JPS6331057B2 - - Google Patents

Info

Publication number
JPS6331057B2
JPS6331057B2 JP56002774A JP277481A JPS6331057B2 JP S6331057 B2 JPS6331057 B2 JP S6331057B2 JP 56002774 A JP56002774 A JP 56002774A JP 277481 A JP277481 A JP 277481A JP S6331057 B2 JPS6331057 B2 JP S6331057B2
Authority
JP
Japan
Prior art keywords
calibration
output
converter
noise source
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002774A
Other languages
Japanese (ja)
Other versions
JPS57116264A (en
Inventor
Yoshiatsu Machino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56002774A priority Critical patent/JPS57116264A/en
Publication of JPS57116264A publication Critical patent/JPS57116264A/en
Publication of JPS6331057B2 publication Critical patent/JPS6331057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/006Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on microwaves or longer electromagnetic waves, e.g. measuring temperature via microwaves emitted by the object

Description

【発明の詳細な説明】 この発明は観測対象物から放射される電磁波お
よび観測対象物の状態、特性または関連する情報
を護得するリモートセンシング用マイクロ波放射
計受信機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave radiometer receiver for remote sensing that obtains electromagnetic waves radiated from an object to be observed and the state, characteristics, or related information of the object.

まず従来およびこの発明の基礎となるマイクロ
波放射計受信機の構成を簡単に説明する。
First, the configuration of a conventional microwave radiometer receiver, which is the basis of the present invention, will be briefly explained.

第1図は従来および当発明の基礎となるトータ
ルパワー方式のマイクロ波放射計受信機のシステ
ムブロツク図であり、同図において1は受信アン
テナ、2は測定および校正用切換スイツチ、3は
RF/IF回路、4は自乗検波器、5はステツプ減
衰器、6は積分器、7はA/D変換器、8は校正
用低温雑音源、9は校正用高温雑音源10は校正
用雑音切換スイツチである。
FIG. 1 is a system block diagram of a conventional total power type microwave radiometer receiver, which is the basis of the present invention. In the figure, 1 is a receiving antenna, 2 is a measurement and calibration switch, and 3 is a
RF/IF circuit, 4 is a square law detector, 5 is a step attenuator, 6 is an integrator, 7 is an A/D converter, 8 is a low temperature noise source for calibration, 9 is a high temperature noise source for calibration 10 is a calibration noise It is a changeover switch.

いま受信アンテナ1で受信した電磁波は測定お
よび校正用切換スイツチ2を通りRF/IF回路3
で周波数変換、および増幅され、自乗検波器4で
自乗検波される。次にステツプ減衰器5でレベル
調整が行われる。このステツプ減衰器5はA/D
変換器7の出力をフイードバツクしてAGC回路
を形成している。次に積分器6を介してある時定
数で積分が行われる。積分が完了した時点でA/
D変換器7によりA/D変換され出力される。ま
た系の校正のために校正用低雑音源8と校正用高
温雑音源9を有し、これらは校正用雑音源切換ス
イツチ10で切換えられ、さらに測定および校正
用切換スイツチ2に接続される。ここで測定時に
は受信アンテナ1で受信された雑音が受信機に接
続され、校正時には校正用の2つの雑音源のいず
れかが受信機に接続される。
The electromagnetic waves now received by the receiving antenna 1 pass through the measurement and calibration switch 2 and are transferred to the RF/IF circuit 3.
The signal is frequency-converted and amplified by a square detector 4, and square-law detected by a square-law detector 4. Level adjustment is then performed by step attenuator 5. This step attenuator 5 is an A/D
The output of the converter 7 is fed back to form an AGC circuit. Next, integration is performed via an integrator 6 with a certain time constant. When the integration is completed, A/
The signal is A/D converted by the D converter 7 and output. It also has a calibration low noise source 8 and a calibration high temperature noise source 9 for system calibration, which are switched by a calibration noise source changeover switch 10 and further connected to a measurement and calibration changeover switch 2. Here, during measurement, the noise received by the receiving antenna 1 is connected to the receiver, and during calibration, one of the two noise sources for calibration is connected to the receiver.

次に従来のトータルパワー方式のマイクロ波放
射計の動作概要を簡単に説明する。第2図に従来
の方式における入力雑音温度Taに対するA/D
変換器入力電圧Vaの関係を示す。自乗検波器4
を使用しているため入出力関係は直線となる。ま
ず校正用高温雑音源9が受信機に接続され、その
雑音温度Toに対するA/D変換器入力電圧をVo
とする。この入力電圧Voが常にA/D変換器7
の最大入力電圧となる様にAGC回路が働き、ス
テツプ減衰器5が動作し減衰量がセツトされる。
これによりA/D変換器6の最大入力電圧が設定
され、測定中のA/D変換器7の飽和をさける様
にしてある。この入力雑音温度Toに対するA/
D変換器入力電圧Voの交点をAとする。次に
AGC回路がオープンになり受信機は校正用低温
雑音源8に接続される。この時の入力雑音温度
Tsに対するA/D変換器入力電圧をVsとしこの
交点をB点とする。このA、B2点が決定され系
の校正を完了する。次に受信機を受信アンテナ1
側に接続し、この時のA/D変換器入力電圧VM
と前記A、B2点を結ぶ直線より入力雑音温度
TMが求められる。
Next, an overview of the operation of a conventional total power type microwave radiometer will be briefly explained. Figure 2 shows the A/D versus input noise temperature Ta in the conventional method.
The relationship between converter input voltage Va is shown. Square law detector 4
Since , the input-output relationship is a straight line. First, the high temperature noise source 9 for calibration is connected to the receiver, and the A/D converter input voltage Vo for the noise temperature To is
shall be. This input voltage Vo is always applied to the A/D converter 7.
The AGC circuit operates so that the maximum input voltage is reached, and the step attenuator 5 operates to set the amount of attenuation.
This sets the maximum input voltage of the A/D converter 6, so as to avoid saturation of the A/D converter 7 during measurement. A/ for this input noise temperature To
Let A be the intersection of the D converter input voltage Vo. next
The AGC circuit is opened and the receiver is connected to the low temperature noise source 8 for calibration. Input noise temperature at this time
Let the A/D converter input voltage with respect to Ts be Vs, and let this intersection be point B. These two points A and B are determined and the calibration of the system is completed. Next, connect the receiver to receiving antenna 1
A/D converter input voltage VM at this time
The input noise temperature is determined from the straight line connecting the above two points A and B.
TM is required.

しかしながら従来のマイクロ波放射計受信機に
おいて第2図に示すようにA/D変換器入力電圧
はVsからOVまでの電圧範囲はほとんど受信機内
部から発生する雑音によるものであり観測には不
必要な電圧である。
However, in conventional microwave radiometer receivers, as shown in Figure 2, the voltage range of the A/D converter input voltage from Vs to OV is mostly due to noise generated from inside the receiver and is unnecessary for observation. voltage.

実際に測定対象から発生する雑音成分による電
圧範囲はVsからVoの範囲である。したがつて従
来のトータルパワー方式のマイクロ波放射計受信
機においてはA/D変換器7の入力電圧のほとん
どはアンテナ雑音に無関係なものでありさらに
A/D変換器7の分解能を劣化させることとな
る。また分解能を良くし測定精度を上げるために
はA/D変換器7のビツト数を大きくとりかつ
1LSB当りの電圧を上げるためにA/D変換器の
最大入力電圧を大きく選ばなければならない欠点
があつた。
The voltage range due to noise components actually generated from the measurement target is from Vs to Vo. Therefore, in a conventional total power type microwave radiometer receiver, most of the input voltage to the A/D converter 7 is unrelated to antenna noise, which further deteriorates the resolution of the A/D converter 7. becomes. In addition, in order to improve the resolution and increase the measurement accuracy, the number of bits of the A/D converter 7 should be increased.
The drawback was that the maximum input voltage of the A/D converter had to be chosen large in order to increase the voltage per 1LSB.

そこでこの発明においては差動増幅器、メモリ
ー回路およびD/A変換器を新に追加することに
より観測雑音に無関係な受信内部で発生する雑音
を引き去りA/D変換器の分解能を上げることに
より前述の従来の欠点を除去するようにしたもの
である。
Therefore, in this invention, by newly adding a differential amplifier, a memory circuit, and a D/A converter, the noise generated inside the receiver that is unrelated to the observation noise is removed, and the resolution of the A/D converter is increased. It is designed to eliminate the drawbacks of the conventional method.

第3図にこの発明によるマイクロ波放射計の受
信機のシステムブロツク図を示す。まず測定およ
び校正用切換スイツチ2を校正用雑音源側に、校
正用雑音源切換スイツチ10を低温雑音源8側に
切換える。
FIG. 3 shows a system block diagram of a microwave radiometer receiver according to the present invention. First, the measurement and calibration switch 2 is switched to the calibration noise source side, and the calibration noise source switch 10 is switched to the low temperature noise source 8 side.

このときメモリー回路11の内容をOにしてお
くことにより差動増幅器12の一方の入力をOV
としておく。
At this time, by setting the contents of the memory circuit 11 to O, one input of the differential amplifier 12 is set to O.V.
I'll leave it as that.

また差動増幅器12の他端には校正用低温雑音
源8が接続されていることにより対応する電圧が
現われるが、この電圧は校正用低温雑音源8から
の雑音レベルと受信機内部で発生する雑音との和
によるものである。このとき差動増幅器12の出
力には入力電圧に比例した電圧が現われ、A/D
変換器7を介してメモリー回路11に新たに記憶
される。この電圧はD/A変換器13を通して再
度差動増幅器12の片方の入力へ入る。次に校正
用雑音源切換スイツチ10を校正用高温雑音源9
側に切換えステツプ減衰器5、積分器6、差動増
幅器12、A/D変換器7より構成されるAGC
回路で差動増幅器12の出力がA/D変換器7の
最大入力電圧となる様にステツプ減衰器5の減衰
量を調整する。この様に系の校正を行つた後、測
定および校正用切換スイツチ2をアンテナ1側に
切換え観測対象物の観測を行うことにより差動増
幅器12の出力は受信機内部で発生した雑音電圧
および低温雑音源から発生する雑音電圧が差し引
かれた電圧が現われる。信号処理の段階で概知の
校正用低雑音源の温度の温度を補正すれば受信機
内部で発生した雑音を含まない入力雑音温度が求
められる。
Furthermore, since the low-temperature noise source 8 for calibration is connected to the other end of the differential amplifier 12, a corresponding voltage appears, but this voltage is based on the noise level from the low-temperature noise source 8 for calibration and the noise generated inside the receiver. This is due to the sum with the noise. At this time, a voltage proportional to the input voltage appears at the output of the differential amplifier 12, and the A/D
The data is newly stored in the memory circuit 11 via the converter 7. This voltage passes through the D/A converter 13 and enters one input of the differential amplifier 12 again. Next, switch the calibration noise source switch 10 to the calibration high temperature noise source 9.
The AGC consists of a step attenuator 5, an integrator 6, a differential amplifier 12, and an A/D converter 7.
The circuit adjusts the amount of attenuation of the step attenuator 5 so that the output of the differential amplifier 12 becomes the maximum input voltage of the A/D converter 7. After calibrating the system in this way, the measurement and calibration changeover switch 2 is switched to the antenna 1 side and the observation object is observed. A voltage appears after subtracting the noise voltage generated from the noise source. If the temperature of a known low noise source for calibration is corrected at the signal processing stage, an input noise temperature that does not include noise generated inside the receiver can be obtained.

第4図にこの発明による方式の入力雑音温度と
A/D変換器入力電圧の関係を示す。校正により
A点、B点を決定する方法は前述した通りである
が従来と違う点は受信機に校正用低温雑音源8が
接続されたときの差動増幅器出力がOVとなる点
であり、これによりA/D変換器7の分解能を最
大まで上げることが出来る。この方法によると従
来A/D変換器7の分解能が Vo−Vs/To−Ts〔V/K〕 (1) であつたが、この発明によると分解能は Vo/To−Ts〔V/K〕 (2) となり Vo/Vo−Vs (3) だけ改善される。
FIG. 4 shows the relationship between input noise temperature and A/D converter input voltage in the method according to the present invention. The method for determining points A and B through calibration is as described above, but the difference from the conventional method is that the differential amplifier output becomes OV when the low temperature noise source 8 for calibration is connected to the receiver. This allows the resolution of the A/D converter 7 to be increased to the maximum. According to this method, the resolution of the conventional A/D converter 7 was Vo-Vs/To-Ts [V/K] (1), but according to the present invention, the resolution is Vo/To-Ts [V/K]. (2) and is improved by Vo/Vo−Vs (3).

以上述べたようにこの発明は従来の観測雑音電
圧に含まれていた受信機内部から発生する不要な
雑音成分を差し引くことによりA/D変換器7の
分解能を改善することが出来る。
As described above, the present invention can improve the resolution of the A/D converter 7 by subtracting unnecessary noise components generated from inside the receiver that are included in the conventional observation noise voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来およびこの発明の基礎となるトー
タルパワー方式のマイクロ波放射計受信機のシス
テム・ブロツク図、第2図は従来の入力雑音温度
に対するA/D変換器入力電圧の関係を示す図、
第3図はこの発明によるトータルパワー方式のマ
イクロ波放射計受信機のシステム・ブロツク図、
第4図はこの発明による、入力雑音温度に対する
A/D変換器入力電圧の関係を示す図であり、図
中1は受信アンテナ、2は測定および校正用切換
スイツチ、3はRF/IF回路、4は自乗検波器、
5はステツプ減衰器、6は積分器、7はA/D変
換器、8は校正用低温雑音源、9は校正用高温雑
音源、10は校正用切換スイツチ、11はメモリ
ー回路、12は差動増幅器、13はD/A変換器
である。なお、図中同一あるいは相当部分には同
一符号を付して示してある。
Figure 1 is a system block diagram of a conventional total power type microwave radiometer receiver, which is the basis of this invention, and Figure 2 is a diagram showing the relationship of A/D converter input voltage to conventional input noise temperature. ,
FIG. 3 is a system block diagram of a total power type microwave radiometer receiver according to the present invention.
FIG. 4 is a diagram showing the relationship between the input noise temperature and the A/D converter input voltage according to the present invention, in which 1 is a receiving antenna, 2 is a measurement and calibration switch, 3 is an RF/IF circuit, 4 is a square law detector,
5 is a step attenuator, 6 is an integrator, 7 is an A/D converter, 8 is a low temperature noise source for calibration, 9 is a high temperature noise source for calibration, 10 is a calibration switch, 11 is a memory circuit, 12 is a differential The dynamic amplifier 13 is a D/A converter. It should be noted that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 校正用低雑音源と、校正用高雑音源と、上記
校正用低雑音源の出力と校正用高雑音源の出力を
切換える校正用雑音源切換スイツチと、観測対象
物から放射される電磁波を受信する受信アンテナ
の受信出力と上記校正用雑音源切換スイツチの出
力を切換える測定および校正用切換スイツチと、
この測定および校正用切換スイツチからの出力を
入力する周波数変換・増幅手段と、この周波数変
換・増幅手段の出力をレベル調整するステツプ減
衰器と、このステツプ減衰器の出力を積分する積
分器と、この積分器の出力をデイジタル信号に変
換し、その出力を上記ステツプ減衰器へフイード
バツクするA/D変換器と、上記ステツプ減衰
器、上記積分器および上記A/D変換器により構
成され、上記校正用高温雑音源が上記スイツチに
より上記周波数変換・増幅手段に接続されたとき
上記校正用高温雑音源の雑音温度に対する上記
A/D変換器の入力電圧が最大入力電圧となるよ
うに上記ステツプ減衰器を調整するAGC回路と
を備え、上記校正用高雑音源の雑音温度に対する
上記A/D変換器の入力電圧の交点と上記校正用
低温雑音源の雑音温度に対する上記A/D変換器
の入力電圧の交点とを結ぶ直線と、上記受信アン
テナが上記周波数変換・増幅手段に接続されたと
きの上記A/D変換器の入力電圧とからアンテナ
入力雑音温度を求めるようにしたマイクロ波放射
計受信機において、一方の入力端が上記積分器の
出力端に接続され、出力端が、上記A/D変換器
の入力端に接続された差動増幅器と、上記校正用
低雑音源が上記周波数変換・増幅手段に切換えら
れたとき上記差動増幅器の他方の入力をOVとす
る内容としておき、上記差動増幅器の出力を上記
A/D変換器を介して新たに記憶するメモリー回
路と、このメモリー回路の出力を上記差動増幅器
の他方の入力端に入力させるD/A変換器とを具
備したことを特徴とするマイクロ波放射計受信
機。
1. A low noise source for calibration, a high noise source for calibration, a calibration noise source switching switch that switches the output of the low noise source for calibration and the output of the high noise source for calibration, and a calibration noise source switch that switches the output of the low noise source for calibration and the output of the high noise source for calibration, a measurement and calibration switch that switches between the reception output of the reception antenna and the output of the calibration noise source switch;
A frequency conversion/amplification means for inputting the output from the measurement and calibration switch, a step attenuator for adjusting the level of the output of the frequency conversion/amplification means, and an integrator for integrating the output of the step attenuator. It is composed of an A/D converter that converts the output of this integrator into a digital signal and feeds the output back to the step attenuator, the step attenuator, the integrator, and the A/D converter, and the calibration The step attenuator is configured such that when the high temperature noise source for calibration is connected to the frequency conversion/amplification means by the switch, the input voltage of the A/D converter with respect to the noise temperature of the high temperature noise source for calibration becomes the maximum input voltage. and an AGC circuit that adjusts the intersection of the input voltage of the A/D converter with respect to the noise temperature of the high noise source for calibration and the input voltage of the A/D converter with respect to the noise temperature of the low temperature noise source for calibration. and the input voltage of the A/D converter when the receiving antenna is connected to the frequency conversion/amplification means. , a differential amplifier having one input end connected to the output end of the integrator and an output end connected to the input end of the A/D converter; and the low noise source for calibration are connected to the frequency converter. a memory circuit configured to set the other input of the differential amplifier to OV when switched to the amplification means, and newly stores the output of the differential amplifier via the A/D converter; and this memory circuit. A microwave radiometer receiver comprising: a D/A converter that inputs the output of the differential amplifier to the other input terminal of the differential amplifier.
JP56002774A 1981-01-12 1981-01-12 Receiver for microwave radiometer Granted JPS57116264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002774A JPS57116264A (en) 1981-01-12 1981-01-12 Receiver for microwave radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002774A JPS57116264A (en) 1981-01-12 1981-01-12 Receiver for microwave radiometer

Publications (2)

Publication Number Publication Date
JPS57116264A JPS57116264A (en) 1982-07-20
JPS6331057B2 true JPS6331057B2 (en) 1988-06-22

Family

ID=11538679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002774A Granted JPS57116264A (en) 1981-01-12 1981-01-12 Receiver for microwave radiometer

Country Status (1)

Country Link
JP (1) JPS57116264A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679048B2 (en) * 1984-09-27 1994-10-05 工業技術院長 Digital radiometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115480A (en) * 1974-07-29 1976-02-06 Takeda Riken Ind Co Ltd SUPEKUTORA MUANA RAIZA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115480A (en) * 1974-07-29 1976-02-06 Takeda Riken Ind Co Ltd SUPEKUTORA MUANA RAIZA

Also Published As

Publication number Publication date
JPS57116264A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
US5268601A (en) Logarithmic amplifier circuit with temperature compensation
KR0177051B1 (en) Agc apparatus concurrently satisfying sufficient impedance matching characteristic and linear agc characteristic
RU2004101967A (en) SYSTEM AND METHOD FOR CALIBRATING POWER CONTROL OF A RADIO COMMUNICATION DEVICE
US9813169B2 (en) Precision measurement of transmit power using loopback calibration in an RF transceiver
AU655046B2 (en) Linear compensating circuit
US6999012B2 (en) Temperature compensation device for automatic gain control loop
US6005398A (en) High speed phase and amplitude measurement system and method
KR100390666B1 (en) Method and apparatus for providing gain control feedback in rf amplifiers
US4691381A (en) Receiver for amplitude modulated signals
US5701601A (en) Receive signal level detection system
JPS6331057B2 (en)
US6804498B1 (en) Method for influencing the level of a radio-frequency transmitted signal in a base station in a fixed radio network
JP3456202B2 (en) Receive level monitor circuit
JP3616483B2 (en) Automatic gain control circuit for radar receiver
JPS56108947A (en) Radio receiver for microwave radiometer
JPH07177045A (en) Power consumption reducing system for high frequency amplifier circuit
JP3888433B2 (en) Transmission output control circuit and method for communication apparatus
JP3077427B2 (en) Data receiving device
JPS61210727A (en) Output power control device for transmitter
JP2001211125A (en) Detector circuit
JPS58158545A (en) Microwave radiometer
JPH03159325A (en) Reception electric field level display circuit
JPS6218981Y2 (en)
JPS623955Y2 (en)
JP3064981B2 (en) Automatic transmission power control circuit