JPS63309580A - Production of heat storage material capsule - Google Patents

Production of heat storage material capsule

Info

Publication number
JPS63309580A
JPS63309580A JP62145148A JP14514887A JPS63309580A JP S63309580 A JPS63309580 A JP S63309580A JP 62145148 A JP62145148 A JP 62145148A JP 14514887 A JP14514887 A JP 14514887A JP S63309580 A JPS63309580 A JP S63309580A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
nozzle
latent heat
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145148A
Other languages
Japanese (ja)
Inventor
Tomonari Saito
知成 斎藤
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP62145148A priority Critical patent/JPS63309580A/en
Publication of JPS63309580A publication Critical patent/JPS63309580A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To produce the title capsules having a large surface area per unit wt., by continuously extruding a soln. of a hollow fiber membrane-forming polymer in an org. solvent from the outer orifice of a hollow annular nozzle while intermittently extruding a latent heat storage material from the inner orifice of the nozzle, followed by coagulation. CONSTITUTION:5-60wt.% hollow fiber membrane-forming polymer (e.g., PS) is dissolved in a good org. solvent (e.g., benzene) to prepare a soln., which is then fed into a tank 3 and thereafter through a feed inlet 4 into a hollow annular nozzle 5. The soln. is then continuously extruded into a poor org. solvent 14 (e.g., petroleum ether) from the outer spinning orifice 11 of the nozzle 5. Simultaneously, a molten latent heat storage material (e.g., sodium acetate trihydrate) is fed into a tank 7 provided in a thermostatic chamber 6 and then intermittently extruded into the solvent 14 from the inner spinning orifice 12 of the nozzle 5 through a feed inlet 10 with the aid of air 9 having a pressure controlled by a pressure control valve 8 and intermittently fed into the tank 7 by opening or shutting a valve 18. The polymer undergoes phase separation to produce a capsular product 13 having a capsular wall 15 filled with the heat storage material 16. Subsequently, the capsular product is cut off at a constriction 17 thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蓄熱材カプセルの製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a heat storage material capsule.

更に詳しくは、蓄熱装置に用いられる蓄熱材などとして
有効に使用される蓄熱材カプセルの製造法に関する。
More specifically, the present invention relates to a method for manufacturing a heat storage material capsule that is effectively used as a heat storage material used in a heat storage device.

〔従来の技術〕[Conventional technology]

従来から、潜熱蓄熱材を用いた蓄熱装置を設計する場合
に、熱交換面積を大きくする方法として、蓄熱材をカプ
セル内に収容し、このカプセルを蓄熱槽内に配置する方
法が一般にとられている。カプセルの形態としては、袋
内に蓄熱材を充填し、その口を絞って球状体または柱状
体としたもの、あるいは円形または角状の筒状体容器内
に蓄熱材を充填し、その両端部を閉塞させたものなどが
用いられている。
Conventionally, when designing a heat storage device using a latent heat storage material, the general method of increasing the heat exchange area is to house the heat storage material in a capsule and place this capsule in a heat storage tank. There is. Capsules can take the form of a bag filled with heat storage material and the mouth of the bag squeezed to form a spherical or columnar body, or a circular or square cylindrical container filled with heat storage material with both ends Those with occlusion are used.

これらの蓄熱材入りカプセルは、カプセル製造工程、蓄
熱材充填工程およびカプセル両端部閉塞工程を経て製造
されており、非常に手間を要するばかりではなく、カプ
セル製造上の制約からあまり小さいものを製造すること
ができないため、熱交換のための伝熱面積を大きくとる
ことができないという問題もある。伝熱面積を大きくで
きないということは、伝熱によって支配されるところの
蓄熱材の熱量吸収速度および熱量放出速度がいずれも遅
くなり、場合によっては潜熱蓄熱が最も利点とする一定
温度の熱をとり出すことを不可能とさせるので、蓄熱を
行なう上で致命的な欠点ともなってくる。
These heat storage material-filled capsules are manufactured through a capsule manufacturing process, a heat storage material filling process, and a capsule closing process at both ends, which not only requires a lot of effort, but also requires a lot of time and effort, and due to capsule manufacturing constraints, it is difficult to manufacture capsules that are too small. Therefore, there is also the problem that a large heat transfer area for heat exchange cannot be provided. The fact that the heat transfer area cannot be increased means that the heat absorption rate and heat release rate of the heat storage material, which is controlled by heat transfer, are both slow, and in some cases, it is difficult to absorb heat at a constant temperature, which is the most advantageous of latent heat storage. Since it makes it impossible to release heat, it becomes a fatal drawback when storing heat.

本出願人は先に、こうした問題点を生ずることなく、蓄
熱装置などに用いられる蓄熱材を新たに開発すべく種々
検討の結果、中空環状ノズルの外側の紡糸孔から溶融樹
脂または紡糸原液を、またその内側の紡糸孔から溶融状
態の潜熱蓄熱材をそれぞれ共押出しし、溶融樹脂を用い
た溶融紡糸の場合には共押出物を直ちに冷却することに
より、また紡糸原液を用いた乾湿式紡糸の場合には共押
出物を自然落下させた後、紡糸原液のゲル化洛中に導く
ことにより製造された中空部に潜熱蓄熱材を充填した中
空糸が、きわめて有効であることを見出している(特開
昭58−163724号公報)。
As a result of various studies in order to develop a new heat storage material for use in heat storage devices, etc., without causing these problems, the present applicant has discovered that molten resin or spinning stock solution is spun from the spinning hole outside the hollow annular nozzle. In addition, the latent heat storage material in a molten state is co-extruded from the spinning holes inside, and in the case of melt-spinning using a molten resin, the co-extrudate is immediately cooled. In some cases, it has been found that hollow fibers produced by allowing the coextrudate to fall naturally and then introducing it into a gelling solution of the spinning dope and filling the hollow part with a latent heat storage material are extremely effective (particularly Publication No. 58-163724).

しかしながら、このようにして製造される潜熱蓄熱材充
填中空糸には、なお改善されなければならない問題点の
あることがその後判明した。
However, it has since been found that the hollow fiber filled with the latent heat storage material manufactured in this manner has problems that still need to be improved.

即ち、かかる中空糸の製造は、溶融紡糸法あるいは乾湿
式紡糸法によって行われ、溶融紡糸法では、その際中空
環状ノズルの内側から芯液として溶融状態の潜熱蓄熱材
が共押出されるが、これと同時に共押出される溶融樹脂
の温度(約150〜250℃)との関係で、このような
温度で劣化するような蓄熱材を使用することができない
という制約がみられる。
That is, such hollow fibers are manufactured by a melt spinning method or a wet-dry spinning method, and in the melt spinning method, a molten latent heat storage material is coextruded as a core liquid from the inside of a hollow annular nozzle. Due to the temperature of the molten resin coextruded at the same time (approximately 150 to 250°C), there is a restriction that a heat storage material that deteriorates at such a temperature cannot be used.

また、乾湿式紡糸法では、ゲル化浴として水または水性
媒体を用いるため、中空糸に微細な孔が形成され、かつ
水性媒体中の水が中空糸内部迄浸透し、そこに充填され
ている潜熱蓄熱材と接触するようになる。ところで、潜
熱蓄熱量が大きく、暖房や給湯用などとして有用な潜熱
蓄熱材である無機水和物は、水に易溶性であり、しかも
その溶融液は100℃以上で沸騰してしまうため、前記
提案方法では潜熱蓄熱材として無機水和物を使用するこ
とができなかった。もっとも、前記特許公開公報にも記
載される如く、中空糸の表面、特に外面に樹脂コーティ
ングを行なえば、このような欠点を避けることはできる
が、コーティング層を硬化させるための熱処理を120
℃近い温度で行わなければならないため、やはりこのよ
うな温度で劣化する蓄熱材を使用することができないと
いう制約が生じてくる。
In addition, in the dry-wet spinning method, water or an aqueous medium is used as the gelling bath, so fine pores are formed in the hollow fibers, and the water in the aqueous medium penetrates into the hollow fibers and fills them. It comes into contact with the latent heat storage material. Incidentally, inorganic hydrates, which have a large amount of latent heat storage and are useful latent heat storage materials for space heating and hot water supply, are easily soluble in water, and their molten liquid boils at 100°C or higher. In the proposed method, inorganic hydrates could not be used as latent heat storage materials. However, as described in the above-mentioned patent publication, if the surface of the hollow fiber, especially the outer surface, is coated with a resin, such drawbacks can be avoided, but heat treatment to harden the coating layer is not necessary.
Since the process must be carried out at a temperature close to 0.9°C, there is a constraint that heat storage materials that deteriorate at such temperatures cannot be used.

本出願人は、こうした制約のみられる潜熱蓄熱材充填中
空糸の製造法を改善し、潜熱蓄熱材として無機水和物を
用いることができるばかりではなく、中空糸状より更に
好ましい形態であるカプセル状の蓄熱材料を次に提案し
ている(特開昭60−169090号公報)。
The present applicant has improved the manufacturing method of hollow fibers filled with latent heat storage material, which has these limitations, and has not only made it possible to use inorganic hydrates as the latent heat storage material, but also made it possible to use capsule-like fibers, which is a more preferable form than hollow fibers. The following heat storage material has been proposed (Japanese Unexamined Patent Publication No. 169090/1982).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本出願人は、カプセル状蓄熱材料の改善された製造法を
更に提案している(特開昭62−49193号公報)。
The present applicant has further proposed an improved manufacturing method for a capsule-shaped heat storage material (Japanese Patent Application Laid-Open No. 62-49193).

この提案された製造法では、中空環状ノズルの外側の紡
糸孔から液状硬化型のシリコーンゴムを連続的に、また
その内側の紡糸孔から溶融状態の潜熱蓄熱材を間欠的に
共押出しし1、この共押出物を約80〜100℃の恒温
水槽中に浸漬してシリコーンゴム部分を加熱硬化させた
後、蓄熱材を含有していない部分で切断せしめている。
In this proposed manufacturing method, liquid curing silicone rubber is continuously coextruded from the spinning holes on the outside of a hollow annular nozzle, and molten latent heat storage material is intermittently coextruded from the spinning holes inside the nozzle. The coextrudate is immersed in a constant temperature water bath at about 80 to 100°C to heat and harden the silicone rubber portion, and then cut at the portion that does not contain the heat storage material.

しかしながら、このような温度で完全に硬化し得る液状
硬化型シリコーンゴムは、本来その材質からいってガス
透過性が高く、従って無機水和物のように溶融状態でガ
スを発生し易い蓄熱材を用いた場合には、潜熱蓄熱材の
変性による性能の劣化を招き易いという問題がみら九る
However, liquid curing silicone rubber, which can be completely cured at such temperatures, has high gas permeability due to its material nature, and therefore cannot be used as a heat storage material that easily generates gas in its molten state, such as inorganic hydrates. When used, there is a problem that performance is likely to deteriorate due to denaturation of the latent heat storage material.

本発明者等は、上記の問題点を解決すべく鋭意検討を行
ない、次のような手段によりこの問題の解決を図った。
The inventors of the present invention have conducted extensive studies to solve the above problems, and have attempted to solve the problems by the following means.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は蓄熱材カプセルの製造法に係り、蓄熱材
カプセルの製造は、中空環状ノズルの外側から中空糸膜
形成性重合体の有機系良溶媒溶液を連続的に、またその
内側から溶融状態の潜熱蓄熱材を間欠的にそれぞれ押出
し、押出物を有機系貧溶媒浴に浸漬して重合体を相分離
させた後、蓄熱材を含有しない部分で切断することによ
り行われる。
That is, the present invention relates to a method for producing a heat storage material capsule, and the heat storage material capsule is produced by continuously melting an organic good solvent solution of a hollow fiber membrane-forming polymer from the outside of a hollow annular nozzle and from the inside thereof. This is carried out by intermittently extruding the latent heat storage material in the state, immersing the extrudate in an organic poor solvent bath to phase-separate the polymer, and then cutting the polymer at a portion that does not contain the heat storage material.

本発明は、押出物のゲル化を行うゲル化浴として、水を
含まない有機系貧溶媒浴を用いる点に際立った特徴を有
し、従って水又は水性媒体をゲル化浴として用いる従来
技術(例えば特開昭58−163724号公報)におけ
る問題点として指摘される中空糸膜に微細な孔が形成さ
れ、かつ水性媒体中の水が中空糸の内部迄浸透し、そこ
に充填されている潜熱蓄熱材と接触するという問題を生
じない。
The present invention has a distinctive feature in that a water-free organic poor solvent bath is used as the gelling bath for gelling the extrudate, and therefore, compared to the conventional technology in which water or an aqueous medium is used as the gelling bath. For example, fine pores are formed in the hollow fiber membrane, which is pointed out as a problem in Japanese Patent Application Laid-open No. 58-163724, and the water in the aqueous medium penetrates into the hollow fiber, filling it with latent heat. There is no problem of contact with heat storage material.

中空糸膜形成性重合体としては、例えばポリスチレン、
ポリエチレン、ポリプロピレン、塩化ビニリデン−アク
リロニトリル共重合体などの熱可塑性樹脂であって、潜
熱蓄熱材と相互作用せずがつ溶は合わないものが用いら
れる。
Examples of hollow fiber membrane-forming polymers include polystyrene,
A thermoplastic resin such as polyethylene, polypropylene, vinylidene chloride-acrylonitrile copolymer, etc., which does not interact with the latent heat storage material and does not dissolve therein, is used.

これらの重合体は約5〜60重量%の濃度で、有機系良
溶媒に溶解させて紡糸原液として用いられる。
These polymers are dissolved in a good organic solvent at a concentration of about 5 to 60% by weight and used as a spinning dope.

有機系良溶媒としては、潜熱蓄熱材の融点より約10℃
以上高い沸点を有し、重合体を溶解できるものが用いら
れる。例えば、ポリスチレンに対してベンゼン、トルエ
ン、キシレン、クロロホルムなどが、ポリプロピレン、
ポリエチレンに対してトルエン、キシレン、シクロヘキ
サン、トリクロロエチレンなどが、塩化ビニリデン−ア
クリロニトリル共重合体に対してメチルエチルケトンな
どがそれぞれ用いられる。また、有機系貧溶媒としては
1重合体を溶解しないもの、例えばポリスチレンに対し
て石油エーテル、シクロヘキサンなどが、ポリプロピレ
ン、ポリエチレンに対してニトロベンゼン、シクロヘキ
サノン、n−ヘキサン、アセトン、アニリンなどが、塩
化ビニリデン−アクリロニトリル共重合体に対して分子
量約500〜2500の液状ポリブタジェンなどがそれ
ぞれ用いられる。
A good organic solvent should be approximately 10°C below the melting point of the latent heat storage material.
Those having a boiling point higher than that and capable of dissolving the polymer are used. For example, benzene, toluene, xylene, chloroform, etc. are used for polystyrene, while polypropylene,
Toluene, xylene, cyclohexane, trichloroethylene, etc. are used for polyethylene, and methyl ethyl ketone, etc. are used for vinylidene chloride-acrylonitrile copolymer. Examples of organic poor solvents include those that do not dissolve the polymer, such as petroleum ether and cyclohexane for polystyrene, nitrobenzene, cyclohexanone, n-hexane, acetone, aniline, etc. for polypropylene and polyethylene, and vinylidene chloride. -A liquid polybutadiene having a molecular weight of about 500 to 2,500 is used for the acrylonitrile copolymer.

また、潜熱蓄熱材としては、無機水和物、例えば酢酸ナ
トリウム・3水和物、リン酸2ナトリウム・12水和物
、水酸化バリウム・8水和物、硝酸亜鉛・6水和物、硝
酸ニッケル・6水和物、チオ硫酸ナトリウム・5水和物
、硝酸カルシウム・6水和物、硫酸ナトリウム・lO水
和物、炭酸ナトリウム・1o水和物、塩化カルシウム・
6水和物などが好んで用いられる。
In addition, latent heat storage materials include inorganic hydrates, such as sodium acetate trihydrate, disodium phosphate dodecahydrate, barium hydroxide octahydrate, zinc nitrate hexahydrate, and nitric acid. Nickel hexahydrate, sodium thiosulfate pentahydrate, calcium nitrate hexahydrate, sodium sulfate lO hydrate, sodium carbonate lO hydrate, calcium chloride
Hexahydrate and the like are preferably used.

ここで1図面を参照しながら、本発明を説明する0図面
の第1図は、蓄熱材カプセルの製造法の一態様を示すそ
の概略図であり、第2図はそれに用いられた中空環状ノ
ズルの断面図である。
Here, referring to the drawings, FIG. 1 of the drawings illustrating the present invention is a schematic diagram showing one embodiment of the method for manufacturing a heat storage material capsule, and FIG. 2 is a hollow annular nozzle used therein. FIG.

タンク3には重合体の有機系良溶媒溶液が、またタンク
7には潜熱蓄熱材融液がそれぞれ仕込まれており、圧力
調節弁1または8によって調圧されたエアー2または9
の圧力を受け、重合体溶液は導入口4から、また蓄熱材
融液は導入口10から紡糸用ノズル5に送り込まれるよ
うになっている。
Tank 3 is filled with a solution of a polymer in an organic good solvent, and tank 7 is filled with a latent heat storage material melt.
The polymer solution is fed into the spinning nozzle 5 through the inlet 4 and the heat storage material melt is fed into the spinning nozzle 5 through the inlet 10.

これらのタンクおよび紡糸用ノズルは、いずれも潜熱蓄
熱材の融点以上でかつ有機系良溶媒及び蓄熱材の沸点以
下に加熱された恒温槽6内に収容されている。
These tanks and spinning nozzles are both housed in a constant temperature bath 6 heated to a temperature above the melting point of the latent heat storage material and below the boiling point of the organic good solvent and the heat storage material.

中空紡糸用ノズルは、中空環状ノズルを形成しており、
その外側の紡糸孔11からは重合体溶液を連続的に押出
し、またその内側の紡糸孔12からは溶融状態の潜熱蓄
熱材を弁18の開閉により間欠的に押出すようにしてい
る。このようにして共押出された潜熱蓄熱材充填カプセ
ル化物13は、相分離可能であり、かつ有機系貧溶媒及
び潜熱蓄熱材の沸点以下に保たれた有機系貧溶媒槽14
に浸漬され、そこで重合体の相分離が起こり中空糸ゲル
化膜が形成される。この後、中空糸をとり出し、乾燥す
ることにより中空糸膜の硬化を行う。
The hollow spinning nozzle forms a hollow annular nozzle,
A polymer solution is continuously extruded from the outer spinning hole 11, and a molten latent heat storage material is intermittently extruded from the inner spinning hole 12 by opening and closing a valve 18. The latent heat storage material-filled encapsulated product 13 coextruded in this manner can be phase-separated, and the organic poor solvent tank 14 is maintained at a temperature below the boiling point of the organic poor solvent and the latent heat storage material.
The polymer is immersed in water, where phase separation of the polymer occurs and a hollow fiber gel membrane is formed. Thereafter, the hollow fibers are taken out and dried to cure the hollow fiber membrane.

このような操作により、じゆず状に連なった形状の蓄熱
材カプセル13が製造され、その断面の詳細は、第3図
に示されている。即ち、蓄熱材カプセルは重合体のカプ
セル壁15および間欠押出によりカプセル内に充填され
た潜熱蓄熱材16よりなり、蓄熱材が充填されていない
重合体部分は、くびれ17を形成しているので、後でこ
の部分で切断することにより1個々の蓄熱材カプセルを
得ることができる。
Through such operations, heat storage material capsules 13 having a continuous shape are manufactured, and the details of the cross section thereof are shown in FIG. 3. That is, the heat storage material capsule is composed of a polymer capsule wall 15 and a latent heat heat storage material 16 filled into the capsule by intermittent extrusion, and the polymer portion that is not filled with the heat storage material forms a constriction 17. By later cutting at this portion, one individual heat storage material capsule can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明方法で製造される蓄熱材カプセルは、小さくて単
位重量当りの表面積が大きく、M熱装置での使用に好適
である。また、水及びガス遮蔽性に優れ、製造工程に高
温を用いないので、広範囲の潜熱蓄熱材を用いることが
出来る。更に、製造工程は極めて単純化され、経済的で
ある。
The heat storage material capsule produced by the method of the present invention is small and has a large surface area per unit weight, and is suitable for use in M thermal equipment. Furthermore, since it has excellent water and gas shielding properties and does not use high temperatures in the manufacturing process, a wide range of latent heat storage materials can be used. Furthermore, the manufacturing process is extremely simplified and economical.

〔実施例〕〔Example〕

次に実施例により、本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to Examples.

実施例1 ポリスチレン160gをキシレン200gに65℃で完
全に溶解させ、同温度に保持した溶液を中空糸紡糸用ノ
ズルの外室に導入し、一方潜熱蓄熱材としてのリン酸2
ナトリウム・12水和物250gを65℃の溶融状態に
保ちながらノズルの内室に導入する。
Example 1 160 g of polystyrene was completely dissolved in 200 g of xylene at 65°C, and the solution maintained at the same temperature was introduced into the outer chamber of a hollow fiber spinning nozzle.
250 g of sodium dodecahydrate is introduced into the inner chamber of the nozzle while being maintained in a molten state at 65°C.

ポリスチレンのキシレン溶液は、吐出ポンプで30 c
1n/分の吐出量に調整しながら中空環状ノズルの外側
の紡糸孔(外径5.0mm、円径2.OmIm)から、
またリン酸2ナトリウム・12水和物はエアー圧力調節
弁でやはり30an/分の吐出量に調整し、弁を6秒間
開−3秒間閉をくり返しながら、中空環状ノズルの内側
の紡糸孔(径1 、0IIIn+)からそれぞれ共押出
させる。断続的に共押出された潜熱蓄熱材充填カプセル
は、25℃に保ったシクロヘキサン浴中に投入し、そこ
に6時間放置して重合体ゲル化膜を形成させた。その後
、ゲル化膜形成カプセルをとり出し、12時間室内で風
乾して膜の硬化を行い、約45mm毎に形成されたくび
れの部分を切断して蓄熱材カプセルを得た。
A xylene solution of polystyrene was heated at 30 c with a dispensing pump.
From the outer spinning hole (outer diameter 5.0 mm, circular diameter 2.0 mIm) of the hollow annular nozzle while adjusting the discharge rate to 1 n/min,
In addition, the discharge rate of disodium phosphate dodecahydrate was adjusted to 30 an/min using the air pressure control valve, and while the valve was repeatedly opened for 6 seconds and closed for 3 seconds, the spinning hole (diameter 1, 0IIIn+) respectively. The intermittently coextruded capsules filled with the latent heat storage material were placed in a cyclohexane bath kept at 25° C., and left there for 6 hours to form a gelled polymer film. Thereafter, the gelled film-formed capsule was taken out and air-dried indoors for 12 hours to harden the film, and the constricted portions formed at approximately 45 mm intervals were cut to obtain heat storage material capsules.

このようにして、外径約211I11、肉厚約0.51
1m、長さ約4511111のリン酸2ナトリウム・1
2水和物が充填されたポリスチレンカプセルが得られた
In this way, the outer diameter is about 211I11, the wall thickness is about 0.51
1m long, approximately 4511111 disodium phosphate 1
Polystyrene capsules filled with dihydrate were obtained.

実施例2 実施例1において、潜熱蓄熱材として酢酸ナトリウム・
3水和物を、重合体としてポリエチレンを、有機系良溶
媒としてトルエンを、また有機系貧溶媒としてシクロヘ
キサノンをそれぞれ用い、ポリエチレンのトルエン溶液
及び酢酸ナトリウム・3水和物の溶融物の温度をそれぞ
れ85℃に保持したものを共押出しし、外径約2mm、
肉厚約0.5n+m、長さ約45mmの酢酸ナトリウム
・3水和物が充填されたポリエチレンカプセルを製造し
た。
Example 2 In Example 1, sodium acetate was used as the latent heat storage material.
Using trihydrate, polyethylene as a polymer, toluene as a good organic solvent, and cyclohexanone as a poor organic solvent, the temperatures of the toluene solution of polyethylene and the melt of sodium acetate trihydrate were adjusted respectively. Co-extruded at 85℃, outer diameter approximately 2mm,
Polyethylene capsules filled with sodium acetate trihydrate and having a wall thickness of approximately 0.5 n+m and a length of approximately 45 mm were manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、蓄熱材カプセルの製造法の一態様を示すその
概略図であり、第2図はそれに用いられた中空環状ノズ
ルの断面図である。また、第3図は、共押出された切断
前の蓄熱材カプセルの断面図である。 (符号の説明) 3・・・・・重合体溶液用タンク 4・・・・・重合体溶液導入口 5・・・・・紡糸用環状ノズル 6・・・・・恒温槽 7・・・・・潜熱蓄熱材用タンク 10・・・・・潜熱蓄熱材導入口 11・・・・・重合体溶液紡糸孔 12・・・・・潜熱蓄熱材導入口 13・・・・・潜熱蓄熱材充填カプセル14・・・・・
有機系貧溶媒槽 15・・・・・カプセル壁 16・・・・・充填潜熱蓄熱材 17・・・・・くびれ
FIG. 1 is a schematic view showing one embodiment of a method for manufacturing a heat storage material capsule, and FIG. 2 is a sectional view of a hollow annular nozzle used therein. Moreover, FIG. 3 is a sectional view of the coextruded heat storage material capsule before cutting. (Explanation of symbols) 3... Polymer solution tank 4... Polymer solution inlet 5... Annular spinning nozzle 6... Constant temperature bath 7...・Latent heat storage material tank 10...Latent heat storage material inlet 11...Polymer solution spinning hole 12...Latent heat storage material inlet 13...Latent heat storage material filled capsule 14...
Organic poor solvent tank 15... Capsule wall 16... Filling latent heat storage material 17... Constriction

Claims (1)

【特許請求の範囲】 1、中空環状ノズルの外側から中空糸膜形成性重合体の
有機系良溶媒溶液を連続的に、またその内側から溶融状
態の潜熱蓄熱材を間欠的にそれぞれ押出し、押出物を有
機系貧溶媒浴に浸漬して重合体を相分離させた後、蓄熱
材を含有しない部分で切断することを特徴とする蓄熱材
カプセルの製造法。 2、潜熱蓄熱材が無機水和物である特許請求の範囲第1
項記載の蓄熱材カプセルの製造法。
[Claims] 1. Continuously extrude a solution of a hollow fiber membrane-forming polymer in an organic good solvent from the outside of a hollow annular nozzle, and intermittently extrude a molten latent heat storage material from the inside. 1. A method for producing a heat storage material capsule, which comprises immersing an object in an organic poor solvent bath to phase-separate the polymer, and then cutting the product at a portion that does not contain the heat storage material. 2. Claim 1 in which the latent heat storage material is an inorganic hydrate
A method for producing a heat storage material capsule as described in Section 1.
JP62145148A 1987-06-12 1987-06-12 Production of heat storage material capsule Pending JPS63309580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145148A JPS63309580A (en) 1987-06-12 1987-06-12 Production of heat storage material capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145148A JPS63309580A (en) 1987-06-12 1987-06-12 Production of heat storage material capsule

Publications (1)

Publication Number Publication Date
JPS63309580A true JPS63309580A (en) 1988-12-16

Family

ID=15378528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145148A Pending JPS63309580A (en) 1987-06-12 1987-06-12 Production of heat storage material capsule

Country Status (1)

Country Link
JP (1) JPS63309580A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042705A3 (en) * 2000-11-23 2003-01-30 Rubitherm Gmbh Latent-heat accumulator body
WO2009077765A1 (en) * 2007-12-19 2009-06-25 Frederik George Best Improved latent heat storage device
DE102009032918A1 (en) * 2009-07-14 2011-01-20 Rehau Ag + Co. Small volume PCM capsule, process for their preparation and this comprehensive latent heat storage
WO2014068091A1 (en) * 2012-11-05 2014-05-08 Flamco B.V. Core of a capsule comprising phase change material, assembly of capsules, thermal buffer, and method
JP5579597B2 (en) * 2008-04-16 2014-08-27 森下仁丹株式会社 Thermal storage seamless capsule and manufacturing method thereof
WO2014208401A1 (en) * 2013-06-27 2014-12-31 シャープ株式会社 Heat storage capsule and heat storage member produced using same
CN105297289A (en) * 2015-12-07 2016-02-03 清华大学深圳研究生院 Preparation method of silk fibroin energy storage and temperature regulation fiber membrane
CN108130046A (en) * 2017-11-29 2018-06-08 贵州省材料产业技术研究院 Paraffin/Heat Conduction Material/polymer hollow fiber membrane composite phase-change material and preparation method thereof can be woven

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042705A3 (en) * 2000-11-23 2003-01-30 Rubitherm Gmbh Latent-heat accumulator body
WO2009077765A1 (en) * 2007-12-19 2009-06-25 Frederik George Best Improved latent heat storage device
GB2468619A (en) * 2007-12-19 2010-09-15 Frederick George Best Improved latent heat storage device
GB2468619B (en) * 2007-12-19 2012-09-12 Frederick George Best Improved latent heat storage device
JP5579597B2 (en) * 2008-04-16 2014-08-27 森下仁丹株式会社 Thermal storage seamless capsule and manufacturing method thereof
DE102009032918A1 (en) * 2009-07-14 2011-01-20 Rehau Ag + Co. Small volume PCM capsule, process for their preparation and this comprehensive latent heat storage
WO2014068091A1 (en) * 2012-11-05 2014-05-08 Flamco B.V. Core of a capsule comprising phase change material, assembly of capsules, thermal buffer, and method
WO2014208401A1 (en) * 2013-06-27 2014-12-31 シャープ株式会社 Heat storage capsule and heat storage member produced using same
US10101095B2 (en) 2013-06-27 2018-10-16 Sharp Kabushiki Kaisha Heat storage capsule and heat storage member using the same
CN105297289A (en) * 2015-12-07 2016-02-03 清华大学深圳研究生院 Preparation method of silk fibroin energy storage and temperature regulation fiber membrane
CN108130046A (en) * 2017-11-29 2018-06-08 贵州省材料产业技术研究院 Paraffin/Heat Conduction Material/polymer hollow fiber membrane composite phase-change material and preparation method thereof can be woven

Similar Documents

Publication Publication Date Title
US4980060A (en) Hollow fiber membranes with fusion-bonded end portions
JP4547471B2 (en) Sintered porous plastic product and method for producing the same
KR0162498B1 (en) Cell culture containing tubular capsule produced by co-extrusion
JPS63309580A (en) Production of heat storage material capsule
JPS6040225A (en) Method of extruding polymer
KR20040094683A (en) Halar Membranes
KR100925249B1 (en) Medical port tube for extrusion molding device and process for producing the same
CN100393501C (en) Method for forming hollow fibers
ES2574781T3 (en) Molded article and method to produce it
DK161191B (en) PROCEDURE FOR THE PREPARATION OF A RODFORMED POLYSILOXAN COATED PLASTIC FILM.
BRPI0807089A2 (en) METHOD OF MANUFACTURING A MULTI-LAYER OBJECT
US4747983A (en) Process and apparatus for manufacturing foamed structures with integral skin
EP3116988B1 (en) Biomass carrier and a method of manufacturing thereof
CN105246800A (en) Chemical resistant evaporation control structures
GB2026381A (en) Membrane having a porous surface
CN100369732C (en) Method for rotational moulding of a workpiece comprising a thermoplastic foam layer
KR950704198A (en) Improvements relating to plastic articles
JPS63115718A (en) Manufacture of heat accumulating material covered with polymer
JPH0518038B2 (en)
JPH0338321A (en) Method for producing themoplastic plastic foam and extrusion molding machine
WO2020048435A1 (en) Polymer particles preparation method
JPH0235918A (en) Polypropylene porous hollow yarn membrane and its manufacture
JPS60169090A (en) Heat accumulating material capsule and manufacture thereof
CN113398779B (en) Preparation method of asymmetric poly 4-methyl-1-pentene hollow fiber
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane