JPS63310333A - Load interchange mode determining system for power distribution system - Google Patents

Load interchange mode determining system for power distribution system

Info

Publication number
JPS63310333A
JPS63310333A JP62143120A JP14312087A JPS63310333A JP S63310333 A JPS63310333 A JP S63310333A JP 62143120 A JP62143120 A JP 62143120A JP 14312087 A JP14312087 A JP 14312087A JP S63310333 A JPS63310333 A JP S63310333A
Authority
JP
Japan
Prior art keywords
load
node
distribution line
feeder
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62143120A
Other languages
Japanese (ja)
Other versions
JP2644753B2 (en
Inventor
Yuzuru Imamura
譲 今村
Junzo Kawakami
川上 潤三
Ryuzo Hirano
平野 隆三
Toshiharu Unotsu
宇之津 俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62143120A priority Critical patent/JP2644753B2/en
Publication of JPS63310333A publication Critical patent/JPS63310333A/en
Application granted granted Critical
Publication of JP2644753B2 publication Critical patent/JP2644753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To raise processing efficiency by immediately forming an optimum combination out of combinations of many load zones and adjacent power distribution line systems. CONSTITUTION:More suitable assignment than normal one can be performed by sequentially selecting load zones to which highly probable one can be applied as compared with a simultaneous study of all zones to be interchanged in the process of the assignment. (The process is finished when power distribution line systems to be assigned to all load zones are determined as designated in a block 101). Accordingly, the assigned section is sequentially removed from the load zone to be interchanged and to be processed, and associated with the adjacent power distribution line systems. These load zones to be interchanged are clearly modeled by the process in a block 102. The adjacent power distribution line systems which can be supplied to the load zones are extracted in a block 103, and either one is selected based on the information in a block 104.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配電系統の負荷融通形態決定方式に係り、特
に配電線の各負荷区間にどういう経路で電力を供給すべ
きかを決定するのに好適な、配電系統の負荷融通形態決
定方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for determining a load accommodation mode in a power distribution system, and in particular to a method for determining the route through which power should be supplied to each load section of a power distribution line. The present invention relates to a suitable method for determining a load accommodation mode for a power distribution system.

〔従来の技術〕[Conventional technology]

従来、配電系統の負荷融通決定方式としては、特公昭6
1−12455号公報「配電線送送方式」において論じ
られている。この公報の方式では、融通対象の配電線に
対し、先ず直に接続の変電所の系統から余裕の範囲内で
逆送を行ない、次に、この逆送では融通され得なかった
区間救済および救済側番変電所の予備力平均化のため、
電力融通予備力大の変電所の負荷が大きくなるよう、変
電所間での連系により調整を行なう。
Traditionally, as a method for determining load accommodation in power distribution systems, the
Discussed in Publication No. 1-12455 "Distribution Line Transmission System". In the method described in this publication, the distribution line to be accommodated is first reversed from the system of the directly connected substation within a margin, and then the sections that cannot be accommodated by this reverse transfer are relieved and relieved. In order to equalize the reserve capacity of side substations,
Adjustments will be made by interconnecting substations so that the load on substations with large power interchange reserves will be large.

(発明が解決しようとする問題点〕 これは、どのように融通を行なうべきかの方策決定処理
を簡略化し、実際の開閉器操作を極力早期に行なおうと
するものである。
(Problems to be Solved by the Invention) This is an attempt to simplify the process of deciding how to make accommodations and to carry out actual switch operation as early as possible.

しかし、この方式では、やや複雑な系統に対しては、融
通され得ない停電の区間が生じたり、停電を少なくする
ため一旦逆送実施の区間を別の変電所の系統から融通し
直す必要が生じる等の不具合がある。また、開閉器操作
も含む負荷融通全体に要す時間は、単に融通計算からだ
け決るのではなく、操作の対象となった開閉器の特性、
例えば遠隔操作の可杏、にも左右され、その意味でも直
ちに逆送から実施するのは好ましくない。
However, with this method, for somewhat complex systems, there may be sections with power outages that cannot be accommodated, and in order to reduce power outages, it is necessary to temporarily transfer sections where reverse transmission is performed from the system of another substation. There are some problems such as In addition, the time required for the entire load accommodation including switch operation is determined not only by the accommodation calculation, but also by the characteristics of the switch being operated.
For example, it depends on the availability of remote control, and in that sense, it is not preferable to immediately start with reverse transfer.

本発明の目的は、様々な形状に接続の配電線の被融通負
荷区間群に対し、高速にしかも停電区間数や停電総負荷
量を極力小さくし得る。負荷融通形態決定方式を提供す
ることにある。
An object of the present invention is to achieve high speed and minimize the number of power outage sections and the total amount of power outage load for a group of load sections of distribution lines connected in various shapes. The object of the present invention is to provide a method for determining a load accommodation mode.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、以下の手法により達成される。すなわち、
融通対象とする各負荷区間に供給可能な隣接の配Wi線
系統を次のように抽出し、この情報に基づき各負荷区間
を融通すべき配電線系統の割付けを行なう、ここで、供
給可能な配電線系統は、当該配電線の系統から着目負荷
区間に至る使用可能な開閉器が存在し、かつ当該配電線
系統の残存予備力が着目負荷区間にその供給経路途中の
区間負荷量も含めてカバーし得ることを条件とする。
The above objective is achieved by the following method. That is,
Adjacent Wi line systems that can supply to each load section to be accommodated are extracted as follows, and based on this information, the distribution line systems that should be accommodated for each load section are assigned. In a distribution line system, there is a switch that can be used from the distribution line system to the load section of interest, and the remaining reserve capacity of the distribution line system is within the load section of interest, including the section load in the middle of the supply route. The condition is that it can be covered.

こうして求めた配電線系統を各負荷区間に割付る場合、
例えば、フィーダ番号の若いものを選択することも可能
であるが、次のような方策を設けると効率が良い、すな
わち割付は上必然的なものから順に、以下のように設定
するとともに、優先的に使用する。
When assigning the distribution line system obtained in this way to each load section,
For example, it is possible to select the feeder with the lowest number, but it is more efficient to take the following measures. used for.

(1)着目負荷区間への供給途中の負荷区間が唯一経路
上にあるとき、または接続開閉器の特性上着目負荷区間
への隣接配電線系統の割付けに連動して当該配電線系統
が前記着目負荷区間とは別で供給経路上ではない区間に
も割付けざるを得ないとは、着目区間のものと同一の系
統からの供給を必然的割付けとして実施する。
(1) When the load section in the middle of supplying to the load section of interest is the only one on the route, or due to the characteristics of the connection switch, the distribution line system is linked to the assignment of the adjacent distribution line system to the load section of interest. The fact that it is necessary to allocate to a section that is not on the supply route in addition to the load section means that it is necessary to allocate the supply from the same system as that of the section of interest.

(2) 8通対象の負荷区間全てがいずれかの隣接配電
線系統から融通され得る(最終的に停電はない)との仮
定が成り立ちそうなとき、(i)唯一の配電線系統から
のみ融通され得る被融通負荷区間には前記唯一配電線系
統を割付けてみる。
(2) When the assumption that all eight target load sections can be accommodated from any of the adjacent distribution line systems (ultimately there will be no power outage) is likely to hold true, (i) It is assumed that all the load sections subject to 8 transmissions can be accommodated from one of the adjacent distribution line systems (ultimately there will be no power outage); The only distribution line system mentioned above will be assigned to the load section that can be accommodated.

また、(it) It接接電電線系統残存予備力の比重
が大で、それ1つでも融通に用いられないことにより停
電が生じることになり、しかも当該配電線系統から直接
に融通可能な被融通負荷区間が唯一のときは、この負荷
区間には前記配電線系統を割付けてみる。
In addition, (it) The remaining reserves of the connected power line system are large, and if even one of them is not used for accommodation, a power outage will occur. When there is only one flexible load section, try allocating the above-mentioned distribution line system to this load section.

なお、その後に続く処理で停電の回避できない状況が発
生したとすると、このルール適用の仮定はくずれたこと
になり、必然的な割付けとはみなされないことになる。
Note that if a situation in which a power outage cannot be avoided occurs in subsequent processing, the assumption of application of this rule will be broken, and the allocation will not be considered inevitable.

(3)被融通負荷区間のうちをその負荷量大のものを優
先的に割付けの対象とする。
(3) Among the load sections to be accommodated, those with large loads are prioritized for allocation.

(4)供給のための接続開閉器の操作手順の少なくてす
む負荷区間を優先的に割付ける。
(4) Preferentially allocate load sections that require fewer operating procedures for connection switches for supply.

〔作用〕[Effect]

負荷融通形態の決定では、各負荷区間にどの隣接の配電
線系統から供給するのがよいか、負荷区間と配電線系統
との最適組合せを見い出すことが課屈となる。従って、
系統が大規模になると組合せの数が膨大となり、組合せ
を無策意に抽出するのでは多大な処理時間を要すことに
なる。
In determining the load accommodation mode, it is difficult to find out which adjacent distribution line system should supply each load section and the optimal combination of load sections and distribution line systems. Therefore,
When a system becomes large-scale, the number of combinations becomes enormous, and if combinations are extracted haphazardly, a large amount of processing time is required.

しかし、各負荷区間に供給可能な配ffi線系統は前述
のようにその残存予備力の上限等から限られていること
がわかる。その限られた候補の中からどれを選ぶか、前
述のルールに基づき決定すれば、自ずと必然性の高い割
付けとなり、最適に近い組合せを実現することができる
。それによって、多数ケース必要な組合せ計算は回避し
て高速処理が行え、停電負荷量も極力小さくすることが
できる。
However, it can be seen that the distribution line system that can supply each load section is limited due to the upper limit of its remaining reserve capacity, etc., as described above. If one is selected from among the limited candidates based on the above-mentioned rules, the allocation will naturally be made with a high degree of necessity, and a combination close to the optimum can be realized. As a result, high-speed processing can be performed by avoiding combinational calculations required for many cases, and the amount of power outage load can be minimized.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は、本発明に基づく融通形態決定の手順をフローで示
したものである。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a flowchart showing the procedure for determining the accommodation mode based on the present invention.

通常、配電系統はループを形成しないように、すなわち
、被融通負荷区間群をトリー状に接続して運用される。
Usually, a power distribution system is operated so as not to form a loop, that is, by connecting a group of interchangeable load sections in a tree shape.

これから、同一負荷区間には隣接配f11線系統が唯一
割付は可能となる。
From now on, only adjacent distribution f11 line systems can be assigned to the same load section.

ところで、割付の処理は被融通区間全てに対し一挙に行
なうよりも、先述のルールのうち必然性の高いものが適
用可能な負荷量TJI(1つとは限らない)を逐次選択
して行なう方が、通常より適切な割り付けが可能と考え
られる(ブロック101に示すように全負荷区間に割付
けすべき配電線系統が決定したとき処理を終了する)、
これは、処理の進行とともに上記ループ禁止の制約が強
まっていく傾向に沿った妥当ものと言える。
By the way, it is better to sequentially select the load amount TJI (not limited to one) to which the most likely one of the above-mentioned rules can be applied than to perform the allocation process on all the concessioned sections at once. It is considered that a more appropriate allocation than usual is possible (the process ends when the distribution line system to be allocated to the full load section is determined, as shown in block 101),
This can be said to be appropriate as it follows the tendency for the above-mentioned loop prohibition restriction to become stronger as processing progresses.

従って、割付処理済の部分は、逐次、処理対象である被
融通負荷区間から除去し、隣接配W!、線系統の側に組
込むことにする(その際、当該配電線系統の残存予備力
については、割付は対象の区間負荷分だけ感じておく)
。これらの融通対象負荷区間等をブロック102の処理
で明確にモデル化しておく。
Therefore, the allocated portions are sequentially removed from the accommodating load section to be processed, and the adjacent distribution W! , it will be incorporated into the line system side (at this time, the remaining reserve capacity of the distribution line system will be allocated only for the target section load)
. These load sections to be accommodated and the like are clearly modeled in the process of block 102.

ブロック103では、各負荷区間に供給可能な隣接配電
線系統を抽出し、この情報をもとに、ブロック104で
はどれか1つを選択する。
In block 103, adjacent distribution line systems that can supply each load section are extracted, and based on this information, in block 104, one is selected.

第1図の処理を第2図の配電系統に適用した場合につい
て以下に説明する。
A case in which the process shown in FIG. 1 is applied to the power distribution system shown in FIG. 2 will be described below.

第2図の系統において、母線に遮断器を介して接続の配
置!!線の系統のうち負荷区間321で地絡事故が発生
の場合、遮断器22に接続の負荷区間は全て停電となる
。しかし、破線で囲む300で示す部分は、隣接の遮断
器21と23の配電線系統からの負荷融通により停電を
回避できる可能性がある。この融通計算の処理を行なう
ため部分系統300を融通対象として抽出する。そして
以後の処理の便宜を図るため、第3図に示すように、被
覆過負荷区間をノード、被融通負荷区間(ノード)相互
を接続しつる開閉器をブランチ、被融通負荷区間(ノー
ド)に接続しうる隣接の配電線系統を開閉器も含めてフ
ィーダとして扱う、フィーダは、矢印で示すようにブラ
ンチとは異なり片端のみがノードで、また、融通し得る
配電線系統の残存予備電力を容量(()内に示す値)と
してもつ、なお、同一フィーダが複数のノードに接続の
ときも()内の予備力は当該フィーダ全体について示し
ている。融通対象としては第2図の300に限らず、例
えば全系統でもよい。
In the system shown in Figure 2, the connection arrangement is through a circuit breaker to the bus bar! ! If a ground fault occurs in the load section 321 of the line system, all load sections connected to the circuit breaker 22 will experience a power outage. However, in the portion indicated by 300 surrounded by a broken line, there is a possibility that a power outage can be avoided by load accommodation from the distribution line system of the adjacent circuit breakers 21 and 23. In order to process this accommodation calculation, the partial system 300 is extracted as an accommodation target. In order to facilitate subsequent processing, as shown in Figure 3, covered overload sections are designated as nodes, and the vine switches that connect interchangeable load sections (nodes) are designated as branches and interchangeable load sections (nodes). A feeder is treated as a feeder, including the adjacent distribution line switch that can be connected to it. Unlike a branch, as shown by the arrow, a feeder has only one end as a node. (Values shown in parentheses) Note that even when the same feeder is connected to multiple nodes, the reserve capacity in parentheses is shown for the entire feeder. The object of flexibility is not limited to 300 in FIG. 2, but may be, for example, the entire system.

第2図で、遮断器のところに()で示す値は当該l断器
の容量を、負荷区間のところの()には当該区間の負荷
量を示す、第3図で、ノードの円の中には対応区間の負
荷量を、左肩あるいは右肩の小円の中には、抽出の被融
通部分でのノード尚を示す、フィーダについても、遮断
器21と22各々に対応してFl、F2と付着しなおす
In Figure 2, the value shown in parentheses at the circuit breaker indicates the capacity of the circuit breaker, and the value in parentheses at the load section indicates the load amount in the section. The inside shows the load amount of the corresponding section, and the small circle on the left shoulder or right shoulder shows the node in the extracted accommodating part.As for the feeder, Fl, Reattach it to F2.

以上のような、被融通部分のモデル化を第1図のブロッ
ク102で行なう。なお、第2図の系統の例では、説明
を簡単にするため、ブランチやフィーダの開閉器は操作
の方向には依存しない(差異はない)としておく。
The modeling of the accommodated portion as described above is performed in block 102 of FIG. In the example of the system shown in FIG. 2, in order to simplify the explanation, it is assumed that the branch and feeder switches do not depend on the direction of operation (there is no difference).

次に、第1図のブロック103に示す融通対象負荷区間
の限定を行なうが、それには第4図に示すように各フィ
ーダ毎のSLP (仮称: 5hortestLoad
 Path=最短負荷経路)を算出する。SLPは各フ
ィーダ毎にその容量の範囲内で、当該フィーダの入口ノ
ードから各着目ノード(前記入口ノードも含む)までの
最小総負荷量で、該着目ノードにSLPが存在すれば指
定フィーダからの供給が可能であること(必要条件)を
示す、従って、あるノードに対しどのフィーダのSLP
も存在しなければ、そこには供給不可で停電とせざるを
得ない(停電であるための十分条件)ことになる。
Next, the load section to be accommodated shown in block 103 of FIG.
Path=shortest load path) is calculated. SLP is the minimum total load from the inlet node of the feeder to each node of interest (including the inlet node) within the capacity of each feeder, and if SLP exists at the node of interest, the amount of load from the designated feeder is Indicates that supply is possible (required condition), and therefore which feeder's SLP for a given node.
If there is no power supply, there will be no supply to the area and a power outage will have to occur (a sufficient condition for a power outage).

第4図(1)に示すように、全て未処理の状態では、フ
ィーダF1からは全ノードに、F2からは■を除く全ノ
ードに供給しうることになる。なお、SLPでは矢印で
示す供給経路とノードのそばに記す経路差負荷量とが明
示される。このSLPに基づき、第1図ブロック104
の処理を行ない、一部ノードにフィーダを割付ける。す
なわち、停電がないとの仮定で、■にはFlを、またそ
の唯−経路上の■にもFlを割付ける。(Flもそうで
あるが)F2が使えないとすると、フィーダの供給可能
電力は被融通総負荷量に対し不足する。
As shown in FIG. 4(1), in a state where all the feeders are unprocessed, feeder F1 can supply to all nodes, and feeder F2 can supply to all nodes except ■. Note that in the SLP, the supply route indicated by an arrow and the route difference load amount written near the node are clearly indicated. Based on this SLP, block 104 in FIG.
process and allocate feeders to some nodes. That is, on the assumption that there is no power outage, Fl is assigned to ■, and Fl is also assigned to ■ on its only route. If F2 cannot be used (as is the case with Fl), the power that can be supplied by the feeder will be insufficient with respect to the total amount of load to be accommodated.

また、F2の入口ノードは■のみなので、停電がないと
して(ΦにF2を割付ける。
Also, since the only entry node for F2 is ■, assuming that there is no power outage (assign F2 to Φ).

処理済となった部分を対象から除去、フィーダの容量と
直接供給の入口ノードとを修正して、第4図(2)のS
LPを得る。これから■にはF2のみが供給可能で、停
電はないとして■にF2を割付ける。以下同様にして、
結局、第4図の最後に示すような融通計算結果が求まる
Remove the processed part from the target, correct the feeder capacity and direct supply inlet node, and select S in Fig. 4 (2).
Get LP. From now on, assuming that only F2 can be supplied to ■ and there will be no power outage, F2 will be assigned to ■. Similarly below,
In the end, the flexibility calculation results shown at the end of FIG. 4 are obtained.

ここで、先述のルールについて以下に補足する。Here, some supplementary information regarding the above-mentioned rules is given below.

ルール(1)の唯一の経路の例として、前述のように第
4図(1)のノード■がある。ここでは、■にフィーダ
F2も割付可能だが、そうするとFlを割付済の■への
供給が不可となり矛盾が生じる。
An example of the only route for rule (1) is node (1) in FIG. 4 (1), as described above. Here, it is possible to allocate feeder F2 to ■, but in this case, it becomes impossible to supply Fl to ■, which has already been allocated, and a contradiction occurs.

従って、■も必然的にFlに割付けることになる。Therefore, ■ will also necessarily be assigned to Fl.

一方、第5図(1)に示すような例では、ノード■がフ
ィーダF1からしか供給不可なので、■にFlを割付け
た後、その仮の経路途中ノード■にF2を割付けたとし
ても、別に■→■→■→■→■という経路が存在するの
で迂回でき、■→■→■は唯一経路ではない。仮の経路
が唯一のものか否かは、例えば、後に別フィーダによる
割付けにより仮経路上ノードを重複して用いたり仮割付
けすることになった場合、その重複ノード(第4図(1
)では■、第5図(1)では■)を一時的に除去して、
先に割付は済のノードへのSLPが存在しうるか否かを
チェックして判定できる。
On the other hand, in the example shown in FIG. 5 (1), node ■ can only be supplied from feeder F1, so even if Fl is assigned to ■ and then F2 is assigned to node ■ on the temporary route, there will be no difference. Since the route ■→■→■→■→■ exists, it can be detoured, and ■→■→■ is not the only route. Whether or not a temporary route is unique is determined, for example, if a node on the temporary route is later used or provisionally allocated due to allocation by another feeder, the duplicate node (see Figure 4 (1)
), we temporarily remove ■, and in Figure 5 (1), we temporarily remove ■),
This can be determined by checking whether or not there is an SLP to a node that has been previously allocated.

しかし、ノードの接続形状によっては、SLPを算出し
なくとも、唯一経路か否かを判定できる。
However, depending on the connection shape of the nodes, it can be determined whether there is only one route without calculating the SLP.

第5図(2)に例示する系統では、■にFlを割付けた
として、■→■→■の仮経路には、他の分岐がなく、迂
回の余地のないことは明白である。
In the system illustrated in FIG. 5(2), even if Fl is assigned to ■, it is clear that there is no other branch in the temporary route from ■→■→■, and there is no room for a detour.

次に、割付けに連動して別ノードに同一フィーダの割付
けらおる例を第4図(3)に示す。ノード■−■間の開
閉器は他のブランチのものとは異なり、操作の特性がそ
の向きによって異なる。すなわち、■が充電されるとあ
る時限の後に自動的にONとなる。逆に■が充電しても
■は自動的にはONせず、人の操作が必要である。なお
、■充電の後自動的にONとしないためには予め切口ツ
クをかけておく必要がある。このように、■にFlを割
付けることは、同時に■にもFlを割付けることである
Next, FIG. 4(3) shows an example in which the same feeder is allocated to different nodes in conjunction with the allocation. The switch between nodes ■ and ■ is different from those of other branches, and its operating characteristics differ depending on its orientation. That is, when ■ is charged, it is automatically turned on after a certain time period. On the other hand, even if ■ is charged, ■ does not turn on automatically and requires human operation. In addition, ■It is necessary to set a cut in advance so that it does not turn on automatically after charging. In this way, assigning Fl to ■ means assigning Fl to ■ at the same time.

ルール(4)の操作手順の少なくてすむ割付けについて
、第5図(3)の例で説明する。前述の特性をもつ開閉
器で接続のノード■と■が、フィーダFl、F2いずれ
からも供給可能のとき、■に(従って■にも)Flを割
付ければ1回の操作で済むが、■にF2を割付けると2
回の操作が必要となる。従って、Flから融通するのが
良い。
The layout of rule (4) that requires fewer operating procedures will be explained using the example shown in FIG. 5 (3). When nodes ■ and ■ connected by a switch with the above-mentioned characteristics can be supplied from either feeder Fl or F2, if Fl is assigned to ■ (and therefore also to ■), one operation is enough, but ■ Assigning F2 to 2
Requires multiple operations. Therefore, it is better to take advantage of Fl.

本発明の別の実施例を第6図により説明する。Another embodiment of the present invention will be described with reference to FIG.

第6図(1)に示す融通対象については、フィーダFl
、F2とも全ノードに供給可能である。そこで、先述の
ルール(3)を用いて、負荷量最大のノード■をフィー
ダF1から供給してみる。すると、先に述べたのと類似
の手順により、第6図(2)の(a−1)および(b−
1)に示すような結果が求まり、この場合停電負荷量を
■と■の和(4)より小さくできない、一方、■にF2
を割付ると、(a−2)および(b−2)に示すような
結果となり、停電量は■の分(2)までに小さくでき、
より最適に近い解となる。また、停電区間の数の少ない
点でも最適に近い。
Regarding the accommodation target shown in Fig. 6 (1), the feeder Fl
, F2 can be supplied to all nodes. Therefore, using the above-mentioned rule (3), try feeding the node (2) with the largest load amount from the feeder F1. Then, by a procedure similar to that described above, (a-1) and (b-
The result shown in 1) is obtained, and in this case, the power outage load cannot be made smaller than the sum of ■ and ■ (4).
When assigned, the results shown in (a-2) and (b-2) are obtained, and the amount of power outage can be reduced by (2)
This results in a solution closer to the optimum. It is also close to optimal in terms of the small number of power outage sections.

このように、先述の方策だけでは、停電負荷量を最小に
できないケースもあるわけで、最適解が求まるとは限ら
ない。そこで、仮に(a−1)((b−1))のように
求めたとしても、必然的な割付けを行なわなかったとこ
ろ(例えば、上記■への割付け)については、別の候補
フィーダを割付けてみるとよい(その結果、  (a−
2) ((b−2))のような解が求まる)。
In this way, there are cases in which the power outage load cannot be minimized using only the above-mentioned measures, and an optimal solution may not always be found. Therefore, even if (a-1) ((b-1)) is obtained, other candidate feeders will be assigned for areas where the necessary assignments were not made (for example, the assignment to ■ above). (As a result, (a-
2) (A solution like (b-2) is found).

このように、フィーダ割付けの必然性を、その適用ルー
ルによって管理しておけば、別の組合せをチェックする
際に便利で、分岐限定法を用いると系統的に別の組合せ
をチェック可能である。そして、分岐限定法を適用の場
合も、本考案のルールを用い必然性の高い割付けから優
先的に行なうようにしておけば、より最適に近い解を1
組合せの修正を少なく早期に求めることができる。
In this way, if the necessity of feeder allocation is managed by its application rules, it is convenient to check other combinations, and by using the branch and bound method, it is possible to systematically check other combinations. Even when applying the branch-and-bound method, if the rules of this invention are used and the assignments with high necessity are prioritized, a solution closer to the optimal one can be obtained.
Modifications to combinations can be made as quickly as possible.

一旦求めた解の改善は、以上のように処理手順に沿って
別の割付けを試してみる他に、以下のように解(ノード
の供給フィーダ)を入れ替ることによっても達成できる
。これを第7図を用いて説明する。
Improving the solution once obtained can be achieved not only by trying a different allocation according to the processing procedure as described above, but also by replacing the solution (node supply feeder) as described below. This will be explained using FIG. 7.

第6図(2)(b−1)で停電となっているノード■に
はフィーダF1が接続されているが、容量が1だけ不足
している。そこで、Flから■への供給をやめ(第7図
(1))、代りに■に供給する(第7図(2)Flは供
給容量上限まで用いており停電量も減ることになる)。
Although the feeder F1 is connected to the node (2) experiencing a power outage in FIG. 6(2)(b-1), the capacity is insufficient by one. Therefore, the supply from Fl to ■ is stopped (FIG. 7 (1)) and is instead supplied to ■ (FIG. 7 (2) Fl is used up to the upper limit of its supply capacity, which reduces the amount of power outages).

次に、■にはF2がら供給可能となるのでそのように割
付ける。これにより、停電はノード■(2)だけとなる
(第7図(3))。
Next, F2 can be supplied to ■, so it is assigned as such. As a result, the power outage occurs only at node (2) (FIG. 7 (3)).

なお、この後処理は、フィーダの入れ替えによる停電の
削減だけでなく、開閉器のON、OFF入れ替えによる
操作性改善にも適用可能である。
Note that this post-processing can be applied not only to reducing power outages by replacing feeders, but also to improving operability by switching ON and OFF switches.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、あらゆる形状に接続の
配電線の被融通負荷区間群に対し融通形態を、高速に、
しかも停電負荷量の極力小さい準最適解として求めるこ
とができる。すなわち、本発明では、多数存在しうる負
荷区間と隣接の配電線系統との組合せのうち、はぼ最適
とみなされる組合せに相当するものを、組合せ相互の比
数ではなく直に作り出すことにより処理効率を上げてい
る(例えば、負荷区間の数が10、隣接の配電線系統の
数が3とすると、停電も含めると総当りの組合せは4t
o通りと膨大なものになる。それに対し本発明では、高
々10回程度の必要な割付は可能な配電線系統判定のた
めの計算も含め、特に時間を要する処理はない。)。
As described above, according to the present invention, the accommodating mode can be quickly and easily applied to a group of accommodating load sections of distribution lines connected in any shape.
Moreover, it can be obtained as a quasi-optimal solution with the smallest amount of power outage load. In other words, in the present invention, among the many possible combinations of load sections and adjacent distribution line systems, those that correspond to combinations that are considered to be optimal are processed by directly creating the combinations, rather than using the ratios of the combinations. Increases efficiency (for example, if the number of load sections is 10 and the number of adjacent distribution lines is 3, the total combination including power outages is 4 tons)
There are so many ways to do this. In contrast, in the present invention, there is no process that requires particularly time, including calculations for determining the distribution line system, which can be assigned at most 10 times. ).

本発明についての以上の説明では、同一負荷区間には唯
一の配電線系統からしか供給しない(ループ不可)とし
ているが、ループを許容の場合でも、別系統で割付済の
区間を経由上でも良いという条件を付加して、前述のS
L、Pを計算すれば対応可能である。
In the above explanation of the present invention, it is assumed that the same load section is supplied from only one distribution line system (loop is not possible), but even if a loop is allowed, it may be supplied via a section that has been assigned to another system. With the addition of the condition, the above S
This can be handled by calculating L and P.

また、SLPでは隣接配電線の容量だけでなく、経路途
中の開閉器等の許容容量や負荷区間の電圧降下を反映さ
せることも可能である。
Furthermore, in SLP, it is possible to reflect not only the capacity of adjacent distribution lines, but also the allowable capacity of switches, etc. along the route, and the voltage drop in load sections.

なお、本発明の適用範囲は、ここで述べた配電系統に留
まらず、ネットワーク状で運用のシステムに広く係るも
のである。
Note that the scope of application of the present invention is not limited to the power distribution system described here, but is broadly related to systems operated in the form of a network.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す処理フロー図、第2図
は実施例を説明するための配電系統図、第3図は第2図
の中から特に融通計算に関係する部分を抽出した図、第
4図は処理の状況を系統図上に示した図、第5図は本発
明で提案の方策を補足説明するための系統図、第6図と
第7図は本発明の別の実施例を説明するための系統図等
である。 20・・・変電所母線、21〜23・・・遮断器、31
〜33・・・連系開閉器、101〜104・・・処理ブ
ロック図、211〜234・・・区分開閉器、300・
・・被融通負荷区間群の系統、311〜334・・・被
融通垢 1 回 璃 λ 8 第 381 拓  斗  凶 (+)   FlめSLP      F2のSLP第
 S  口 V4+ 第 Q 図
Fig. 1 is a processing flow diagram showing an embodiment of the present invention, Fig. 2 is a power distribution system diagram for explaining the embodiment, and Fig. 3 is an extraction of the part particularly related to the flexibility calculation from Fig. 2. Figure 4 is a diagram showing the processing situation on a system diagram, Figure 5 is a system diagram for supplementary explanation of the measures proposed by the present invention, and Figures 6 and 7 are different diagrams of the present invention. It is a system diagram etc. for explaining the Example of this. 20... Substation busbar, 21-23... Circuit breaker, 31
~33... Grid switch, 101-104... Processing block diagram, 211-234... Division switch, 300.
...Systems of the group of load sections to be accommodated, 311-334...Loads to be accommodated 1st turn λ 8th 381 Takuto Kyou (+) Flme SLP F2's SLP No. S mouth V4+ No. Q Figure

Claims (1)

【特許請求の範囲】[Claims] 1、配電変電所の母線に接続の遮断器毎に設定された配
電線の系統に所属の負荷区間群に、どの負荷区間を経由
して電力を供給すべきかを決める負荷融通形態決定方式
において、融通対象の被融通負荷区間として、少なくと
も前記負荷区間群のうちその所属配電線系統の遮断器だ
けからの供給では停電となる負荷区間を取り込み、この
取り込んだ融通対象を、ノードとして各被融通区間を、
ブランチとして被融通区間相互を接続しうる開閉器を、
更に被融通区間に自らの系統への供給残存予備力を元に
規定の容量内で電力供給可能なフィーダとしてノードに
開閉器を介して隣接の配電線の系統を用いて、ネットワ
ークで表現することにより、前記融通形態の決定を、各
ノードへのフィーダ割付けの問題として扱い、各ノード
に供給可能なフィーダを、フィーダ毎に各ノードに至る
経路上ノードの総負荷量の最小値が当該フィーダの容量
以下であれば可能(越えれば不可能)として判定し、ノ
ードにはこの供給可能フィーダの1つを割付け、一方、
供給可能フィーダのないノードは停電として、処理する
ことを特徴とする、配電系統の負荷融通形態決定方式。
1. In a load accommodation mode determination method that determines which load section should be used to supply power to a group of load sections belonging to a distribution line system set for each circuit breaker connected to the busbar of a distribution substation, At least a load section of the group of load sections that would cause a power outage if supplied only from the circuit breaker of the distribution line system to which it belongs is taken as the accommodated load section to be accommodated, and this taken in accommodation object is used as a node for each accommodated section. of,
A switch that can connect interchangeable sections as a branch,
Furthermore, it can be expressed as a network by using the adjacent distribution line system via a switch at the node as a feeder that can supply power within the specified capacity based on the remaining supply reserve to its own system in the interchangeable section. Therefore, the decision on the accommodation mode is treated as a problem of feeder allocation to each node, and the minimum value of the total load of the nodes on the route leading to each node is the feeder that can be supplied to each node. If it is less than the capacity, it is determined that it is possible (if it exceeds it, it is impossible), and one of the feeders that can be supplied is assigned to the node, and on the other hand,
A method for determining a load accommodation mode for a power distribution system, characterized in that a node without a supplyable feeder is treated as a power outage.
JP62143120A 1987-06-10 1987-06-10 How to determine load interchange of distribution system Expired - Fee Related JP2644753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143120A JP2644753B2 (en) 1987-06-10 1987-06-10 How to determine load interchange of distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143120A JP2644753B2 (en) 1987-06-10 1987-06-10 How to determine load interchange of distribution system

Publications (2)

Publication Number Publication Date
JPS63310333A true JPS63310333A (en) 1988-12-19
JP2644753B2 JP2644753B2 (en) 1997-08-25

Family

ID=15331381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143120A Expired - Fee Related JP2644753B2 (en) 1987-06-10 1987-06-10 How to determine load interchange of distribution system

Country Status (1)

Country Link
JP (1) JP2644753B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034437A (en) * 2010-07-28 2012-02-16 Chugoku Electric Power Co Inc:The Method for determining trouble recovery target system in electric power system
JP2021175313A (en) * 2020-04-28 2021-11-01 三菱重工業株式会社 System reconfiguration system, system reconfiguration method, and system reconfiguration program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921231A (en) * 1982-07-28 1984-02-03 株式会社日立製作所 Power interruption discriminating method for power system facility
JPS61203825A (en) * 1985-03-05 1986-09-09 三菱電機株式会社 Connection state decision system for power system
JPS6292724A (en) * 1985-10-17 1987-04-28 九州電力株式会社 Distribution system controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921231A (en) * 1982-07-28 1984-02-03 株式会社日立製作所 Power interruption discriminating method for power system facility
JPS61203825A (en) * 1985-03-05 1986-09-09 三菱電機株式会社 Connection state decision system for power system
JPS6292724A (en) * 1985-10-17 1987-04-28 九州電力株式会社 Distribution system controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034437A (en) * 2010-07-28 2012-02-16 Chugoku Electric Power Co Inc:The Method for determining trouble recovery target system in electric power system
JP2021175313A (en) * 2020-04-28 2021-11-01 三菱重工業株式会社 System reconfiguration system, system reconfiguration method, and system reconfiguration program

Also Published As

Publication number Publication date
JP2644753B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
Lee et al. Service restoration of primary distribution systems based on fuzzy evaluation of multi-criteria
Botea et al. Optimal reconfiguration for supply restoration with informed A $^{\ast} $ Search
CN105719102A (en) Intelligentized power grid accident plan processing method
JPS63310333A (en) Load interchange mode determining system for power distribution system
CN110516876B (en) Optimal breaking switch optimization method and system
CN114665472A (en) Power supply line fault transfer method, line, system, device and storage medium
EP3879661A1 (en) Safe and resilient energy distribution system for a highly efficient microgrid
CN114243680A (en) Power supply recovery system and method based on scalable partition
US20210288492A1 (en) Safe and resilient energy distribution for a highly efficient microgrid
JPH06189454A (en) Method for interchanging and allocating load
CN110165638B (en) Distribution line two-stage protection optimization configuration method based on power failure capacity minimum
JP2734660B2 (en) Load accommodating processing method in case of distribution system failure
JP2802536B2 (en) Method and apparatus for determining load interchange of distribution system
Yee et al. Cost Optimized Load Allocation for Dual Radial Customers
CN111917115A (en) Automatic supply transfer scheme compiling method for distribution network self-service power failure plan balance
JP7523942B2 (en) System reconfiguration system, system reconfiguration method, and system reconfiguration program
CN113410837B (en) Grouping power distribution system suitable for limited power supply capacity and power distribution method thereof
Venturini et al. Balancing decentralization for restoration in power distribution systems with agents
CN216056338U (en) Grouping power distribution system based on limited power supply capacity
JPH07194001A (en) Method of preparing load transfer procedure to stop distribution transformer bank and load transfer controller
Krishans et al. Planning of Urban Medium Voltage Network
JPH06133459A (en) Load interchanging method
Kubarkov et al. Application of multi agent in solving problems for operation of a smart grid
US20210028684A1 (en) Control System For Controlling a Plurality of Controllable Units, in Particular a Converter Configuration With a Plurality of Controllable Power Semiconductor Switches, Converter Configuration and Method for Operation the Converter Configuration
JP2680466B2 (en) Distribution system controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees