JPS63309852A - Ultrasonic flaw detecting method - Google Patents

Ultrasonic flaw detecting method

Info

Publication number
JPS63309852A
JPS63309852A JP62145191A JP14519187A JPS63309852A JP S63309852 A JPS63309852 A JP S63309852A JP 62145191 A JP62145191 A JP 62145191A JP 14519187 A JP14519187 A JP 14519187A JP S63309852 A JPS63309852 A JP S63309852A
Authority
JP
Japan
Prior art keywords
axis
measured
flaw detection
ultrasonic
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62145191A
Other languages
Japanese (ja)
Other versions
JP2553867B2 (en
Inventor
Masaaki Hatta
八田 雅明
Katsuhiro Kawashima
川島 捷宏
Mitsuhiro Hori
堀 満裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62145191A priority Critical patent/JP2553867B2/en
Publication of JPS63309852A publication Critical patent/JPS63309852A/en
Application granted granted Critical
Publication of JP2553867B2 publication Critical patent/JP2553867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To speed up flaw detection with high accuracy by storing a shape of a body to be measured, in a memory, calculating a controlled variable of a driving mechanism from a shape data stored in the memory, and bringing a driving part of each axis to an open loop control. CONSTITUTION:A distance sensor 2 and an alpha axis driving motor 3 are attached to the lower end of a three-dimensional scanner which can move in the directions of an (x) axis, a (y) axis and a (z) axis being orthogonal to each other, the sensor 2 is scanned at the upper part of a body to be measured 1, and a distance of the sensor in each point of the (x) and (y) axes is measured, and inputted to a computer. Subsequently, by the computer, a point being at a prescribed distance in the normal direction in a point of the surface of the body to be measured 1 is derived and a tip position of a probe 6 is moved, always, made vertical to the surface of the body to be measured 1, and also, allowed to hold a prescribed distance. Next, from a characteristic function which is provided in advance, a controlled variable of a driving mechanism is generated by an arithmetic processing part, and a driving part is brought to an open loop control.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はセラミックスや複合材料等で成形された曲面
形状の物体を、氷中て自動的に超音波探傷を行う装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus that automatically performs ultrasonic flaw detection in ice on curved objects made of ceramics, composite materials, or the like.

[従来の技術] 従来、3次元スキャナを用いて曲面形状の物体を水中で
自動的に超音波探傷を汎用的に行うものとしては、円筒
等、単純な形状の物体について行うものしか存在しない
。エンジン内室等の複雑な物体については、専用の超音
波探傷装置しかなく、測定対象物が変わると測定てきな
い。
[Prior Art] Conventionally, as a general-purpose method for automatically performing ultrasonic flaw detection underwater on curved objects using a three-dimensional scanner, there is only one that performs automatic ultrasonic flaw detection on objects with simple shapes such as cylinders. For complex objects such as the interior of an engine, there is only a dedicated ultrasonic flaw detector, and it cannot be measured if the object to be measured changes.

汎用的な3次元スキャナを用いて、円筒のような単純な
曲面形状の物体を探傷する場合、超音波探触子をその形
状になられせるために、その移動位置と方向をマニュア
ルのティーチングによって設定するのか一般に行われて
いる。
When testing a simple curved object such as a cylinder using a general-purpose 3D scanner, manual teaching of the position and direction of movement is required to make the ultrasonic probe conform to that shape. Is this commonly done?

ところで、超音波探傷においては、物体表面に対する超
音波探触子の位置や角度は探傷結果に重要な影響を及ぼ
す。従って、自動的に超音波探傷を行うには、スキャニ
ンク中、探触子の被測定体に対する位置と角度を一定に
保持する必要かある。
By the way, in ultrasonic flaw detection, the position and angle of the ultrasonic probe with respect to the object surface have an important influence on the flaw detection results. Therefore, in order to perform ultrasonic flaw detection automatically, it is necessary to maintain the position and angle of the probe with respect to the object to be measured constant during scanning.

即ち、被測定体の内部の傷または状態を精度よく知ろう
とする場合は、被測定体の表面の入射点において、超音
波探触子を表面に垂直に保持すると共に、超音波入射点
の表面から探触子を一定の距離に保持しなければならな
い。表面から探触子を一定の距離に保持しなければ、反
射しているエコーレベルから内部の傷の大きさを推定す
ることができない。
In other words, if you want to accurately determine the internal flaws or conditions of the object to be measured, hold the ultrasonic probe perpendicular to the surface of the object at the point of incidence on the surface of the object. The probe must be held at a certain distance from the Unless the probe is held at a certain distance from the surface, the size of the internal flaw cannot be estimated from the reflected echo level.

また、被測定体の表面の傷を調べる場合は、超音波の入
射角度を臨界角に保持すると共に、超音波の入射点から
一定の距離に探触子を保持する必要かある。
In addition, when investigating flaws on the surface of an object to be measured, it is necessary to maintain the angle of incidence of the ultrasonic waves at a critical angle and to hold the probe at a certain distance from the point of incidence of the ultrasonic waves.

しかしながら、マニュアル・ティーチングでは設定され
たポイント(ならい基準点)が少なく、スキャニンクに
際して被測定体の表面に対して、超音波の入射角度を一
定に保持すると共に物体表面と探触子との距離を一定に
保持することかできず、精度のよい探傷結果か得られな
い。
However, in manual teaching, there are few set points (trailing reference points), and when scanning, it is necessary to keep the incident angle of the ultrasonic waves constant with respect to the surface of the object to be measured and to adjust the distance between the object surface and the probe. It is not possible to hold the temperature constant, making it impossible to obtain accurate flaw detection results.

そこて、前もって曲面形状をもった物体の形状を測定し
、超音波探触子をつかんだロボットハントを用いて物体
の超音波自動探傷を行った例かある(”inpleme
ntation of a robotic mani
pulatorfor the ultrasonic
 1nspection of coIlposite
structures″ Review of Pro
gress in Quanti−tative、 n
ondestructive evaluation 
4B、 July 8−13.1984 )。この超音
波探傷装置ては、ロボットハントに保持された探触子は
曲面形状にならいながら、指定された点(ならい基準点
)を移動する。しかし、その移動速度はロボットがハン
ド位置のフィードバック制御等を行っているために遅く
なるので、スキャニング速度をある程度高く維持するた
めには、ならい基準点の数を制限せざるを得ない。この
ため、これらのならい基準点の中間部については、相隣
る2個のならい基準点間は直線補間法によって探触子は
直線的に移動し、このような部分の測定精度か著しく低
下する。従って、高精度に探傷を行うには長詩間を必要
とし、例えば100gmピッチて100m+lX 10
0+nsの領域な探傷する場合を考えると、1ポイント
移動するのに30II、1.、必要するとして、約80
時間かかる。
Therefore, there is an example in which the shape of an object with a curved surface was measured in advance, and automatic ultrasonic flaw detection of the object was performed using a robot hunt holding an ultrasonic probe ("inpleme").
ntation of a robotic mani
pulator for the ultrasonic
1nspection of coIlposite
Structures”Review of Pro
gress in Quantitative, n
onstructive evaluation
4B, July 8-13.1984). In this ultrasonic flaw detection device, a probe held by a robot hunt moves to a designated point (tracing reference point) while following the curved surface shape. However, the moving speed is slow because the robot performs feedback control of the hand position, etc., so in order to maintain the scanning speed to a certain degree, the number of tracing reference points must be limited. For this reason, in the middle of these tracing reference points, the probe moves linearly between two adjacent tracing reference points using the linear interpolation method, and the measurement accuracy of such areas will drop significantly. . Therefore, in order to perform flaw detection with high precision, a long interval is required, for example, 100gm pitch = 100m + lX 10
Considering the case of flaw detection in the 0+ns area, it takes 30II to move one point, 1. , if you need about 80
It takes time.

[発明か解決しようとする問題点] このように、従来の超音波探傷装置においては、マニュ
アル・ティーチング方式による場合は高精度の超音波探
傷を行うことかできず、超音波自動探傷方式による場合
は、高精度の超音波探傷を行おうとすると膨大な時間を
必要とすることになる。後者の方式において、高速に探
傷を行おうとすると、ならうべき点の数を減らさなけれ
ばならず、この場合はマニュアル・ティーチング方式と
同様の結果となり、高精度の超音波探傷を行うことかで
きない。即ち、第5図に示すように、高精度に超音波探
傷する場合は、実線で示すように超音波探触子の先端を
曲面にならいながら、なめらかに移動しなければならな
い。しかし、マニュアル・ティーチングやロボットハン
トによる探傷方式ては波線て示すように移動する。従っ
て、測定位置によっては、高精度の探傷のために必要と
される探触子と探傷面との角度及び距離を一定値に保持
することかできない。
[Problems to be solved by the invention] As described above, with conventional ultrasonic flaw detection equipment, it is not possible to perform ultrasonic flaw detection with high precision when using the manual teaching method, and when using the automatic ultrasonic flaw detection method, However, if high-precision ultrasonic flaw detection is to be performed, a huge amount of time will be required. In the latter method, if you want to perform high-speed flaw detection, you will have to reduce the number of points to be traced, and in this case, the result will be the same as the manual teaching method, making it impossible to perform high-precision ultrasonic flaw detection. . That is, as shown in FIG. 5, when performing ultrasonic flaw detection with high precision, the tip of the ultrasonic probe must be moved smoothly while following the curved surface, as shown by the solid line. However, in manual teaching and robot hunting flaw detection methods, the robot moves as shown by the dotted line. Therefore, depending on the measurement position, it is not possible to maintain the angle and distance between the probe and the flaw detection surface at constant values, which are required for high-precision flaw detection.

この発明は、こうした問題点に鑑みて、セラミックスや
複合材料等で成形された曲面形状の物体を、高速かつ高
精度に超音波自動探傷を汎用的に行うことを目的とする
ものである。
In view of these problems, it is an object of the present invention to universally perform automatic ultrasonic flaw detection at high speed and with high precision on curved objects made of ceramics, composite materials, or the like.

[問題点を解決するための手段] この目的を達成するために、この発明では、互いに異な
る3軸、即ちX軸、y軸及びZ軸の各方向に移動しつる
3次元スキャナと、この3次元スキャナに回転可能に取
付けられたホルダとからなる駆動機構:前記ホルダに設
置される超音波探触子:この超音波探触子から超音波を
送受するためのパルサーレシーバ;被測定体の形状を記
憶するメモリ;ならびにこのメモリに記録された形状デ
ータから駆動機構の制御量を計算するための演算処理部
を備える。
[Means for Solving the Problems] In order to achieve this object, the present invention provides a three-dimensional scanner that moves in each direction of three different axes, that is, an X-axis, a y-axis, and a Z-axis; A drive mechanism consisting of a holder rotatably attached to the dimensional scanner; an ultrasonic probe installed in the holder; a pulsar receiver for transmitting and receiving ultrasonic waves from this ultrasonic probe; shape of the object to be measured. and a calculation processing unit for calculating the control amount of the drive mechanism from the shape data recorded in the memory.

[作用] この発明によると、被測定体の形状を記憶するメモリと
メモリに記憶された形状データから駆動機構の制御量を
計算するための演算処理部を設けることにより、前もっ
て駆動機構の制御量を与えるデータを生成し、各軸の駆
動部とオープンループ制御することが可能となる。従っ
て、通常のロボット制御のように、現在位置等を検知し
ながら働きを制御するフィードバック制御方式と比較し
て、極めて高速な動きが可能となる。
[Operation] According to the present invention, by providing a memory for storing the shape of the object to be measured and an arithmetic processing unit for calculating the control amount of the drive mechanism from the shape data stored in the memory, the control amount of the drive mechanism can be calculated in advance. It becomes possible to generate data that gives the following information and perform open-loop control with the drive unit of each axis. Therefore, extremely high-speed movement is possible compared to the feedback control method that controls the robot's work while detecting the current position, etc., as in normal robot control.

[実施例] 以下、図面に基づいて、この発明の詳細な説明する。第
1図は、この発明による超音波探傷装置の一実施例の計
測部の概略を示す図、第2図は同実施例におけるデータ
の流れと装置全体の概略を示す図である。この図におい
て、lは被測定体、2は距離センサ、3はα軸モータ、
4はθ軸モータ、5はホルダ、6は超音波探触子、7は
水中自動超音波探傷のための水槽、11は演算処理部と
しての計算機、12は距離センサ2により測定された被
測定体lの形状を表わす距離データ、13は距離センサ
2の計測器、14は超音波探触子6から超音波を送受す
るためのパルサーレシーバ、15はX軸、y軸、Z軸、
α軸、θ軸の各軸のモータを駆動制御するモータドライ
バ、16は各軸のモータの回転量を制御するためのパル
ス列、17は超音波データ、18は超音波探傷結果のデ
ータ、19は探傷結果を表示するCRTディスプレイで
ある。
[Example] Hereinafter, the present invention will be described in detail based on the drawings. FIG. 1 is a diagram showing an outline of a measuring section of an embodiment of an ultrasonic flaw detection apparatus according to the present invention, and FIG. 2 is a diagram showing an outline of the data flow and the entire apparatus in the same embodiment. In this figure, l is the object to be measured, 2 is the distance sensor, 3 is the α-axis motor,
4 is a θ-axis motor, 5 is a holder, 6 is an ultrasonic probe, 7 is a water tank for automatic underwater ultrasonic flaw detection, 11 is a computer as an arithmetic processing unit, and 12 is a measured object measured by the distance sensor 2 Distance data representing the shape of the body l, 13 is a measuring device of the distance sensor 2, 14 is a pulser receiver for transmitting and receiving ultrasonic waves from the ultrasound probe 6, 15 is an X-axis, a y-axis, a Z-axis,
16 is a pulse train for controlling the rotation amount of the motor for each axis; 17 is ultrasonic data; 18 is data on ultrasonic flaw detection results; 19 is This is a CRT display that displays the flaw detection results.

距離センサ2とα軸モータ3とはX軸、y軸。The distance sensor 2 and the α-axis motor 3 are the X-axis and the y-axis.

2軸(垂直軸)方向に移動しつる3次元スキャナの下端
(Z軸方向)に取付けられている。ここて、X軸、y軸
、Z軸は互いに直交している。また、距離センサ2とし
ては、例えばレーザ距離計センサを用いる。
It moves in two axes (vertical axes) and is attached to the lower end (Z-axis direction) of the 3D scanner. Here, the X-axis, y-axis, and Z-axis are orthogonal to each other. Further, as the distance sensor 2, for example, a laser distance meter sensor is used.

また、αとθは回転方向を示し、αはZ軸方向に回転軸
をもち、θはX軸とy軸によりつくられる平面(水平面
)方向に回転軸をもつ。
Further, α and θ indicate rotation directions, α has a rotation axis in the Z-axis direction, and θ has a rotation axis in the plane (horizontal plane) direction formed by the X-axis and the y-axis.

次に、その動作について説明する。水槽7に満たされた
水中に設置された被測定体lの上部で、距離センサ2を
スキャンさせることにより、X軸とy軸の各点(x、y
)における被測定体lの表面と距離センサ2との距離を
測定し、被測定体lの形状関数z=f(x、y)を得る
。この距離データ12は計算機11に取り込まれる。
Next, its operation will be explained. By scanning the distance sensor 2 above the object to be measured l placed in the water filled in the water tank 7, the
), the distance between the surface of the object to be measured l and the distance sensor 2 is measured, and the shape function z=f(x, y) of the object to be measured l is obtained. This distance data 12 is taken into the computer 11.

第3図は3次元スキャナによるスキャニングのためのメ
ツシュ例を示すものである。この例ては、X軸にそって
dxのピッチてN個の点で測定し、この操作をctyの
ピッチてY方向にM回繰返す(図ては、そのX座標のみ
を記載する)。即ち、測定される点はMN個ある。
FIG. 3 shows an example of a mesh for scanning with a three-dimensional scanner. In this example, measurements are taken at N points along the X axis with a pitch of dx, and this operation is repeated M times in the Y direction with a pitch of cty (only the X coordinate is shown in the figure). That is, there are MN points to be measured.

計算機11では、この形状関数r(x、y)を用いて、
被測定体lの表面の点(xtJ+ ytJ)における法
線方向で一定の距離dにある点U ij =(x ij
+ Y ij+ Z ij+ θij+ αij)を求
める。ここでj+J+ θ、αは、 i =0 、1 、2.・・・・・・、N−1j =0
 、1 、2.・・・・・・9M−1cos O= (
Z+JZ+、+) /dCO5α” (x ij  X
 ij) / ’で与えられる。
In the calculator 11, using this shape function r(x, y),
A point U ij = (x ij
+ Y ij+ Z ij+ θij+ αij). Here, j+J+ θ, α are i=0, 1, 2. ......, N-1j = 0
, 1 , 2. ...9M-1cos O= (
Z+JZ+, +) /dCO5α” (x ij
ij) / '.

この場合、(xoo+ yoo+  f (xoo+ 
yoo) *(x+o、 yIQ+ f(x+o、 y
+o)) l (x20+ 3’20+fcx2o+ 
y2o))、・・・・・・、 (x o 11 yoH
、f (x o□。
In this case, (xoo+ yoo+ f (xoo+
yoo) *(x+o, yIQ+ f(x+o, y
+o)) l (x20+ 3'20+fcx2o+
y2o)),..., (x o 11 yoH
, f (x o□.

yox))、・・・・・・の順に被測定体lの超音波入
射点に沿って探傷されるとすると、超音波探触子6の先
端位置をU。Or U10+ U20+・・・・・・、
 U o r +・・・・・の順に移動すれば、被測定
体lの表面に対して常に直角で、かつ一定距離dを保持
しながら探傷することが可能となる。
yox)), ......, along the ultrasonic incident point of the object l, the tip position of the ultrasonic probe 6 is U. Or U10+ U20+...
By moving in the order of U o r +..., it becomes possible to perform flaw detection while always being perpendicular to the surface of the object to be measured l and maintaining a constant distance d.

そのような探傷を可能とするために、これらのデータ列
U i jの差分データ列 MiJ=(δX i 1 δY i J + δZij
、δθij+δαij) を作成する。ここて、δx、Jは δX ij” X (i+I)j  X ijてあり、
δY l j + δZ i 、δθiJ+ δα、J
も同様である。
In order to enable such flaw detection, a differential data string MiJ of these data strings U i j = (δX i 1 δY i J + δZij
, δθij+δαij). Here, δx, J is δX ij" X (i+I)j X ij,
δY l j + δZ i , δθiJ+ δα, J
The same is true.

これらのデータ列の値に比例したパルス列を用いて各軸
のモータを駆動制御するが、もし差分のデータ列をその
まま用いた場合には、各軸を動かすモータの特性や各軸
の摩擦動特性等を考慮しないために、駆動時間遅れ、オ
ーバーシュート等が発生し、探触子6が指定された位置
を移動しないことになる。
A pulse train proportional to the value of these data sequences is used to drive and control the motor of each axis, but if the difference data sequence is used as is, the characteristics of the motor that moves each axis and the frictional dynamic characteristics of each axis will be affected. Since such factors are not taken into account, driving time delays, overshoots, etc. occur, and the probe 6 does not move to the specified position.

そこで、第4図に示すように、パルス列のステップ入力
(0,0,0,0,10口100.・・・・・・)に対
する特性関数F (n)を各モータについて求める。こ
の特性関数を用いて得られる差分の新しいデータ列p 
、を(δx’、、δY’ij+δZ’jj+  δθ′
、J、δα′、J)とすると、δX 、:ΣFx(n)
XδX’ij において、δX iJとFx  (n)が既知であるの
て、データ列δX’ijを得ることか可能となる。
Therefore, as shown in FIG. 4, the characteristic function F (n) for the step input of the pulse train (0, 0, 0, 0, 10 ports 100, . . . ) is determined for each motor. A new data sequence p of the difference obtained using this characteristic function
, (δx',, δY'ij+δZ'jj+ δθ'
, J, δα′, J), then δX , :ΣFx(n)
Since δX iJ and Fx (n) are known in XδX'ij, it is possible to obtain the data string δX'ij.

同様にして、δY’ij+ δZ’ij+ δθ′、J
Similarly, δY'ij+ δZ'ij+ δθ', J
.

δα ijを得ることも可能である。このデータ列P、
Jに比例したパルス列16をモータトライバ15に入力
することにより、各軸モータの回転量が適切に制御され
、超音波探触子6は指定された位置に高速かつ高精度に
移動される。
It is also possible to obtain δα ij. This data string P,
By inputting a pulse train 16 proportional to J to the motor driver 15, the amount of rotation of each shaft motor is appropriately controlled, and the ultrasonic probe 6 is moved to a designated position at high speed and with high precision.

尚、以上の実施例ては、被測定体曲面の表面に対して超
音波探触子が常に法線方向を向き、かつ一定距離の場合
、即ち、被測定体の内部探傷の例について述べたが、同
様の方式によって、表面に対して一定の角度及び距離を
保ちながら、表面に表面波を発生しながら表面波探傷を
高速かつ高精度に行うことも可能である。
In the above embodiments, the ultrasonic probe always faces the normal direction to the curved surface of the object to be measured and is at a constant distance, that is, an example of internal flaw detection of the object to be measured is described. However, by using a similar method, it is also possible to perform surface wave flaw detection at high speed and with high precision while generating surface waves on the surface while maintaining a constant angle and distance from the surface.

また、以上の実施例では、距離センサ2を用いて被測定
体の形状を直接的に求め、これによって得られたデータ
を用いたが、形状データを入力するにあたっては、物体
の製造時または入荷時における形状情報を用いてもよい
ことは言うまでもない。即ち、例えばCAD等でつくら
れた情報あるいはベアリング等の球の半径等の情報をス
キャニングのためのデータとして用いることができる。
Furthermore, in the above embodiments, the shape of the object to be measured was directly determined using the distance sensor 2, and the data obtained thereby was used. It goes without saying that shape information at the time may also be used. That is, for example, information created by CAD or the like or information such as the radius of a ball such as a bearing can be used as data for scanning.

[発明の効果] 以上の説明から明らかなようにこの発明によれば、被測
定体の形状を記憶するメモリとメモリに記憶された形状
データから駆動機構の制御量を計算するための演算処理
部を設けることにより、前もって駆動機構の制御量を与
えるデータを生成し、各軸の駆動部をオープンループ制
御することが可能となる。従って、超音波探触子を曲面
形状をもつ被測定体に対して、その表面から一定の距離
てかつ一定の角度でならいながら、高速かつ高精度に超
音波探傷を行うことが可能となる。
[Effects of the Invention] As is clear from the above description, according to the present invention, there is provided a memory for storing the shape of the object to be measured, and an arithmetic processing section for calculating the control amount of the drive mechanism from the shape data stored in the memory. By providing this, it becomes possible to generate data in advance that gives the control amount of the drive mechanism, and to perform open loop control of the drive section of each axis. Therefore, it is possible to conduct ultrasonic flaw detection at high speed and with high precision while tracing an ultrasonic probe at a constant angle and at a constant distance from the surface of a curved object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による超音波探傷装置の一実施例の計
測部の概略を示す図、第2図は同実施例におけるデータ
の流れと装置の全体の概略を示す図、第3図は同実施例
における3次元スキャナによるスキャニングのためのメ
ツシュ例を示す図、第4図はモータの特性関数の一例を
示す図、第5図は従来例における超音波探触子の軌跡の
一例を示す図である。 図中。 l:被測定体    2:距離センサ 3:α軸モータ   4:O軸モータ 5:ホルダ     6:超音波探触子7:水槽
Fig. 1 is a diagram showing an outline of the measurement section of an embodiment of the ultrasonic flaw detection device according to the present invention, Fig. 2 is a diagram showing an outline of the data flow and the entire device in the same embodiment, and Fig. FIG. 4 is a diagram showing an example of a mesh for scanning with a three-dimensional scanner in the embodiment, FIG. 4 is a diagram showing an example of a motor characteristic function, and FIG. 5 is a diagram showing an example of the trajectory of an ultrasound probe in a conventional example. It is. In the figure. l: Measured object 2: Distance sensor 3: α-axis motor 4: O-axis motor 5: Holder 6: Ultrasonic probe 7: Water tank

Claims (2)

【特許請求の範囲】[Claims] (1)互いに異なる3軸(x軸、y軸及びz軸)の各方
向に移動しうる3次元スキャナ及びこの3次元スキャナ
に回転可能に取付けられたホルダとからなる駆動機構と
、前記ホルダに設置される超音波探触子と、この超音波
探触子から超音波を送受するためのパルサーレシーバと
、被測定体の形状を記憶するメモリと、このメモリに記
録された形状データから駆動機構の制御量を計算するた
めの演算処理部とを備えることを特徴とする超音波探傷
装置。
(1) A drive mechanism consisting of a three-dimensional scanner that can move in each direction of three different axes (x-axis, y-axis, and z-axis) and a holder rotatably attached to the three-dimensional scanner; An ultrasonic probe to be installed, a pulser receiver for transmitting and receiving ultrasonic waves from the ultrasonic probe, a memory that stores the shape of the object to be measured, and a drive mechanism based on the shape data recorded in this memory. An ultrasonic flaw detection device comprising: an arithmetic processing unit for calculating a control amount.
(2)3次元スキャナのz軸方向の下端に距離センサを
設置し、この距離センサによって被測定体の形状データ
を測定し、測定結果をメモリに記憶することを特徴とす
る特許請求の範囲第(1)項記載の超音波探傷装置。
(2) A distance sensor is installed at the lower end of the three-dimensional scanner in the z-axis direction, the distance sensor measures the shape data of the object to be measured, and the measurement results are stored in a memory. The ultrasonic flaw detection device described in (1).
JP62145191A 1987-06-12 1987-06-12 Ultrasonic flaw detector Expired - Lifetime JP2553867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145191A JP2553867B2 (en) 1987-06-12 1987-06-12 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145191A JP2553867B2 (en) 1987-06-12 1987-06-12 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS63309852A true JPS63309852A (en) 1988-12-16
JP2553867B2 JP2553867B2 (en) 1996-11-13

Family

ID=15379528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145191A Expired - Lifetime JP2553867B2 (en) 1987-06-12 1987-06-12 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP2553867B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002971A1 (en) 1989-08-21 1991-03-07 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
US6019001A (en) * 1995-09-29 2000-02-01 Siemens Aktiengesellschaft Process and device for the ultrasonic examination of disk elements of unknown contours shrunk onto shafts
JP2004504610A (en) * 2000-07-14 2004-02-12 ロッキード マーティン コーポレイション System and method for positioning and positioning an ultrasonic signal generator for testing purposes
WO2005043151A1 (en) * 2003-10-24 2005-05-12 Nutronik Gmbh Method and device for testing a component having a complex surface contour, by means of ultrasound
WO2009107746A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic inspection device
WO2009107745A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic examination device
US8429973B2 (en) 2009-04-02 2013-04-30 Kabushiki Kaisha Toshiba Ultrasonic inspection device and ultrasonic inspection method
JP2015230227A (en) * 2014-06-04 2015-12-21 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device and ultrasonic inspection method
CN106560707A (en) * 2016-08-30 2017-04-12 湖州市特种设备检测研究院 Automatic electromagnetic ultrasonic flaw detection apparatus
JP2017211347A (en) * 2016-05-27 2017-11-30 日本原子力発電株式会社 Radioactivity surface contamination density measuring device and radioactivity surface contamination density measuring method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148248A (en) * 1981-03-10 1982-09-13 Hitachi Ltd Ultrasonic defect finding device
JPS6067854A (en) * 1983-09-22 1985-04-18 Mitsubishi Heavy Ind Ltd Weld line inspecting device for piping
JPS6165350U (en) * 1984-10-02 1986-05-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148248A (en) * 1981-03-10 1982-09-13 Hitachi Ltd Ultrasonic defect finding device
JPS6067854A (en) * 1983-09-22 1985-04-18 Mitsubishi Heavy Ind Ltd Weld line inspecting device for piping
JPS6165350U (en) * 1984-10-02 1986-05-06

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002971A1 (en) 1989-08-21 1991-03-07 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
US5335547A (en) * 1989-08-21 1994-08-09 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
US6019001A (en) * 1995-09-29 2000-02-01 Siemens Aktiengesellschaft Process and device for the ultrasonic examination of disk elements of unknown contours shrunk onto shafts
JP2004504610A (en) * 2000-07-14 2004-02-12 ロッキード マーティン コーポレイション System and method for positioning and positioning an ultrasonic signal generator for testing purposes
WO2005043151A1 (en) * 2003-10-24 2005-05-12 Nutronik Gmbh Method and device for testing a component having a complex surface contour, by means of ultrasound
US7181970B2 (en) 2003-10-24 2007-02-27 Ge Inspection Technologies Gmbh Method and device for testing a component having a complex surface contour by means of ultrasound
WO2009107746A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic inspection device
WO2009107745A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic examination device
US8371171B2 (en) 2008-02-26 2013-02-12 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus
US8413515B2 (en) 2008-02-26 2013-04-09 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus
US8429973B2 (en) 2009-04-02 2013-04-30 Kabushiki Kaisha Toshiba Ultrasonic inspection device and ultrasonic inspection method
JP2015230227A (en) * 2014-06-04 2015-12-21 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device and ultrasonic inspection method
JP2017211347A (en) * 2016-05-27 2017-11-30 日本原子力発電株式会社 Radioactivity surface contamination density measuring device and radioactivity surface contamination density measuring method using the same
CN106560707A (en) * 2016-08-30 2017-04-12 湖州市特种设备检测研究院 Automatic electromagnetic ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
JP2553867B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
EP3683576B1 (en) Non-destructive inspection apparatus and method
US5475613A (en) Ultrasonic defect testing method and apparatus
US9651525B2 (en) Method and apparatus for scanning an object
CN103969336B (en) Automatic detecting and imaging method of hyper-acoustic phased array of weld joint in complex space
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
JP4111902B2 (en) Automatic inspection system
CA2820732C (en) Method and apparatus for scanning an object
US4744250A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
US3585851A (en) Method and apparatus for identifying defects with ultrasonic echoes
CN107037130B (en) Monocular vision three-D ultrasonic nondestructive detection system and detection method
US20200034495A1 (en) Systems, devices, and methods for generating a digital model of a structure
JP5085115B2 (en) 3D inspection system for water turbine structures
JPS63309852A (en) Ultrasonic flaw detecting method
Xiao et al. An optimized robotic scanning scheme for ultrasonic NDT of complex structures
US11480550B2 (en) Method and device for mapping components for detecting elongation direction
EP0277992A1 (en) Method for sonic analysis of an anomaly in a seafloor topographic representation
JP2720077B2 (en) Ultrasonic flaw detector
GB2285129A (en) Ultrasonic defect testing
JPS63309853A (en) Ultrasonic flaw detecting method
US4891986A (en) Apparatus for inspecting articles
Kurc et al. Non-contact robotic measurement of jet engine components with 3D optical scanner and UTT method
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JPH01292248A (en) Automatic ultrasonic flaw detector
CN113092588A (en) Ultrasonic phased array detection device and detection method
Wang et al. Robot and ACFM Collaborative Detection System Based on Space-Time Synchronization