JPS63309724A - Exhaust device for multi cylinder engine with supercharger - Google Patents
Exhaust device for multi cylinder engine with superchargerInfo
- Publication number
- JPS63309724A JPS63309724A JP14721787A JP14721787A JPS63309724A JP S63309724 A JPS63309724 A JP S63309724A JP 14721787 A JP14721787 A JP 14721787A JP 14721787 A JP14721787 A JP 14721787A JP S63309724 A JPS63309724 A JP S63309724A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- cylinder
- cylinders
- turbine
- independent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Landscapes
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は過給付多気筒エンジンの排気装置に関し、特に
全ての気筒に対して排気抵抗を均一化するように改善し
たものに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust system for a supercharged multi-cylinder engine, and particularly to one improved to equalize exhaust resistance for all cylinders.
[従来技術〕
例えば、特開昭61−8421号公報にも記載されてい
るように、ターボ過給機付多気筒エンジンにおいて排気
干渉を防止し排気の運動エネルギの有効活用を図るため
に、ツインスクロール方式のターボ過給機を採用し、一
方のスクロール部に排気行程がオーバラップしない半数
の気筒に対応する気筒群からの排気を導入し、また他方
のスクロール部に排気行程がオーバラップしない残りの
半数の気筒に対応する気筒群からの排気を導入するよう
にしたものが知られている。[Prior Art] For example, as described in Japanese Patent Application Laid-Open No. 61-8421, twin engines are used to prevent exhaust interference and effectively utilize the kinetic energy of exhaust gas in a multi-cylinder engine with a turbocharger. A scroll-type turbo supercharger is adopted, and one scroll section introduces exhaust gas from the cylinder group corresponding to half of the cylinders whose exhaust strokes do not overlap, and the other scroll section introduces exhaust gas from the cylinder group corresponding to half of the cylinders whose exhaust strokes do not overlap. A system is known in which exhaust gas is introduced from a group of cylinders corresponding to half of the cylinders.
このように、全気筒を同数ずつの気筒からなる気筒群に
グループ化してエンジンからタービン部までの排気通路
を構成する関係上、ターボ過給機のタービン部の1対の
スクロール部へは同流量の排気を導入するようになって
いる。そのため、両スクロール部の排気流入部の断面積
は略等しくまた両排気流入部からタービン部の軸心への
距離も略等しく設定するのが一般的である。In this way, all the cylinders are grouped into cylinder groups with the same number of cylinders to form the exhaust passage from the engine to the turbine, so the same amount of flow goes to the pair of scrolls in the turbine of the turbocharger. Exhaust gas is now being introduced. Therefore, the cross-sectional areas of the exhaust gas inflow portions of both scroll portions are generally set to be approximately equal, and the distances from both exhaust gas flow portions to the axis of the turbine portion are also generally set to be approximately equal.
尚、参考までに、自動車用のターボ過給機に用いられる
ラジアルタービンの性能を表すパラメータとしてA/R
が用いられる。For reference, A/R is a parameter representing the performance of radial turbines used in automobile turbochargers.
is used.
即ち、第6図に示すように、ラジアルタービン100の
ハウジング101内にはタービンホイール102が配設
され、そのタービンホイール102の外側には排気流入
部103に連なる渦巻状のスクロール部104が形成さ
れ、排気流入部103で加速された排気の流れはスクロ
ール部104で更に加速されてタービンホイール102
の方へ流入する。That is, as shown in FIG. 6, a turbine wheel 102 is disposed within a housing 101 of a radial turbine 100, and a spiral scroll portion 104 connected to an exhaust inflow portion 103 is formed outside the turbine wheel 102. , the flow of exhaust gas accelerated at the exhaust inflow section 103 is further accelerated at the scroll section 104 and flows into the turbine wheel 102.
flows towards.
上記スクロール部104へ連なる排気流入部103の断
面積をAとし、タービンホイール102の軸心から断面
積Aの中心までの距離をRとしたときに、A/Rが小さ
くなるほどタービンホイール102の回転数が増しター
ピンの抵抗増大によりタービン前圧が高くなることが知
られている。When the cross-sectional area of the exhaust gas inflow section 103 connected to the scroll section 104 is A, and the distance from the axis of the turbine wheel 102 to the center of the cross-sectional area A is R, the smaller A/R is, the more the turbine wheel 102 rotates. It is known that as the number of turbines increases, the turbine front pressure increases due to the increased resistance of the turpin.
[発明が解決しようとする問題点]
上記のようにエンジンからタービン部に至る気筒群毎の
排気通路を設けるに当って、それらの通路抵抗が極力同
じになるように設定するのが一般的であるが、ターボ過
給機などエンジンに附属する機器の配置の制約上、上記
2つの排気通路の通路長が異なったり、弯曲部の曲率が
異なったりするので、実際には2つの排気通路の通路抵
抗が異なってくる。[Problems to be Solved by the Invention] When providing the exhaust passages for each cylinder group from the engine to the turbine section as described above, it is common to set the passages so that their resistances are as equal as possible. However, due to restrictions on the arrangement of equipment attached to the engine such as a turbo supercharger, the passage lengths of the two exhaust passages mentioned above are different, and the curvature of the curved part is different, so in reality the two exhaust passages are different. The resistance will be different.
そのため、気筒群毎に排気通路のタービン前圧が異なっ
てくるので、気筒群間の排気圧が平均化されずバラツキ
が大きくなる。Therefore, the pressure in front of the turbine in the exhaust passage differs for each cylinder group, and the exhaust pressures among the cylinder groups are not averaged, resulting in large variations.
その結果、気筒毎の排気効率のバラツキから、空燃比の
バラツキが大きくなり、トルクの変動幅も大きくなる。As a result, due to the variation in exhaust efficiency among cylinders, the variation in air-fuel ratio becomes large, and the range of fluctuation in torque also becomes large.
そして、排気能力の低い気筒や充填能率の高い気筒では
ノッキングが発生し易くなりノンキング防止の為の点火
時期リタードにより出力低下を招くなどの問題がある。Further, in cylinders with low exhaust capacity and cylinders with high filling efficiency, knocking is likely to occur, and ignition timing retardation to prevent non-king causes problems such as a decrease in output.
本発明は、気筒毎の排気圧力を極力均一化し、空燃比を
均一化し、出力向上とトルク変動防止を実現し得るよう
な過給機付多気筒エンジンの排気装置を提供することを
目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust system for a multi-cylinder engine with a supercharger that can make the exhaust pressure of each cylinder as uniform as possible, equalize the air-fuel ratio, improve output, and prevent torque fluctuations. .
本発明に係る週給機付多気筒エンジンの排気装置は、タ
ーボ過給機を備えた多気筒エンジンの排気装置において
、上記エンジンからターボ過給機のタービン部に排気を
導く複数の独立排気通路を設け、上記タービン部には複
数の独立排気通路に夫々対応する複数のスクロール部を
設け、独立排気通路からスクロール部への排気流入部の
断面積をA、その断面積の中心からタービン部の軸心ま
での距離をRとしたときに、排気抵抗の大きな独立排気
通路ほどA/Rが大きくなるように設定したことを特徴
とするものである。An exhaust system for a multi-cylinder engine with a weekly charger according to the present invention is an exhaust system for a multi-cylinder engine equipped with a turbo supercharger, and includes a plurality of independent exhaust passages for guiding exhaust gas from the engine to a turbine section of the turbo supercharger. The turbine section is provided with a plurality of scroll sections corresponding to the plurality of independent exhaust passages, and the cross-sectional area of the exhaust inflow part from the independent exhaust passage to the scroll section is A, and the axis of the turbine section is set from the center of the cross-sectional area to A. It is characterized in that, when the distance to the center is R, the A/R is set to be larger as the independent exhaust passage has a larger exhaust resistance.
本発明に係る過給機付多気筒エンジンの排気装置におい
ては、多気筒エンジンからの排気は複数の独立排気通路
を介してターボ過給機のタービン部へ導かれ、各独立排
気通路からの排気は排気流入部を通ってタービン部の対
応するスクロール部へ流入する。In the exhaust system for a supercharged multi-cylinder engine according to the present invention, exhaust from the multi-cylinder engine is guided to the turbine section of the turbocharger via a plurality of independent exhaust passages, and the exhaust from each independent exhaust passage is flows into the corresponding scroll section of the turbine section through the exhaust inlet section.
そして、排気流入部の断面積をAとし、その断面積の中
心からタービン部の軸心までの距離をRとしたときに、
排気抵抗の大きな独立排気通路ほどA/Rが大きくなる
ように設定しである。Then, when the cross-sectional area of the exhaust inflow section is A, and the distance from the center of the cross-sectional area to the axis of the turbine section is R,
The setting is such that the A/R increases as the independent exhaust passage has greater exhaust resistance.
上記A/Rはタービン部での抵抗を示すパラメータであ
り、A/Rが太き(なるほどタービン部での抵抗が小さ
くなって独立排気通路の排気圧力を低下させるように作
用する。従って、排気抵抗の大きな独立排気通路はどタ
ービン部での抵抗が下がるので、複数の独立排気通路の
全部に亙って排気圧が均一化することになる。このよう
に、排気圧が均一化するので、気筒間の排気効率及び空
気充填量のバラツキが小さくなり、空燃比が均一化し、
出力が向上し、トルク変動が小さくなる。The above A/R is a parameter that indicates the resistance at the turbine section, and the larger the A/R (as the resistance at the turbine section becomes smaller, the more it acts to lower the exhaust pressure in the independent exhaust passage. Therefore, the exhaust gas Independent exhaust passages with high resistance reduce resistance at the turbine section, so the exhaust pressure becomes uniform across all of the multiple independent exhaust passages.In this way, the exhaust pressure becomes uniform, so Variations in exhaust efficiency and air filling amount between cylinders are reduced, and the air-fuel ratio is made more uniform.
Output is improved and torque fluctuation is reduced.
本発明に係る過給機付多気筒エンジンの排気装置によれ
ば、以上説明したように、排気抵抗の大きな独立排気通
路ほどA/Rを大きく設定するという簡単な構成により
、気筒間の空燃比を均一化し、ノッキング発生を抑制し
つつエンジン出力を向上させトルク変動を改善すること
が出来る。According to the exhaust system for a supercharged multi-cylinder engine according to the present invention, as explained above, the air-fuel ratio between the cylinders is This makes it possible to improve engine output and improve torque fluctuations while suppressing the occurrence of knocking.
以下、本発明の実施例を図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図はターボ過給機を備えた立型直列6気筒エンジン
の吸気系及び排気系の概略構成を示すもので、シリンダ
ブロック1には、第1〜第6気筒C1〜C6が設けられ
、その点火順序は例えばC3→C5→C4→C6→C2
→C4の順になっている。FIG. 1 shows a schematic configuration of the intake system and exhaust system of a vertical in-line six-cylinder engine equipped with a turbo supercharger. A cylinder block 1 is provided with first to sixth cylinders C1 to C6, The ignition order is, for example, C3 → C5 → C4 → C6 → C2
→The order is C4.
吸気通路2には上流側から順にエアクリーナ3、ターボ
過給機7のコンプレッサ部5.インククーラ8、スロッ
トル弁9及びサージタンク10が設けられ、サージタン
ク10から各気筒C1〜C6の吸気ボート11へ分岐吸
気管10aが接続されている。In the intake passage 2, from the upstream side, there is an air cleaner 3, a compressor section 5 of the turbo supercharger 7. An ink cooler 8, a throttle valve 9, and a surge tank 10 are provided, and branch intake pipes 10a are connected from the surge tank 10 to intake boats 11 of each cylinder C1 to C6.
上記6つの気筒C8〜C6は排気行程がオーバラップし
ない(つまり排気行程が隣接しない)ように第1〜第3
気筒01〜C3で第1気筒群がまた第4〜第6気筒C4
〜C6で第2気筒群が形成され、第1気筒群に対応する
第1排気マニホールド13(独立排気通路)と、第2気
筒群に対応する第2排気マニホールド14(独立排気通
路)とが設けられ、第1排気マニホールド13の各分岐
排気管13aは対応する気筒C1〜C8の排気ポート1
2に接続され、第2排気マニホールド14の各分岐排気
管14aは対応する気筒C4〜C6の排気ポートに接続
されている。The above six cylinders C8 to C6 are arranged in the first to third cylinders so that their exhaust strokes do not overlap (that is, the exhaust strokes are not adjacent).
The first cylinder group is cylinder 01 to C3, and the fourth to sixth cylinder C4
~C6 forms a second cylinder group, and a first exhaust manifold 13 (independent exhaust passage) corresponding to the first cylinder group and a second exhaust manifold 14 (independent exhaust passage) corresponding to the second cylinder group are provided. Each branch exhaust pipe 13a of the first exhaust manifold 13 connects to the exhaust port 1 of the corresponding cylinder C1 to C8.
2, and each branch exhaust pipe 14a of the second exhaust manifold 14 is connected to the exhaust port of the corresponding cylinder C4 to C6.
そして、第1排気マニホールド13の下流部は1本の通
路に合流してターボ過給機7のタービン部6に接続され
、第2排気マニホールド14の下流部は1本の通路に合
流して上記タービン部7に接続されている。The downstream part of the first exhaust manifold 13 merges into one passage and is connected to the turbine section 6 of the turbocharger 7, and the downstream part of the second exhaust manifold 14 merges into one passage and is connected to the turbine section 6 of the turbocharger 7. It is connected to the turbine section 7.
上記ターボ過給機7のタービン部6は第1及び第2スク
ロール部15・16を有するツインスクロール型のもの
で、第1排気マニホールド13の下流端は第1スクロー
ル部15の排気流入部15aに接続され、第2排気マユ
ボールド14の下流端は第2スクロール部16の排気流
入部16aに接続されている。The turbine section 6 of the turbocharger 7 is of a twin scroll type having first and second scroll sections 15 and 16, and the downstream end of the first exhaust manifold 13 is connected to the exhaust inflow section 15a of the first scroll section 15. The downstream end of the second exhaust eyebrow board 14 is connected to the exhaust inflow section 16a of the second scroll section 16.
上記タービン部6からは合流排気通路17が延び、1対
の排気流入部15a・16bから分岐する共通のウェス
トゲート通路18が合流排気通路17のウェストゲート
部19まで延び、ウェストゲート部19の上流端にはウ
ェストゲート弁20が介設され、このウェストゲート弁
20はコンプレッサ部5の下流側の吸気圧が導入された
アクチュエータ20aで開閉操作され、上記吸気圧が所
定圧力以上になると開かれるようになっている。A merging exhaust passage 17 extends from the turbine portion 6, and a common waste gate passage 18 that branches from the pair of exhaust inflow portions 15a and 16b extends to the waste gate portion 19 of the merging exhaust passage 17. A wastegate valve 20 is interposed at the end, and the wastegate valve 20 is opened and closed by an actuator 20a into which intake pressure on the downstream side of the compressor section 5 is introduced, and is opened when the intake pressure exceeds a predetermined pressure. It has become.
ここで、上記タービン部6がシリンダブロック1の長さ
方向中央部よりも第6気筒06側に僅かに片寄った配置
となっている関係上、第1排気マニホールド13の点A
と点8間の長さが第2排気マニホールド14の点りと点
8間の長さよりも長くなっている。そのため、第1排気
マニホールド13の排気抵抗(通路抵抗)が第2排気マ
ニホールド14の排気抵抗よりも大きくなっている。Here, since the turbine section 6 is arranged slightly toward the sixth cylinder 06 side with respect to the central part in the longitudinal direction of the cylinder block 1, point A of the first exhaust manifold 13
The length between the point 8 and the point 8 is longer than the length between the point 8 of the second exhaust manifold 14 and the point 8. Therefore, the exhaust resistance (passage resistance) of the first exhaust manifold 13 is greater than the exhaust resistance of the second exhaust manifold 14.
このように、第1排気マニホールド13の排気抵抗が第
2排気マニホールド14の排気抵抗よりも大きい場合、
第1排気マニホールド13の排気圧が第2排気マニホー
ルド14の排気圧よりも高くなり、第1気筒群の第1〜
第3気筒C7〜C3の排気性能が第2気筒群の第4〜第
6気筒04〜C1の排気性能よりも低くなって前者の充
填効率が後者の充填効率よりも低くなる。In this way, when the exhaust resistance of the first exhaust manifold 13 is greater than the exhaust resistance of the second exhaust manifold 14,
The exhaust pressure of the first exhaust manifold 13 becomes higher than the exhaust pressure of the second exhaust manifold 14, and the first to
The exhaust performance of the third cylinders C7 to C3 becomes lower than the exhaust performance of the fourth to sixth cylinders 04 to C1 of the second cylinder group, and the filling efficiency of the former becomes lower than that of the latter.
第1気筒群の第1〜第3気筒01〜C3或いは第2気筒
群の第4〜第6気筒04〜C6のうちでも、排気抵抗の
相違から充填効率が異なっている。The filling efficiency differs among the first to third cylinders 01 to C3 of the first cylinder group or the fourth to sixth cylinders 04 to C6 of the second cylinder group due to differences in exhaust resistance.
このように、気筒C8〜C6間での排気性能のバラツキ
と排気マニホールド13・14間での排気性能のバラツ
キとから全部の気筒C1〜C6間における吸気の充填量
に大きなバラツキが生じ、ノッキング発生やトルク変動
を惹起すことになる。In this way, due to variations in exhaust performance between cylinders C8 to C6 and variations in exhaust performance between exhaust manifolds 13 and 14, large variations occur in the intake air filling amount between all cylinders C1 to C6, and knocking occurs. This may cause torque fluctuations.
本願の排気装置では、少なくとも排気マニホールド13
・14間での排気抵抗の変動を解消するため、次のよう
な対策が採られている。In the exhaust system of the present application, at least the exhaust manifold 13
・In order to eliminate fluctuations in exhaust resistance during the 14-hour period, the following measures have been taken.
即ち、排気抵抗の大きい第1排気マニホールド13では
、排気抵抗の小さい第2排気マニホールド14よりもタ
ービン部6のA/Rを大きく設定しである。That is, in the first exhaust manifold 13 having a large exhaust resistance, the A/R of the turbine section 6 is set larger than in the second exhaust manifold 14 having a small exhaust resistance.
つまり、第2図に示すように、第1排気マニホールド1
3が接続される排気流入部15aの最狭断面積をA1、
第2排気マニホールド14が接続される排気流入部16
aの最狭断面積をA2とし、上記断面積A、の中心から
タービン軸21の軸心21aまでの距離(但し、排気の
流入方向と直交する方向の距lりをRI、上記断面積A
2の中心からタービン軸21の軸心21aまでの距離を
R2とすると、AI /R1>AZ /R2と設定する
。That is, as shown in FIG. 2, the first exhaust manifold 1
A1 is the narrowest cross-sectional area of the exhaust inflow part 15a to which
Exhaust inlet 16 to which the second exhaust manifold 14 is connected
The narrowest cross-sectional area of a is A2, and the distance from the center of the cross-sectional area A to the axis 21a of the turbine shaft 21 (however, the distance l in the direction perpendicular to the inflow direction of exhaust gas is RI, and the cross-sectional area A is
If the distance from the center of 2 to the axis 21a of the turbine shaft 21 is R2, it is set as AI/R1>AZ/R2.
但し、本実施例の場合、R,=R2なので、結局AI
>A2と設定しである。However, in the case of this example, since R,=R2, AI
>A2.
このようにすると、〔従来技術〕の項で説明したように
、A/Rはタービン部6の性能を表わすパラメータであ
り、A/Rが大きくなるほどタービン部6での抵抗が小
さくなり、タービン前圧つまり排気流入部15a・16
aの排気圧が低下するので、第1排気マニホールド13
内の排気圧を低下させる作用が得られる。In this way, as explained in the [Prior Art] section, A/R is a parameter that represents the performance of the turbine section 6, and the larger A/R is, the smaller the resistance in the turbine section 6 becomes, and the Pressure or exhaust gas inflow portions 15a and 16
Since the exhaust pressure of a decreases, the first exhaust manifold 13
This has the effect of lowering the exhaust pressure inside.
即ち、第1排気マニホールド13の排気抵抗が第2排気
マニホールド14の排気抵抗よりも大きいので、第1排
気マニホールド13内の排気圧の方が第2排気マニホー
ルド14内の排気圧よりも高くなっているが、上記のよ
うに、排気抵抗の大きい通路の方のA/Rを大きく設定
することによって、第1及び第2排気マニホールド13
・14内の排気圧を極力均一化することが出来る。これ
により第1気筒群の気筒C5〜C3と第2気筒群の気筒
04〜C6の排気性能を極力均一化し、吸気充填量を極
力均一化することが出来る。That is, since the exhaust resistance of the first exhaust manifold 13 is greater than the exhaust resistance of the second exhaust manifold 14, the exhaust pressure in the first exhaust manifold 13 is higher than the exhaust pressure in the second exhaust manifold 14. However, as mentioned above, by setting the A/R larger for the passage with greater exhaust resistance, the first and second exhaust manifolds 13
・The exhaust pressure inside 14 can be made as uniform as possible. Thereby, the exhaust performance of the cylinders C5 to C3 of the first cylinder group and the cylinders 04 to C6 of the second cylinder group can be made as uniform as possible, and the intake air filling amount can be made as uniform as possible.
このように、各気筒の空燃比を適正にして燃焼性を高め
るとともに、全気筒に亙って吸気充填量の均一化を促進
することにより、ノッキングの発生を防止しノッキング
による出力低下を防ぎ、トルク変動を小さくすることが
出来る。In this way, by optimizing the air-fuel ratio in each cylinder to improve combustibility, and by promoting uniformity of intake air filling across all cylinders, the engine prevents knocking and reduces output due to knocking. Torque fluctuation can be reduced.
尚、第3図に図示のように、第1排気マニホールド13
に対応するA1と、第2排気マニホールド14に対応す
るA2とが略等しいような場合には、スクロール部15
・16からタービンホイール22への流入方向線15b
・16bと軸心21aとの交差角α1 ・α2の小さい
方がタービン部6での抵抗が小さいので、排気抵抗の大
きい第1排気マニホールド13を小さい方の交差角α1
に対応するスクロール部15に接続するものとする。Incidentally, as shown in FIG. 3, the first exhaust manifold 13
If A1 corresponding to the second exhaust manifold 14 is approximately equal to A2 corresponding to the second exhaust manifold 14, the scroll portion 15
- Inflow direction line 15b from 16 to turbine wheel 22
・The smaller the intersection angle α1 between 16b and the axis 21a, the smaller the resistance in the turbine section 6. Therefore, the first exhaust manifold 13, which has a large exhaust resistance, is set to the smaller intersection angle α1.
It is assumed that the scroll section 15 is connected to the scroll section 15 corresponding to the scroll section 15.
二のように、上記交差角αもタービン部6での抵抗を表
わすパラメータなので、A/Rと交差角αとを総合的に
加味してタービン前圧を過剰に低下させることなく、第
1及び第2排気マニホールド13・14内の排気圧が略
等しくなるようにタービン部6のスクロール部15・1
6を設定することが望ましい。2, since the crossing angle α is also a parameter representing the resistance in the turbine section 6, the first and second The scroll portions 15 and 1 of the turbine portion 6 are
It is desirable to set it to 6.
上記実施例では、6気筒CI−Cbを排気行程がオーバ
ラップしない1群の気筒C1〜C3と気筒C4〜C6と
を夫々気筒群とし、各気筒群に対して1つの独立排気マ
ニホールド13・14を設けたが、前記の点火順序の場
合において第1・第2気筒C3・C2及び第3・第4気
筒C3・C4及び第5・第6気筒C5・C6のように3
つの気筒群にグループ化し、タービン部6には気筒群に
夫々対応する3つのスクロール部を形成してもよい。In the above embodiment, the six cylinders CI-Cb are made up of cylinders C1 to C3 and cylinders C4 to C6, each of which has a non-overlapping exhaust stroke, and one independent exhaust manifold 13, 14 is provided for each cylinder group. However, in the case of the above ignition order, 3 cylinders such as the first and second cylinders C3 and C2, the third and fourth cylinders C3 and C4, and the fifth and sixth cylinders C5 and C6
The cylinders may be grouped into three cylinder groups, and the turbine section 6 may have three scroll portions corresponding to each cylinder group.
また、同一の気筒群に含まれる気筒は排気行程がオーバ
ラップしないことが望ましいが、オーバラップしてもよ
い。Further, although it is desirable that the exhaust strokes of cylinders included in the same cylinder group do not overlap, they may overlap.
z
例えば、立型4気筒直列エンジンの第1〜第4気筒を0
1〜C4とし、点火順序がC2→C3→C4→C2の場
合、第1気筒群を第1・第2気筒C1・C2でまた第2
気筒群を第3・第4気筒C3・C4で形成し、各気筒群
に対応する排気マニホールドを設ける。z For example, set the first to fourth cylinders of a vertical 4-cylinder in-line engine to 0.
1 to C4, and the ignition order is C2→C3→C4→C2, the first cylinder group is the first and second cylinders C1 and C2, and the second
A cylinder group is formed by third and fourth cylinders C3 and C4, and an exhaust manifold corresponding to each cylinder group is provided.
この場合、排気干渉は起るけれども、第1〜第4気筒0
1〜C4の排気分岐管を連通路で連通ずることにより、
排気干渉の対策を講することが出来るし、上記のような
気筒群とする方が排気マニホールドの構造が複雑化せず
排気マニホールドの排気抵抗も小さくなる。In this case, although exhaust interference occurs,
By connecting the exhaust branch pipes 1 to C4 through a communication path,
Countermeasures against exhaust interference can be taken, and the structure of the exhaust manifold is less complicated and the exhaust resistance of the exhaust manifold is reduced by using the cylinder group as described above.
尚、本発明の排気装置は、6気筒以上の多気筒直列エン
ジンは勿論のこと、多気筒■型エンジンや多気筒ロータ
リエンジンにも適用することが出来る。The exhaust system of the present invention can be applied not only to multi-cylinder in-line engines with six or more cylinders, but also to multi-cylinder ■-type engines and multi-cylinder rotary engines.
次に、別実施例に係るターボ過給機付3気筒ロークリピ
ストンエンジンの排気装置について第4図・第5図によ
り説明する。Next, an exhaust system for a turbocharged three-cylinder rotary piston engine according to another embodiment will be described with reference to FIGS. 4 and 5.
このロータリエンジンは、第1〜第3気筒C8〜C3を
有し、各気筒CI” C’tに対応する第1〜第3独立
排気通路24a〜24cが設けられている。This rotary engine has first to third cylinders C8 to C3, and first to third independent exhaust passages 24a to 24c corresponding to each cylinder CI''C't are provided.
また、ターボ過給@IAのタービン部6Aには第1〜第
3独立排気通路に対応するスクロール部25a〜25c
が設けられており、第1〜第3独立排気通路24a〜2
4cの排気抵抗については、第2独立排気通路24bの
排気抵抗が最も小さく、第1及び第3独立排気通路24
a・24cの排気抵抗が略等しくなっている。Further, the turbine section 6A of turbocharging @IA includes scroll sections 25a to 25c corresponding to the first to third independent exhaust passages.
are provided, and the first to third independent exhaust passages 24a to 2
4c, the second independent exhaust passage 24b has the smallest exhaust resistance, and the first and third independent exhaust passages 24
The exhaust resistances of a and 24c are approximately equal.
そして、第1〜第3独立排気通路24a・24b・24
cに対応するスクロール部25a・25b・25cから
タービンホイール22へ流入する流入方向とタービン軸
21の軸心21aとの交差角をα8 ・α、・α0とし
たときに、α8〈αb〈α。なので、スクロール部25
a〜25Cの断面積をAa−ACとしたときにAm <
Ab <AC又はA、=Ab <ACとなるように設定
され、これらスクロール部25a〜25cに対応する排
気流入部の断面積も上記と同様の関係となるように設定
されている。And the first to third independent exhaust passages 24a, 24b, 24
When the intersection angle between the direction of inflow from the scroll portions 25a, 25b, and 25c corresponding to c into the turbine wheel 22 and the axis 21a of the turbine shaft 21 is α8 ·α, ·α0, α8<αb<α. Therefore, scroll section 25
When the cross-sectional area of a~25C is Aa-AC, Am <
It is set so that Ab<AC or A, =Ab<AC, and the cross-sectional area of the exhaust gas inflow part corresponding to these scroll parts 25a to 25c is also set to have the same relationship as above.
A、<Ahの場合でも、α1〈α、なので、スクロール
部25aのタービン前圧よりもスクロール部25bのタ
ービン前圧の方が大きくなる。Even in the case of A<Ah, α1<α, so the turbine front pressure of the scroll portion 25b is greater than the turbine front pressure of the scroll portion 25a.
上記排気装置の作用については前述の作用と略同様なの
でその説明は省略する。The operation of the exhaust device described above is substantially the same as that described above, so a description thereof will be omitted.
図面は本発明の実施例を示すもので、第1図は6気筒直
列エンジンの吸気系及び排気系の構成図、第2図はター
ボ過給機のタービン部のA/Rを説明する説明図、第3
図はスクロール部からタービンホイールへの流入方向を
説明する説明図、第4図は3気筒ロータリピストンエン
ジン及びターボ過給機の要部横断平面図、第5図は第4
図V−V線断面図、第6図は一般のラジアルタービンの
A/Rを説明する説明図である。
7・7A・・ターボ過給機、 6・6A・・タービン部
、 13・14・・第1・第2排気マニホールド(独立
排気通路)、 15・16・・第1・第2スクロール
部、 21a・・軸心、 24a〜24c・・第1〜第
3独立排気通路、 25a〜25c・・第1〜第3スク
ロール部。
特 許 出 願 人 マツダ株式会社第6図
Aノ 、A1The drawings show an embodiment of the present invention, and FIG. 1 is a configuration diagram of the intake system and exhaust system of a 6-cylinder in-line engine, and FIG. 2 is an explanatory diagram illustrating A/R of the turbine section of a turbocharger. , 3rd
The figure is an explanatory diagram explaining the direction of inflow from the scroll part to the turbine wheel, Figure 4 is a cross-sectional plan view of the main parts of the 3-cylinder rotary piston engine and turbocharger, and Figure 5 is the
A sectional view taken along the line V-V in FIG. 6 is an explanatory diagram illustrating the A/R of a general radial turbine. 7, 7A... Turbo supercharger, 6, 6A... Turbine section, 13, 14... 1st and 2nd exhaust manifold (independent exhaust passage), 15, 16... 1st and 2nd scroll section, 21a ...Axis center, 24a to 24c...First to third independent exhaust passages, 25a to 25c...First to third scroll portions. Patent Applicant: Mazda Motor Corporation Figure 6 A-A, A1
Claims (1)
において、 上記エンジンからターボ過給機のタービン部に排気を導
く複数の独立排気通路を設け、 上記タービン部には複数の独立排気通路に夫々対応する
複数のスクロール部を設け、 上記独立排気通路からスクロール部への排気流入部の断
面積をA、その断面積の中心からタービン部の軸心まで
の距離をRとしたときに、排気抵抗の大きな独立排気通
路ほどA/Rが大きくなるように設定したことを特徴と
する過給機付多気筒エンジンの排気装置。(1) In an exhaust system for a multi-cylinder engine equipped with a turbocharger, a plurality of independent exhaust passages are provided to guide exhaust gas from the engine to a turbine section of the turbocharger, and the turbine section has a plurality of independent exhaust passages. A plurality of scroll parts are provided corresponding to each of the scroll parts, and when the cross-sectional area of the exhaust inflow part from the independent exhaust passage to the scroll part is A, and the distance from the center of the cross-sectional area to the axis of the turbine part is R, An exhaust system for a multi-cylinder engine with a supercharger, characterized in that the independent exhaust passage having a greater exhaust resistance is set to have a greater A/R.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62147217A JP2571056B2 (en) | 1987-06-12 | 1987-06-12 | Exhaust system for multi-cylinder engine with turbocharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62147217A JP2571056B2 (en) | 1987-06-12 | 1987-06-12 | Exhaust system for multi-cylinder engine with turbocharger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63309724A true JPS63309724A (en) | 1988-12-16 |
JP2571056B2 JP2571056B2 (en) | 1997-01-16 |
Family
ID=15425218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62147217A Expired - Lifetime JP2571056B2 (en) | 1987-06-12 | 1987-06-12 | Exhaust system for multi-cylinder engine with turbocharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2571056B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08246889A (en) * | 1995-03-08 | 1996-09-24 | Mitsubishi Motors Corp | Engine having supercharger |
JPH10231706A (en) * | 1997-02-19 | 1998-09-02 | Mitsubishi Heavy Ind Ltd | Turbine scroll |
JP2007285169A (en) * | 2006-04-14 | 2007-11-01 | Toyota Motor Corp | Cylinder head structure of internal combustion engine with turbocharger |
JP2008031942A (en) * | 2006-07-31 | 2008-02-14 | Mazda Motor Corp | Engine with supercharger |
JP2008038606A (en) * | 2006-08-01 | 2008-02-21 | Mazda Motor Corp | Engine with supercharger |
DE102006042463A1 (en) * | 2006-09-09 | 2008-03-20 | Audi Ag | Internal combustion engine has exhaust gas turbocharger and two cylindrical banks with two cylindrical groups where each cylindrical group contains one cylinder, which is connected to exhaust gas lines |
WO2012060187A1 (en) * | 2010-11-04 | 2012-05-10 | 三菱重工業株式会社 | Turbine housing for twin scroll turbocharger |
JP2012122346A (en) * | 2010-12-06 | 2012-06-28 | Ihi Corp | Scroll part structure and supercharger |
JP2016211449A (en) * | 2015-05-11 | 2016-12-15 | いすゞ自動車株式会社 | Supercharging system of internal combustion engine |
JP2018150842A (en) * | 2017-03-10 | 2018-09-27 | 株式会社Ihi | Supercharger system |
JP2019015262A (en) * | 2017-07-10 | 2019-01-31 | マツダ株式会社 | engine |
US11255202B2 (en) | 2017-07-28 | 2022-02-22 | Cummins Ltd | Diffuser space for a turbine of a turbomachine |
-
1987
- 1987-06-12 JP JP62147217A patent/JP2571056B2/en not_active Expired - Lifetime
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08246889A (en) * | 1995-03-08 | 1996-09-24 | Mitsubishi Motors Corp | Engine having supercharger |
JPH10231706A (en) * | 1997-02-19 | 1998-09-02 | Mitsubishi Heavy Ind Ltd | Turbine scroll |
JP2007285169A (en) * | 2006-04-14 | 2007-11-01 | Toyota Motor Corp | Cylinder head structure of internal combustion engine with turbocharger |
JP2008031942A (en) * | 2006-07-31 | 2008-02-14 | Mazda Motor Corp | Engine with supercharger |
JP2008038606A (en) * | 2006-08-01 | 2008-02-21 | Mazda Motor Corp | Engine with supercharger |
DE102006042463A1 (en) * | 2006-09-09 | 2008-03-20 | Audi Ag | Internal combustion engine has exhaust gas turbocharger and two cylindrical banks with two cylindrical groups where each cylindrical group contains one cylinder, which is connected to exhaust gas lines |
WO2012060187A1 (en) * | 2010-11-04 | 2012-05-10 | 三菱重工業株式会社 | Turbine housing for twin scroll turbocharger |
JP2012097699A (en) * | 2010-11-04 | 2012-05-24 | Mitsubishi Heavy Ind Ltd | Turbine housing of twin scroll type turbocharger |
US9562442B2 (en) | 2010-11-04 | 2017-02-07 | Mitsubishi Heavy Industries, Ltd. | Turbine housing for a turbocharger of twin-scroll type |
EP2636868A4 (en) * | 2010-11-04 | 2017-11-22 | Mitsubishi Heavy Industries, Ltd. | Turbine housing for twin scroll turbocharger |
JP2012122346A (en) * | 2010-12-06 | 2012-06-28 | Ihi Corp | Scroll part structure and supercharger |
JP2016211449A (en) * | 2015-05-11 | 2016-12-15 | いすゞ自動車株式会社 | Supercharging system of internal combustion engine |
JP2018150842A (en) * | 2017-03-10 | 2018-09-27 | 株式会社Ihi | Supercharger system |
JP2019015262A (en) * | 2017-07-10 | 2019-01-31 | マツダ株式会社 | engine |
US11255202B2 (en) | 2017-07-28 | 2022-02-22 | Cummins Ltd | Diffuser space for a turbine of a turbomachine |
Also Published As
Publication number | Publication date |
---|---|
JP2571056B2 (en) | 1997-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4725656B2 (en) | Exhaust passage structure of multi-cylinder engine | |
JP4496248B2 (en) | Supercharged engine with EGR device | |
US7275511B1 (en) | Intake manifold assembly | |
KR20120053517A (en) | Exhaust-gas supply device of a turbine wheel of an exhaust-gas turbocharger | |
JP2571056B2 (en) | Exhaust system for multi-cylinder engine with turbocharger | |
JP5375151B2 (en) | Exhaust passage structure of multi-cylinder engine | |
JPH03151519A (en) | Multiple cylinder engine with turbo charger | |
JP4894877B2 (en) | Turbocharged engine | |
US5012771A (en) | Intake system for multi-cylinder engine | |
JP5326630B2 (en) | Exhaust passage structure of multi-cylinder engine | |
JP2007154836A (en) | Air-fuel ratio control device of turbocharged engine | |
JP5251658B2 (en) | Turbocharged engine | |
JP4692253B2 (en) | Exhaust gas temperature control device for turbocharged engine | |
JP4631694B2 (en) | Turbocharged engine | |
WO2020105533A1 (en) | Supercharging system | |
JP5257193B2 (en) | Turbocharged engine | |
JP7405065B2 (en) | Internal combustion engine exhaust passage structure | |
JP4548323B2 (en) | Intake control device for turbocharged engine | |
JPS595774B2 (en) | Exhaust system for multi-cylinder engine with supercharger | |
JPS6143529B2 (en) | ||
JPS63140822A (en) | Valve gear of engine with supercharger | |
JPS59160027A (en) | Turbocharging apparatus for multi-cylinder engine | |
US20080034852A1 (en) | Intake manifold assembly | |
JPS6079123A (en) | Exhaust turbo-charger type multi-cylinder internal- combustion engine | |
JPH0192520A (en) | Engine intake-air device |