Inventor
Motoharu Fukai
深井 元春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14736287A priority Critical patent/JPS63311133A/en
Publication of JPS63311133A publication Critical patent/JPS63311133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to take out a low frequency output signal in a short time, by providing filters so as to pass the frequency component in a specified band among resonant frequency components from crystal oscillators and a mixer. CONSTITUTION:The output of an oscillating frequency from a temperature sensing crystal oscillator 1 passes through a filter 2, where resonant frequency components outside a specified band are removed. The filter 2 comprises a bandpass filter having a narrow bandpass width with a central frequency as the center. A constant temperature type crystal oscillator 3 is housed in a constant temperature oven and provided in the deep place in the sea like the temperature sensitive crystal oscillator 1. The oscillator 3 comprises a quartz resonator, a temperature sensor, a heater, a temperature-change suppressing circuit and the like. The crystal oscillator 3 outputs resonant frequencies so that the temperature of the inner quartz resonator is approximately constant. The output from the oscillator 3 passes a through a filter 4, where the resonant frequency components outside a specified band are removed. The difference in frequencies of the output signals from both filters 2 and 4 is outputted from a mixer 5. High frequency components are removed in a low-pass filter 6. Thus a low frequency output signal is taken out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主に海底地震計測システム等の深海の温度測定
に用いられる水晶温度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal temperature sensor mainly used for deep sea temperature measurement such as a submarine seismic measurement system.

〔従来技術〕[Prior art]

海底地震計測システムにおいては、地震計と共に深海の
海水温度を測定する温度センサが必要とされる。深海に
おける温度は約2℃であって、浅海に比べて温度変動幅
が小さく、例えば2500 mの深さの深海では約0.
2℃の変動しかない。従ってこれを測定するためには約
0.01℃〜0.001℃の分解能を有する温度センサ
が要求され、この要求を満たす温度センサとして水晶温
度センサが利用されている。水晶温度センサは一般に感
温素子としての水晶振動子と付属の電気回路とからなる
発振器にて構成されている。
In a submarine seismic measurement system, a temperature sensor is required to measure the temperature of seawater in the deep sea along with a seismometer. The temperature in the deep sea is approximately 2°C, and the range of temperature fluctuation is smaller than that in the shallow sea. For example, in the deep sea at a depth of 2500 m, the temperature fluctuation range is approximately 0.
There is only a 2°C fluctuation. Therefore, in order to measure this, a temperature sensor having a resolution of approximately 0.01° C. to 0.001° C. is required, and a crystal temperature sensor is used as a temperature sensor that satisfies this requirement. A crystal temperature sensor generally includes an oscillator consisting of a crystal resonator as a temperature sensing element and an attached electric circuit.

また海底地震計測システムにおいては、取り扱う信号は
地震計によるものであり、その周波数は2〜20)1z
と極めて低い。このような信号を複数観測点から複数チ
ャンネルで同時に効率よく伝送するために、周波数変調
分割多重方式(FM−FI1M方式)が信号伝送に採用
されており、その伝送周波数の上限は伝送路の損失等も
考慮して約300K)lz程度に設定されている。
In addition, in the submarine seismic measurement system, the signals handled are from seismometers, and the frequency is 2 to 20) 1z
extremely low. In order to efficiently transmit such signals simultaneously from multiple observation points to multiple channels, a frequency modulation division multiplexing method (FM-FI1M method) is adopted for signal transmission, and the upper limit of the transmission frequency is determined by the loss of the transmission path. It is set to about 300K)lz, taking into account the above factors.

従って、海底地震計測システム等の深海用の温度センサ
には、高分解能特性と低周波出力信号とを有することが
要求される。
Therefore, temperature sensors for deep sea use, such as submarine seismic measurement systems, are required to have high resolution characteristics and low frequency output signals.

従来の水晶温度センサには3種の方式があり、以下この
3種の方式について簡単に説明する。
There are three types of conventional crystal temperature sensors, and these three types will be briefly explained below.

まず第1は、共振周波数一温度係数の直線性が良好なL
CカットまたはACカット水晶振動子等の高周波水晶振
動子の共振周波数(4〜28MHz)をそのまま出力信
号として取り出す形式である。第2は、高周波水晶振動
子からの出力周波数を分周して低周波出力信号を取り出
す形式である。また第3は、温度変化に対して共振周波
数がほぼ直線的に変化する水晶振動子を用いた感温用水
晶発振器と、その水晶振動子に比べて温度変動に対する
共振周波数の変化が極めて小さい水晶振動子を用いた基
準水晶発振器と、ミキサとを利用し、2個の水晶発振器
の発振周波数間の周波数差をミキサにて取り出す形式で
ある(特開昭59−32834号公報)。
The first is L, which has good linearity between resonance frequency and temperature coefficient.
This is a format in which the resonant frequency (4 to 28 MHz) of a high frequency crystal resonator such as a C-cut or AC-cut crystal resonator is directly extracted as an output signal. The second method is to divide the output frequency from a high-frequency crystal oscillator to extract a low-frequency output signal. The third is a temperature-sensitive crystal oscillator that uses a crystal oscillator whose resonant frequency changes almost linearly with temperature changes, and a crystal oscillator that uses a crystal oscillator whose resonant frequency changes extremely little with temperature changes compared to the crystal oscillator. This type uses a reference crystal oscillator using a vibrator and a mixer, and uses the mixer to extract the frequency difference between the oscillation frequencies of the two crystal oscillators (Japanese Patent Laid-Open No. 59-32834).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上述の3種の方式は、夫々下記のような欠点を
有している。
However, each of the above three types of systems has the following drawbacks.

第1の方式では、測定の分解能を上げるのは容易である
が、低周波出力信号を取り出せないので陸上に信号を伝
送できないという欠点がある。
In the first method, it is easy to increase the measurement resolution, but it has the disadvantage that the signal cannot be transmitted on land because a low frequency output signal cannot be extracted.

第2の方式では、温度変化によって生しる周波数変化分
も分周の倍率だけ縮小されることになり、例えば第1の
形式と同様の分解能を得るためには、測定時間が分周の
倍率だけ増加するという欠点がある。
In the second method, the frequency change caused by temperature change is also reduced by the frequency division factor. For example, in order to obtain the same resolution as the first method, the measurement time is reduced by the frequency division factor. The disadvantage is that it only increases.

第3の方式では、感温用水晶発振器の出力にはノイズ成
分が含まれており、温度−周波数安定度が悪いので、ミ
キサから取り出される出力周波数の温度−周波数安定度
が悪くなって正確に温度を検出できないことがあるとい
う欠点がある。また、ミキサから出力される低周波成分
を増幅する場合に生じる高調波の影響によりその出力周
波数が変動し、温度周波数特性が悪くなって正確な温度
検出が行えないという欠点がある。
In the third method, the output of the temperature-sensitive crystal oscillator contains noise components and has poor temperature-frequency stability, so the temperature-frequency stability of the output frequency taken out from the mixer deteriorates, making it difficult to accurately The disadvantage is that temperature may not be detected. Another disadvantage is that the output frequency fluctuates due to the influence of harmonics generated when the low frequency component output from the mixer is amplified, resulting in poor temperature frequency characteristics and the inability to perform accurate temperature detection.

本発明はかかる事情に鑑みてなされたものであり、前述
の第3の方式の改良であって、各水晶発振器及びミキサ
からの共振周波数成分のうち所定の帯域の周波数成分を
通過させるためにフィルタを設ける構成とすることによ
り、高分解能であって低周波出力信号を取り出せ、しか
もノイズ、高調波の影響なしに正確に温度を検出できる
水晶温度センサを提供することを目的とする。
The present invention has been made in view of the above circumstances, and is an improvement on the third method described above, in which a filter is used to pass frequency components in a predetermined band among the resonance frequency components from each crystal oscillator and mixer. An object of the present invention is to provide a crystal temperature sensor which has a high resolution, can extract a low frequency output signal, and can accurately detect temperature without being affected by noise or harmonics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る水晶温度センサは、水晶振動子の共振周波
数の変化に基づき温度変化を検出する水晶温度センサに
おいて、その温度変化に対して共振周波数がほぼ直線的
に変化する第1の水晶振動子を備えた感温用水晶発振器
と、該感温用水晶発振器の発振周波数成分から所定帯域
の周波数成分を通過させる第1のフィルタと、その温度
変化に対して共振周波数が変化する第2の水晶振動子を
備え、該第2の水晶振動子の共振周波数の変化が前記第
1の水晶振動子の共振周波数の変化の千分の一以下にな
るように前記第2の水晶振動子の温度を略一定に保つ恒
温型水晶発振器と、該恒温型水晶発振器の発振周波数成
分から所定帯域の周波数成分を通過させる第2のフィル
タと、前記第1のフィルタ及び前記第2のフィルタから
の出力を入力して、発振周波数間の周波数差を出力する
ミキサと、該ミキサの出力から所定帯域の周波数成分を
通過させる第3のフィルタとを具備することを特徴とす
る。
A crystal temperature sensor according to the present invention is a crystal temperature sensor that detects a temperature change based on a change in the resonant frequency of a crystal resonator, and includes a first crystal resonator whose resonant frequency changes almost linearly with respect to the temperature change. a first filter that passes a frequency component in a predetermined band from the oscillation frequency components of the temperature-sensitive crystal oscillator, and a second crystal whose resonant frequency changes with respect to temperature changes. a resonator, and the temperature of the second crystal resonator is controlled so that the change in the resonant frequency of the second crystal resonator is one thousandth or less of the change in the resonant frequency of the first crystal resonator. A constant temperature crystal oscillator that maintains a substantially constant temperature, a second filter that passes a frequency component in a predetermined band from the oscillation frequency components of the constant temperature crystal oscillator, and outputs from the first filter and the second filter are input. It is characterized by comprising a mixer that outputs a frequency difference between oscillation frequencies, and a third filter that passes frequency components in a predetermined band from the output of the mixer.

〔作用〕[Effect]

温度変化に対して共振周波数がほぼ直線的に変化する水
晶振動子を備えた感温用水晶発振器からの発振周波数成
分のうち所定帯域の周波数成分を第1のフィルタから通
過させる。一方、出力する共振周波数の変化が前記感温
用水晶発振器から出力される共振周波数の変化の千分の
一以下になるように、内部に備えた水晶振動子の温度変
化を抑制する恒温型水晶発振器からの発振周波数成分の
うち所定帯域の周波数成分を第2のフィルタから通過さ
せる。次にミキサは、第1のフィルタ及び第2のフィル
タからの出力を入力し、両フィルタから出力される発振
周波数間の周波数差を出力する。ミキサからの出力周波
数成分のうち所定帯域の周波数成分を第3のフィルタか
ら通過させる。
A frequency component in a predetermined band among oscillation frequency components from a temperature-sensitive crystal oscillator including a crystal oscillator whose resonant frequency changes approximately linearly with respect to temperature changes is passed through the first filter. On the other hand, a constant-temperature crystal that suppresses the temperature change of the internal crystal resonator so that the change in the resonant frequency output is less than one-thousandth of the change in the resonant frequency output from the temperature-sensitive crystal oscillator. Among the oscillation frequency components from the oscillator, frequency components in a predetermined band are passed through the second filter. Next, the mixer inputs the outputs from the first filter and the second filter, and outputs the frequency difference between the oscillation frequencies output from both filters. Among the output frequency components from the mixer, frequency components in a predetermined band are passed through the third filter.

そうすると第3のフィルタからはノイズ成分、高調波成
分を含まない低周波信号が出力される。
Then, the third filter outputs a low frequency signal that does not contain noise components or harmonic components.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき説明する
。第1図は本発明の水晶温度センサを示すブロック図で
あり、図中1は深海に設けられ、海水の温度を測定する
感温用水晶発振器を示す。
Hereinafter, the present invention will be explained based on drawings showing embodiments thereof. FIG. 1 is a block diagram showing a crystal temperature sensor of the present invention, and in the figure, reference numeral 1 indicates a temperature-sensitive crystal oscillator that is installed in the deep sea and measures the temperature of seawater.

第2図は感温用水晶発振器1の発振周波数(出力信号)
の周波数特性を示し、第3図は同じく発振周波数の温度
特性を示す。第3図において、横軸は温度T、縦軸は周
波数fを夫々示しており、基準温度T0における周波数
はfoである。感温用水晶発振器1は周囲の温度変化に
対して共振周波数が直線的に変化する(第3図参照)水
晶振動子を備えている。感温用水晶発振器1の温度特性
は出来るだけ直線であること及び傾きの大きいことが望
ましい。良好な直線性を実現するためには1次の共振周
波数温度係数に比べて2次、3次の係数が小さい水晶振
動子を用いることが必要であり、また、傾きを大きくす
るためには1次の係数の絶対値が大きい水晶振動子を用
いることが必要である。
Figure 2 shows the oscillation frequency (output signal) of temperature-sensitive crystal oscillator 1.
FIG. 3 also shows the temperature characteristics of the oscillation frequency. In FIG. 3, the horizontal axis shows the temperature T, and the vertical axis shows the frequency f, and the frequency at the reference temperature T0 is fo. The temperature-sensitive crystal oscillator 1 includes a crystal oscillator whose resonant frequency changes linearly with changes in ambient temperature (see FIG. 3). It is desirable that the temperature characteristics of the temperature-sensitive crystal oscillator 1 be as straight as possible and have a large slope. In order to achieve good linearity, it is necessary to use a crystal oscillator whose second- and third-order coefficients are smaller than the first-order resonant frequency temperature coefficient. It is necessary to use a crystal resonator with large absolute values of the following coefficients.

これらの条件を満たす水晶振動子としては、前述したよ
うなLCカット水晶振動子またはACカット水晶振動子
等が最適である。なお、感温用水晶発振器1の周波数変
化率(ΔL/fo:但し、Δfoは温度がToからΔT
変化した場合の感温用水晶発振器1の発振周波数の変化
量)はΔTを20℃とした場合、10−3程度である。
As a crystal resonator that satisfies these conditions, an LC cut crystal resonator or an AC cut crystal resonator as described above is most suitable. Note that the frequency change rate of the temperature-sensitive crystal oscillator 1 (ΔL/fo: where Δfo is the temperature change from To to ΔT
When ΔT is 20° C., the amount of change in the oscillation frequency of the temperature-sensitive crystal oscillator 1 is approximately 10 −3 .

感温用水晶発振器1からの発振周波数の出力はフィルタ
2を通過し、所定帯域以外の共振周波数成分が除去され
る。フィルタ2は、中心周波数がfoであってその通過
帯域幅が2・Δfo程度であるバンドパスフィルタから
なる。
The oscillation frequency output from the temperature-sensitive crystal oscillator 1 passes through a filter 2, and resonance frequency components outside a predetermined band are removed. The filter 2 is a bandpass filter whose center frequency is fo and whose passband width is approximately 2·Δfo.

また3は、恒温槽に収納されて感温用水晶発振器1と同
様に深海に設けられ、水晶振動子、温度センサ、ヒータ
、温度変化抑制回路等から構成される恒温型水晶発振器
である。恒温型水晶発振器3は、その内部の水晶振動子
の温度がほぼ一定に保たれ、周囲の温度変化があっても
ほぼ一定の共振周波数を出力するようになしである。第
4図は恒温型水晶発振器3の発振周波数(出力信号)の
周波数特性を示し、第5図は恒温型水晶発振器3の発振
周波数の温度特性を示す。第5図において、横軸は温度
T、縦軸は周波数fを夫々示しており、基準温度T。に
おける周波数はf、であって、この周波数f1は、温度
T。における感温用水晶発振器lの前記周波数f0にほ
ぼ等しい。恒温型水晶発振器3では周囲の温度が変化し
ても水晶振動子の温度がほぼ一定に保たれ、出力する共
振周波数の変化が前記感温用水晶発振器1から出力され
る共振周波数の変化の千分の一以下に押さえられる。つ
まり、恒温型水晶発振器3の周波数変化率(Δf、/f
、:但し、Δf1は温度がToからΔT変化した場合の
恒温型水晶発振器3の発振周波数の変化量であり、前記
Δf0に比べて極めて小さい)は10−7〜10−9程
度である。
3 is a thermostatic crystal oscillator that is housed in a thermostatic bath and installed in the deep sea like the temperature-sensitive crystal oscillator 1, and is composed of a crystal resonator, a temperature sensor, a heater, a temperature change suppression circuit, and the like. The constant-temperature crystal oscillator 3 is designed so that the temperature of its internal crystal oscillator is kept substantially constant and outputs a substantially constant resonant frequency even if there is a change in ambient temperature. 4 shows the frequency characteristics of the oscillation frequency (output signal) of the constant temperature crystal oscillator 3, and FIG. 5 shows the temperature characteristics of the oscillation frequency of the constant temperature crystal oscillator 3. In FIG. 5, the horizontal axis represents the temperature T, and the vertical axis represents the frequency f, which is the reference temperature T. The frequency at is f, and this frequency f1 is equal to the temperature T. It is approximately equal to the frequency f0 of the temperature-sensitive crystal oscillator l in . In the constant temperature crystal oscillator 3, the temperature of the crystal oscillator is kept almost constant even if the ambient temperature changes, and the change in the resonant frequency output is equal to the change in the resonant frequency output from the temperature sensitive crystal oscillator 1. It can be suppressed to less than one-fold. In other words, the frequency change rate (Δf, /f
, : However, Δf1 is the amount of change in the oscillation frequency of the constant temperature crystal oscillator 3 when the temperature changes from To to ΔT, and is extremely small compared to Δf0) is about 10-7 to 10-9.

恒温型水晶発振器3からの発振周波数の出力はフィルタ
4を通過し、所定帯域以外の共振周波数成分が除去され
る。フィルタ4は、中心周波数がrlであってその通過
帯域幅が10・へf、程度であるバンドパスフィルタか
らなる。
The oscillation frequency output from the constant temperature crystal oscillator 3 passes through a filter 4, and resonance frequency components outside a predetermined band are removed. The filter 4 is a bandpass filter whose center frequency is rl and whose passband width is on the order of 10 to f.

フィルタ2及びフィルタ4から出力される発振周波数出
力信号はミキサ5に入力され、ミキサ5から各発振周波
数間の周波数差が出力される。ミキサ5から出力された
周波数差の信号はフィルタ6を通過し、所定帯域以外の
共振周波数成分が除去される。フィルタ6は所定の周波
数より高い周波数成分はすべて除去するローパスフィル
タであり、ミキサ5からの出力の高調波(スプリアス)
を除去する。
The oscillation frequency output signals output from the filters 2 and 4 are input to the mixer 5, and the mixer 5 outputs the frequency difference between each oscillation frequency. The frequency difference signal output from the mixer 5 passes through a filter 6, and resonance frequency components outside the predetermined band are removed. Filter 6 is a low-pass filter that removes all frequency components higher than a predetermined frequency, and removes harmonics (spurious) of the output from mixer 5.
remove.

次にかかる構成の水晶温度センサの温度検出の原理につ
いて説明する。いま温度T。からΔTだけ温度変化が生
じたとすると、感温用水晶発振器1゜恒温型水晶発振器
3の発振周波数は夫々f0+Δfo。
Next, the principle of temperature detection by the crystal temperature sensor having such a configuration will be explained. Temperature T now. Assuming that a temperature change occurs by ΔT from , the oscillation frequencies of the temperature-sensitive crystal oscillator 1° and the constant temperature crystal oscillator 3 are f0+Δfo, respectively.

f1+Δf1になる。そして温度T0+ΔTにおいて、
周波数差の出力f。utは、下記(1)式の如くなる。
It becomes f1+Δf1. And at temperature T0+ΔT,
Frequency difference output f. ut is expressed by the following equation (1).

rOut−(fo+Δfo) −(f++Δr+)−u
、b)+ (八fo−ΔL) ・utここで、 foへfl、Δfo〉〉Δf I      ・(21
であるので、前記(1)式は下記(3)式の如くなる。
rOut-(fo+Δfo)-(f++Δr+)-u
, b) + (8 fo - ΔL) ・ut Here, fl to fo, Δfo〉〉Δf I ・(21
Therefore, the above equation (1) becomes the following equation (3).

fout −Δf O・(3) 従って、感温用水晶発振器1の周波数変化量のみを出力
信号として得ることができる。
fout −Δf O·(3) Therefore, only the amount of frequency change of the temperature-sensitive crystal oscillator 1 can be obtained as an output signal.

次に動作について説明する。周囲の温度変化に伴ってそ
の共振周波数が変化する感温用水晶発振器1からの発振
周波数の出力信号はフィルタ2にて、周波数がf。を中
心として帯域が2・Δfo範囲内のみの周波数成分が通
過され、ミキサ5に入力される。一方、恒温型水晶発振
器3からの発振周波数の出力信号はフィルタ4にて、周
波数がflを中心として帯域が10・Δf、範囲内のみ
の周波数成分が通過され、ミキサ5に入力される。フィ
ルタ2及びフィルタ4からの発振周波数間の周波数差が
ミキサ5から出力され、その周波数差の出力はフィルタ
6にて高調波(スプリアス)が除去され、フィルタ6か
ら前記f。ut(#Δfo)が出力さる。
Next, the operation will be explained. The output signal of the oscillation frequency from the temperature-sensitive crystal oscillator 1 whose resonant frequency changes with changes in the ambient temperature is passed through the filter 2 to a frequency f. Frequency components whose band is only within the range of 2·Δfo centered on are passed and input to the mixer 5. On the other hand, the output signal of the oscillation frequency from the constant-temperature crystal oscillator 3 is passed through a filter 4 whose frequency is centered around fl and whose band is 10.DELTA.f, and only frequency components within the range are passed and input to the mixer 5. The frequency difference between the oscillation frequencies from the filters 2 and 4 is output from the mixer 5, and the harmonics (spurious) are removed from the output of the frequency difference by the filter 6. ut(#Δfo) is output.

そしてこの出力された感温用水晶発振器1の周波数変化
量(Δf0)に基づき温度が検出される。
Then, the temperature is detected based on the output frequency change amount (Δf0) of the temperature-sensitive crystal oscillator 1.

ここで、フィルタ6からの出力信号は感温用水晶発振器
1及び恒温型水晶発振器3の発振周波数差となるので、
低周波出力が可能である。また、感温用水晶発振器1の
温度変化による周波数変化分がそのまま出力信号として
得られるので、高分解能を有し、温度変化を測定する時
間が゛短い。更に、感温用水晶発振器1.恒温槽制御型
水晶発振器3及びミキサ5からの出力につき、所定の帯
域の周波数を有する成分のみをフィルタにて通過させる
ので、高周波ノイズまたは高調波の影響なしに正確に温
度を検出することができる。
Here, since the output signal from the filter 6 is the oscillation frequency difference between the temperature-sensitive crystal oscillator 1 and the constant temperature crystal oscillator 3,
Low frequency output is possible. Further, since the frequency change due to temperature change of the temperature-sensitive crystal oscillator 1 is obtained as an output signal, high resolution is achieved and the time for measuring temperature change is short. Furthermore, temperature sensitive crystal oscillator 1. Regarding the output from the thermostatic chamber controlled crystal oscillator 3 and the mixer 5, only the components having frequencies in a predetermined band are passed through the filter, so the temperature can be accurately detected without the influence of high frequency noise or harmonics. .

〔効果〕〔effect〕

以上詳述した如く本発明の水晶温度センサは、高分解能
を有し、低周波出力信号を短時間の測定にて取り出すこ
とができる。
As described in detail above, the crystal temperature sensor of the present invention has high resolution and can extract a low frequency output signal in a short time measurement.

また、高周波ノイズまたは高調波の影響なしに正確に温
度を検出することができる。
Additionally, temperature can be detected accurately without the effects of high frequency noise or harmonics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水晶温度センサのブロック図、第2図
は感温用水晶発振器の出力信号の周波数特性図、第3図
は感温用水晶発振器の発振周波数の温度特性図、第4図
は恒温型水晶発振器の出力信号の周波数特性図、第5図
は恒温型水晶発振器の発振周波数の温度特性図である。 1・・・感温用水晶発振器 3・・・恒温型水晶発振器
5・・・ミキサ 2,4.6・・・フィルタ特許出願人
   住友金属工業株式会社代理人 弁理士 河  野
  登  夫ΔS/−!Y心 μ 9 Δビ仝心
Fig. 1 is a block diagram of the crystal temperature sensor of the present invention, Fig. 2 is a frequency characteristic diagram of the output signal of the temperature-sensing crystal oscillator, Fig. 3 is a temperature characteristic diagram of the oscillation frequency of the temperature-sensing crystal oscillator, and Fig. The figure is a frequency characteristic diagram of the output signal of the constant temperature type crystal oscillator, and FIG. 5 is the temperature characteristic diagram of the oscillation frequency of the constant temperature type crystal oscillator. 1... Temperature sensitive crystal oscillator 3... Constant temperature crystal oscillator 5... Mixer 2, 4.6... Filter patent applicant Sumitomo Metal Industries Co., Ltd. agent Patent attorney Noboru Kono ΔS/- ! Y-center μ 9 Δ Bi-center

Claims (1)

【特許請求の範囲】 1、水晶振動子の共振周波数の変化に基づき温度変化を
検出する水晶温度センサにおいて、その温度変化に対し
て共振周波数がほぼ直 線的に変化する第1の水晶振動子を備えた感温用水晶発
振器と、該感温用水晶発振器の発振周波数成分から所定
帯域の周波数成分を通過させる第1のフィルタと、その
温度変化に対して共振周波数が変化する第2の水晶振動
子を備え、該第2の水晶振動子の共振周波数の変化が前
記第1の水晶振動子の共振周波数の変化の千分の一以下
になるように前記第2の水晶振動子の温度を略一定に保
つ恒温型水晶発振器と、該恒温型水晶発振器の発振周波
数成分から所定帯域の周波数成分を通過させる第2のフ
ィルタと、前記第1のフィルタ及び前記第2のフィルタ
からの出力を入力して、発振周波数間の周波数差を出力
するミキサと、該ミキサの出力から所定帯域の周波数成
分を通過させる第3のフィルタとを具備することを特徴
とする水晶温度センサ。
[Claims] 1. In a crystal temperature sensor that detects temperature changes based on changes in the resonant frequency of a crystal resonator, a first crystal resonator whose resonant frequency changes almost linearly with respect to the temperature change is provided. a temperature-sensitive crystal oscillator, a first filter that passes a frequency component in a predetermined band from the oscillation frequency components of the temperature-sensitive crystal oscillator, and a second crystal vibration whose resonant frequency changes with respect to temperature changes. the temperature of the second crystal oscillator so that the change in the resonant frequency of the second crystal oscillator is one thousandth or less of the change in the resonant frequency of the first crystal oscillator. A constant temperature crystal oscillator that is kept constant, a second filter that passes a frequency component in a predetermined band from the oscillation frequency component of the constant temperature crystal oscillator, and outputs from the first filter and the second filter are input. A crystal temperature sensor comprising: a mixer that outputs a frequency difference between oscillation frequencies; and a third filter that passes frequency components in a predetermined band from the output of the mixer.
JP14736287A 1987-06-12 1987-06-12 Quartz-crystal temperature sensor Pending JPS63311133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736287A JPS63311133A (en) 1987-06-12 1987-06-12 Quartz-crystal temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736287A JPS63311133A (en) 1987-06-12 1987-06-12 Quartz-crystal temperature sensor

Publications (1)

Publication Number Publication Date
JPS63311133A true JPS63311133A (en) 1988-12-19

Family

ID=15428486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736287A Pending JPS63311133A (en) 1987-06-12 1987-06-12 Quartz-crystal temperature sensor

Country Status (1)

Country Link
JP (1) JPS63311133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152944B1 (en) * 2012-09-21 2013-02-27 眞人 田邉 Crystal temperature measuring probe and crystal temperature measuring device
CN104584436A (en) * 2012-08-21 2015-04-29 阿尔卡特朗讯 System for producing a system clock and temperature gradient detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584436A (en) * 2012-08-21 2015-04-29 阿尔卡特朗讯 System for producing a system clock and temperature gradient detection system
JP5152944B1 (en) * 2012-09-21 2013-02-27 眞人 田邉 Crystal temperature measuring probe and crystal temperature measuring device
WO2014045848A1 (en) * 2012-09-21 2014-03-27 Tanabe Masato Quartz-temperature-measurement probe and quartz-temperature-measurement device
US9228906B2 (en) 2012-09-21 2016-01-05 Masato Tanabe Quartz-temperature-measurement probe and quartz-temperature-measurement device

Similar Documents

Publication Publication Date Title
US5932953A (en) Method and system for detecting material using piezoelectric resonators
US4297872A (en) Vibration type transducer
US5869763A (en) Method for measuring mass change using a quartz crystal microbalance
ATE63163T1 (en) RESONATOR TRANSDUCER SYSTEM WITH TEMPERATURE COMPENSATION.
EP0406335A1 (en) Matched pairs of force transducers.
JPS63311133A (en) Quartz-crystal temperature sensor
JPS6182130A (en) Surface acoustic wave pressure sensor
US8220331B2 (en) System for analysing the frequency of resonating devices
JPS63284439A (en) Crystal temperature sensor
JPS62190905A (en) Surface acoustic wave device
Zwicker Strain sensor with commercial SAWR
Levy et al. An integrated resonator-based thermal compensation for Vibrating Beam Accelerometers
Stein et al. A systems approach to high performance oscillators
Jespersen Introduction to the time domain characterization of frequency standards
JPS5932834A (en) Crystal temperature sensor
JPS5857693B2 (en) thermometer
SU1343297A1 (en) Differential frequency densimeter
SU847099A1 (en) Piezo-resonance vacuum meter
SU1435968A1 (en) Pressure transducer
SU857888A2 (en) Self-excited generator-based device for rejecting crystal vibrator by monofrequency
Watanabe et al. Ultra-stable OCXO using dual-mode crystal oscillator
SU1068750A1 (en) Pressure and temperature pickup
SU1425559A2 (en) Device for measuring coefficient of acoustic coupling of acoustically coupled crystal vibrator
US10177710B1 (en) System and method for lossless phase noise cancellation in a microelectromechanical system (MEMS) resonator
RU2455754C1 (en) Temperature-compensated crystal-controlled oscillator