JPS60169090A - Heat accumulating material capsule and manufacture thereof - Google Patents

Heat accumulating material capsule and manufacture thereof

Info

Publication number
JPS60169090A
JPS60169090A JP59024646A JP2464684A JPS60169090A JP S60169090 A JPS60169090 A JP S60169090A JP 59024646 A JP59024646 A JP 59024646A JP 2464684 A JP2464684 A JP 2464684A JP S60169090 A JPS60169090 A JP S60169090A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
latent heat
silicone rubber
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024646A
Other languages
Japanese (ja)
Other versions
JPH0245800B2 (en
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP59024646A priority Critical patent/JPS60169090A/en
Publication of JPS60169090A publication Critical patent/JPS60169090A/en
Publication of JPH0245800B2 publication Critical patent/JPH0245800B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enable to manufacture encapsulated heat accumulating material by a method wherein liquid silicon rubber and molten latent heat accumulating material a re coextruded from the outside and inside spinning holes of a hollow and annular nozzle in the form of a hollow yarn, which is heated, cooled and cut in arbitrary lengths and then cut surfaces of which are covered with rubber and heated. CONSTITUTION:A hollow yarn spinning nozzle is equipped with a hollow and annular spinning holes, through the outside spinning hole 11 of which two-part hardening type silicon rubber and through the inside spinning hole 12 of which molten latent heat accumulating material are coextruded. The coextruded latent heat accumulating material-filled hollow yarn 13 is heated by means of a heater 14 up to 60-90 deg.C so as to turn the silicon rubber layer into semi-hardened state and cooled by means of a fan 15 or the like so as to set the inner latent heat accumulating material layer. After that, the yarn 13 is cut into chips having a length of 1-100cm. At this case, a capsule is formed, because the silicone rubber in semi-hardened state goes round the edge of the cut surface so as to cover said surface. The encapsulated objects are dipped in a constant temperature water bath having a temperature of 80-100 deg.C for about 7min or longer in order to completely harden the silicon rubber. Inorganic hydrate can be employed. In addition, continuous micro-capsulation is easily realized.

Description

【発明の詳細な説明】 本発明は、蓄熱材カプセルおよびその製造法に関する。[Detailed description of the invention] The present invention relates to a heat storage material capsule and a method for manufacturing the same.

更に詳しくは、蓄熱装置に用いられる蓄熱材なととして
有効に使用される蓄熱材カプセルおよびその製造法に関
する。
More specifically, the present invention relates to a heat storage material capsule that is effectively used as a heat storage material used in a heat storage device, and a method for manufacturing the same.

従来から、潜熱蓄熱材を用いた蓄熱装置を設計する場合
に、熱交換同情を大きくする方法として、蓄熱材をカプ
セル内に収容し、このカプセルを蓄熱槽内に配置する方
法が一般にとられている。カプセルの形態としては、袋
内に蓄熱材を充填し、その口を絞って球状体重たは柱状
体としたもの、あるいは円杉または角状の筒状体容器内
に蓄熱材を充填し、その両端部を閉塞させたものなどが
用いられている。
Conventionally, when designing a heat storage device using a latent heat storage material, the general method of increasing heat exchange efficiency has been to house the heat storage material in a capsule and place this capsule in a heat storage tank. There is. Capsules can be made by filling a bag with heat storage material and squeezing the opening to make a spherical or columnar body, or by filling a heat storage material into a cedar or square-shaped cylindrical container. Those with both ends closed are used.

これらの蓄熱材入りカプセルは、カプセル製造工程、蓄
熱材充填工程およびカプセル両端部閉塞工程を経て製造
されており、非常に手間を要するばかりではなく、カプ
セル製造上の制約からあまり小さいものを製造すること
ができないため、熱交換のための伝熱面積を大きくとる
ことができないという問題もある。伝熱面積を大きくで
きないということは、伝熱によって支配されるところの
蓄熱材の熱足吸収速度および熱量放出速度がいずれも遅
くなり、場合によっては潜熱蓄熱が最も利点とする一定
温度の熱をとり出すことを不可能とさせるので、蓄熱を
行なう上で致命的な欠点ともなってくる。
These heat storage material-filled capsules are manufactured through a capsule manufacturing process, a heat storage material filling process, and a capsule closing process at both ends, which not only requires a lot of effort, but also requires a lot of time and effort, and due to capsule manufacturing constraints, it is difficult to manufacture capsules that are too small. Therefore, there is also the problem that a large heat transfer area for heat exchange cannot be provided. The fact that the heat transfer area cannot be increased means that the heat absorption rate and heat release rate of the heat storage material, which are controlled by heat transfer, will both be slow, and in some cases, the heat at a constant temperature, which is the most advantageous of latent heat storage, will be slow. This makes it impossible to take out the heat, which is a fatal drawback when it comes to storing heat.

本出願人は先に、こうした問題点を生ずることなく、蓄
熱装置などに用いられる蓄熱材を新たに溶融樹脂を用い
た溶融紡糸の場合には共押出物を直ちに冷却することに
より、また紡糸原液を用いた乾湿式紡糸の場合には共押
出物を自然落下させた後、紡糸原液のゲル化洛中に導く
ことにより製造された中空部に潜熱蓄熱材を充填した中
空糸が、きわめて有効であることを見出している(特開
昭58−163724号公報)。
The present applicant has previously discovered that in order to avoid such problems, the heat storage material used in heat storage devices, etc. can be made by immediately cooling the coextrudate in the case of melt spinning using a new molten resin, and by immediately cooling the coextrudate. In the case of dry-wet spinning using a co-extrudate, a hollow fiber whose hollow part is filled with a latent heat storage material is extremely effective, as it is produced by letting the coextrudate fall naturally and then guiding it into a gelatinized spinning solution. (Japanese Unexamined Patent Publication No. 163724/1983).

しかしなから、このようにして製造される潜熱蓄熱材充
填中空糸には、なお改善されなければならない問題点の
あることがその後判明した。
However, it was subsequently discovered that the hollow fibers filled with the latent heat storage material produced in this manner had problems that still needed to be improved.

即ち、かかる中空糸の製造は、溶融紡糸法あるいは乾湿
式紡糸法によって行われ、溶融紡糸法では、その際中空
環状ノズルの内側から芯液として溶融状態の潜熱蓄熱材
か共押出されるが、これと同時に共押出される溶融樹脂
の171iI屋(約150〜250℃)との関係で、こ
のような温度で劣化するような蓄熱材を使用することが
できないという制約がみられる。
That is, such hollow fibers are manufactured by a melt spinning method or a dry-wet spinning method, and in the melt spinning method, a molten latent heat storage material is coextruded as a core liquid from the inside of a hollow annular nozzle. Due to the temperature of the molten resin coextruded at 171 degrees centigrade (approximately 150 to 250 degrees Celsius), there is a restriction that a heat storage material that deteriorates at such a temperature cannot be used.

また、乾湿式紡糸法では、中空糸に微細な孔が形成され
る7Eめ、ゲル化浴として水または水性媒体を用いると
それらが中空糸内部迄浸透し、そこに充填されている潜
熱蓄熱材と接触するようになる。ところで、潜熱蓄熱量
が大きく、暖房や給湯用などとして有用な潜熱蓄熱材で
ある無機水和物は、水に易溶性であり、しかもその溶融
液Fiio。
In addition, in the dry-wet spinning method, fine pores are formed in the hollow fibers, so if water or an aqueous medium is used as a gelling bath, they will penetrate into the hollow fibers and the latent heat storage material filled therein. come into contact with. Incidentally, inorganic hydrates, which have a large amount of latent heat storage and are useful latent heat storage materials for heating, hot water supply, etc., are easily soluble in water, and their molten liquid Fiio.

℃以上で沸騰してし7まうたぬ、前記提案方法では潜熱
蓄熱材として無機水和物を使用することができなかった
。もつとも、前記特許公開公報にも記載される如く、中
空糸の表面、特に外面に樹脂コーティングを行なえば、
このような欠点を避けることはできるが、コーティング
層を硬化させるための熱処理を120℃近い温度で行わ
なければならないため、やはりこのよう1’K tA 
Btで劣化する蓄熱材を使用することができないという
制約が生じてく る。
Inorganic hydrates could not be used as latent heat storage materials in the proposed method because they boiled at temperatures above 7°C. However, as described in the above-mentioned patent publication, if the surface of the hollow fiber, especially the outer surface, is coated with a resin,
Although such drawbacks can be avoided, the heat treatment for curing the coating layer must be performed at a temperature close to 120°C, so such 1'K tA
A constraint arises in that heat storage materials that degrade with Bt cannot be used.

本発明は、こう(,7た制約のみられる潜熱蓄熱材充填
中空糸の製造法を改善[7、潜熱蓄シJシ材として無機
水和物を用いることができるばかりではなく、中空糸状
より更に好ましい形部であるカプセル状の蓄熱f;A判
を提供せA7とするものである。
The present invention improves the manufacturing method of hollow fibers filled with latent heat storage material, which is subject to the following limitations. The preferred shape is a capsule-shaped heat storage f; the A size is A7.

従って、本発明は蓄熱材カプセルに係り、この蓄熱材カ
プセルは、シリコーンゴムカプセル内に潜熱蓄熱材を充
填し、てなる。本発明はまた、かかる蓄熱材カプセルの
製造法に係り、蓄熱材カプセルの製造は、中空環状ノズ
ルの外側の紡糸孔から液状硬化型のシリコーンゴムを、
またその内側の紡糸孔から溶融状態の潜熱蓄熱材をそれ
ぞれ共押出(−1共押出された潜熱蓄熱材充填中空糸の
外部シリコーンゴム層を半硬化状態とする加熱および内
部潜熱蓄熱材層を固化させる冷却を順次行なった後、中
空糸を任意の長さに切断すると共にその切断面を半硬化
シリコーンゴムで覆い、次いで半一硬化シリコーンゴム
の完全硬化温度に加熱することにより行われる。
Therefore, the present invention relates to a heat storage material capsule, and the heat storage material capsule is made of a silicone rubber capsule filled with a latent heat storage material. The present invention also relates to a method for manufacturing such a heat storage material capsule, in which a liquid curing type silicone rubber is spun from a spinning hole outside a hollow annular nozzle.
In addition, the latent heat storage material in a molten state is coextruded from the inner spinning hole (-1 Heating to semi-harden the outer silicone rubber layer of the coextruded hollow fiber filled with the latent heat storage material and solidifying the internal latent heat storage material layer. After sequential cooling, the hollow fiber is cut to a desired length, the cut surface is covered with semi-cured silicone rubber, and then heated to the complete curing temperature of the semi-cured silicone rubber.

本発明においてれ、まず中空糸が液状硬化型のシリコー
ンゴム、好ましくは作業性の点から2液性硬化型のシリ
コーンゴムから紡糸される。かかる2液性硬化型のシリ
コーンゴムとしては、例えば信越化学製品信越シリコー
ンゴムMS (液状射出成形用シリコーンゴムシステム
)の各種グレードのものを用いることができる。
In the present invention, hollow fibers are first spun from a liquid curing type silicone rubber, preferably a two-component curing type silicone rubber from the viewpoint of workability. As such two-component curing silicone rubber, various grades of Shin-Etsu Silicone Rubber MS (liquid injection molding silicone rubber system) manufactured by Shin-Etsu Chemical Co., Ltd. can be used, for example.

かかるシリコーンゴム中空糸に充填される潜熱蓄熱材と
しては、無機水和物、例えば酢酸ナトリラム・3水和物
、リン酸2ナトリウム・12水和物、水酸化バリウム・
8水和物、硝酸亜鉛・6水和物、硝酸ニッケル・6水和
物、チオ硫酸ナトリウム・5水和物などが好んで用いら
れる。
The latent heat storage material filled in the silicone rubber hollow fibers may include inorganic hydrates such as sodium acetate trihydrate, disodium phosphate dodecahydrate, barium hydroxide, etc.
Octahydrate, zinc nitrate hexahydrate, nickel nitrate hexahydrate, sodium thiosulfate pentahydrate, and the like are preferably used.

ここで、図面を参照しながら、本発明に係る蓄熱材カプ
セルの製造法を説明する。
Here, a method for manufacturing a heat storage material capsule according to the present invention will be explained with reference to the drawings.

図面の第1図は、蓄熱材カプセルの製造法の一郭様を示
すその概要図であり、第2図はそれに用いられた中空環
状ノズルの断面図である。
FIG. 1 of the drawings is a schematic diagram showing a method of manufacturing a heat storage material capsule, and FIG. 2 is a sectional view of a hollow annular nozzle used therein.

液状またはペースト状の2液性硬化型のシリコーンゴム
AおよびB ti、それぞれタンク1、fおよび定量吐
出ポンプ2.2′を経てミキサー3に送られ、そこで混
合された後、シリコーンゴム導入口4枠)ら中空糸紡糸
用ノズル5に送り込まれる。
Two-component curing silicone rubbers A and Bti in liquid or paste form are sent to mixer 3 via tanks 1 and f and metering pump 2.2', respectively, where they are mixed and then transferred to silicone rubber inlet 4. frame) and is fed into the hollow fiber spinning nozzle 5.

一方、この紡糸用ノズルと共に恒温槽6内に収容されて
いる潜熱蓄熱材タンク7け、圧力調節弁8によって調節
されたエアー9の圧力を受け、その中に仕込まれた溶融
蓄熱材を蓄熱材導入口】Oから前記紡糸用ノズルに送り
込むようになっている。
On the other hand, seven latent heat storage material tanks housed in a constant temperature bath 6 together with this spinning nozzle receive the pressure of air 9 regulated by a pressure regulating valve 8, and the molten heat storage material charged therein is transferred to a heat storage material. [Inlet port] The material is fed into the spinning nozzle from O.

中空糸紡糸用ノズルは、中空環状ノズルを形成しており
、その外側の紡糸孔11からは2液性硬化型のシリコー
ンゴムを、またその内側の紡糸孔12からは溶融状態の
潜熱蓄熱材をそれぞれ共押出させる。共押出された潜熱
蓄熱材充填中空糸13は、ヒーター14で約60〜90
℃程度に加熱され、その外部シリコーンゴム層を半硬化
状態とし、次いでファン15などで冷却して、その内部
潜熱蓄熱材層を固化させる。その後、チョッパー16な
どで中空糸を約1〜100 cm程度の長さに切断する
The hollow fiber spinning nozzle forms a hollow annular nozzle, and a two-component curing type silicone rubber is fed from the outer spinning hole 11, and a molten latent heat storage material is fed from the inner spinning hole 12. Each is coextruded. The co-extruded latent heat storage material-filled hollow fibers 13 have a temperature of about 60 to 90
The outer silicone rubber layer is heated to about .degree. Thereafter, the hollow fibers are cut into lengths of about 1 to 100 cm using a chopper 16 or the like.

一般に繊維方向に直角に切断されたチップは、その円筒
状外周面を形成しCいる半硬化状態(液状から高粘度の
水飴状となった状態)のシリコーンゴムが切断面にまわ
り込み、その面をも覆うので、そこに、カプセルが形成
される。カプセル化物は、その後約80〜100℃の恒
温水槽17中に約7分間以上浸漬され、そこでシリコー
ンゴムの完全硬化が行われる。
Generally, when a chip is cut at right angles to the fiber direction, the semi-cured silicone rubber that forms its cylindrical outer circumferential surface (from liquid to highly viscous syrup-like state) wraps around the cut surface. , so a capsule is formed there. The encapsulated product is then immersed in a constant temperature water bath 17 at about 80 to 100° C. for about 7 minutes or more, where the silicone rubber is completely cured.

このようにして製造されるシリコーンゴムカプセル内に
潜熱充填材を充填させた蓄熱材カプセル18は、暖房や
給湯用などとして有hJな潜熱蓄熱材である無機水和物
を用いることができ、しかもそれの微小カプセル化を連
続的かつ容易に行なうことができるという効果を奏する
The heat storage material capsule 18 manufactured in this way, in which the silicone rubber capsule is filled with a latent heat filler, can use an inorganic hydrate, which is a latent heat storage material that is useful for heating, hot water supply, etc. The effect is that the microencapsulation can be carried out continuously and easily.

次に、実施例について本発明を説りJする。Next, the present invention will be explained with reference to examples.

実施例1 図示され7を悪様に従い、次のようにして蓄熱材カプセ
ルを製造した。
Example 1 A heat storage material capsule was manufactured in the following manner according to the procedure shown in Figure 7.

2 を性硬化型シリコーノゴム(4m mシリコーンK
l!!1925 )の!(液およびB液をミキサーで混
合し、それを中空糸紡糸用ノズルの外型に導入する。−
万、潜熱蓄熱材としての酢酸す) IJウム・3水和o
J(融解温度58℃)を80℃の恒温溶融状態に保ちな
がら、中輩糸紡糸用ノズルの内型に尋人する。
2. Silicone rubber (4mm silicone K)
l! ! 1925)! (Mix the liquid and B liquid with a mixer and introduce it into the outer mold of the hollow fiber spinning nozzle.-
10,000, acetic acid as a latent heat storage material) IJum trihydrate
While keeping J (melting temperature 58°C) at a constant temperature of 80°C, it is placed in the inner mold of a nozzle for spinning intermediate yarn.

2液性硬化型シリコーンゴムは、吐出ポンプで20cn
1/分の吐出鉦に調整しながら中釜環状ノズルの外側の
紡糸孔(外径2,6111111 、内径1.0朋)か
ら、また酢酸ナトIJウム・3水和物は、エアー圧力調
節弁でやはり20 cm1分の吐出凰に調整しながら中
空環状ノズルの内側の紡糸孔(径1.0111il)か
ら、それぞれ共押出させる。
Two-component curing silicone rubber is 20cn with a discharge pump.
While adjusting the discharge gong to 1/min, the spinning hole (outer diameter 2,6111111 mm, inner diameter 1.0 mm) on the outside of the inner pot annular nozzle was used, and sodium acetate IJium trihydrate was supplied through the air pressure control valve. Again, each co-extrusion is carried out from the spinning hole (diameter 1.0111 il) inside the hollow annular nozzle while adjusting the discharge volume to 20 cm/min.

共押出紡糸された潜熱蓄熱材充填中空糸は、約1m自然
落下させた後、80℃に加熱された内径2anz長さ1
00 cmの管状ヒーター中を滞留時間5分間の速度で
通過させる。このとき、シリコーンゴム層は半硬化状態
となっており、殆んど流動性を示さない。管状ヒーター
を通過した中空糸は、ファンにて空冷され、これにより
その内部に充填されていた潜熱蓄熱材は固化する。その
後、中空糸は約30cmの長さに切断され、その切断面
は半硬化状態のシリコーンゴムによって薇ゎれてカプセ
ル化される。このシリコーンゴムカプセルは、半硬化状
態であるので、それを80 ’Cに保った恒温水槽中に
投入し、シリコーンゴム層を完全に硬化させた。
The coextrusion-spun hollow fiber filled with latent heat storage material was allowed to fall naturally for about 1 m, and then heated to 80°C.
00 cm through a tubular heater at a rate with a residence time of 5 minutes. At this time, the silicone rubber layer is in a semi-cured state and exhibits almost no fluidity. The hollow fiber that has passed through the tubular heater is air-cooled by a fan, thereby solidifying the latent heat storage material filled inside the hollow fiber. Thereafter, the hollow fiber was cut into a length of about 30 cm, and the cut surface was rounded and encapsulated with semi-cured silicone rubber. Since this silicone rubber capsule was in a semi-cured state, it was placed in a constant temperature water bath maintained at 80'C to completely cure the silicone rubber layer.

得られた外径約3脂の酢酸ナトリウム・3水和物充填シ
リコーンゴムカプセルは、シリコーンゴム層が約0.8
瓢で、はぼ均一な肉厚を有していた。
The obtained silicone rubber capsules filled with sodium acetate trihydrate and having an outer diameter of about 3 mm have a silicone rubber layer of about 0.8 mm.
It was a gourd and had a fairly uniform thickness.

実施例2 実施例1において、潜熱蓄熱材としてリン酸2ナトIJ
ウム・12水和物(融解温度36℃)を用い、管状ヒー
ター通過後の冷却を20℃の水で、また潜熱蓄熱材充填
中空糸の切断を水中で行ない、外径約3 tEM 、長
さ約200nのリン酸2ナトリウム・12水和物充填シ
リコーンゴムカプセルを製造シた。
Example 2 In Example 1, dinatophosphoric acid IJ was used as the latent heat storage material.
Um dodecahydrate (melting temperature 36°C) was cooled with water at 20°C after passing through a tubular heater, and hollow fibers filled with latent heat storage material were cut in water, with an outer diameter of about 3 tEM and a length of about 3 tEM. Approximately 200 n of disodium phosphate dodecahydrate filled silicone rubber capsules were prepared.

実施例3 実施例1において、潜熱蓄熱材として水酸化バリウム・
8水和物(融解温度78℃)を用い、ただし蓄熱材およ
び紡糸用ノズルを収容する恒温槽の温度を95℃に保っ
た。その結果、外径約3fi、長さ約30cn+の水酸
化バリウム・8水和物充填シリコーンゴムカプセルが製
造された。
Example 3 In Example 1, barium hydroxide was used as the latent heat storage material.
Octahydrate (melting temperature 78°C) was used, but the temperature of the constant temperature bath containing the heat storage material and the spinning nozzle was maintained at 95°C. As a result, barium hydroxide octahydrate-filled silicone rubber capsules having an outer diameter of about 3 fi and a length of about 30 cn+ were manufactured.

実施例4〜5 実施例1において、潜熱蓄熱材として硝酸亜鉛・6水和
物(融解温度36℃)または硝酸ニッケル・6水和物(
融解温度54℃)がそれぞれ用いられ、これらの潜熱蓄
熱材を充填させたシリコーンゴムカプセルがiJ造され
た。
Examples 4 to 5 In Example 1, zinc nitrate hexahydrate (melting temperature 36°C) or nickel nitrate hexahydrate (
(melting temperature of 54° C.) were used, and silicone rubber capsules filled with these latent heat storage materials were manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、蓄熱材カプセルの製造法の一態様を示すその
概要図であり、第2図はそれに用いられた中空環状ノズ
ルの10「面図である。 (符号の説明) 1・・・・・・2液性硬化型シリコーンゴムタンク3・
・・・・・ミキサー 5・・・・・・中空糸紡糸用中空環状ノズル6・・・・
・・恒温槽 7・・・・・・潜熱蓄熱材タンク 11・・・・・・ノズルの外側の紡糸孔12・・・・・
・ノズルの内側の紡糸孔13・・・・・・潜熱蓄熱材充
填中空糸14・・・・・・ヒーター 15・・・・・・ファン 16・・・・・・チョッパー 17・・・・・・恒温水槽 18・・・・・・蓄熱材カブ七ル 代理人 弁理士 吉 1)俊 夫 第1図 第2図 手続補正書(1劃 昭和59年6月18日 特許庁長官 若杉 和夫殿 1 事件の表示 2 発明の名称 蓄熱材カプセルおよびその製造法 ;3 補正をする者 事件との関係 特許出願人 名称 (438)日本オイルシール工業株式会社4 代
理人 (〒105) 住所 東京都港区芝大門1丁目2番7号阿藤ビル501
号 文章を挿入する。 rなお、切断面がシリコーンゴムで完全に覆われない場
合には2、未硬化のシリコーンゴ11の塗布または浸漬
を再度切断面に適用し、被覆を完全にすることができる
。」
FIG. 1 is a schematic diagram showing one aspect of the method for manufacturing a heat storage material capsule, and FIG. 2 is a 10" side view of a hollow annular nozzle used therein. (Explanation of symbols) 1... ...Two-component curing silicone rubber tank 3.
...Mixer 5 ...Hollow annular nozzle for hollow fiber spinning 6 ...
... Constant temperature bath 7 ... Latent heat storage material tank 11 ... Spinning hole 12 outside the nozzle ...
・Spinning hole 13 inside the nozzle...Hollow fiber filled with latent heat storage material 14...Heater 15...Fan 16...Chopper 17...・Constant-temperature water tank 18...Thermal storage material Kabuchiru Patent attorney Yoshi 1) Toshio Figure 1 Figure 2 Procedural amendment document (1) June 18, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1 Display of the case 2 Name of the invention A heat storage material capsule and its manufacturing method; 3 Relationship with the case by the person making the amendment Name of the patent applicant (438) Japan Oil Seal Industry Co., Ltd. 4 Agent (105) Address Shiba Daimon, Minato-ku, Tokyo 1-2-7 Ato Building 501
Insert the issue text. Note that if the cut surface is not completely covered with silicone rubber, the uncured silicone rubber 11 can be coated or dipped again on the cut surface to complete the coating. ”

Claims (1)

【特許請求の範囲】 1、シリコーンゴムカプセル内に潜熱蓄熱材を充填して
なる蓄熱材カプセル。 2、シリコーンゴムカプセルが円筒体である特許請求の
範囲第1項記載の蓄熱材カプセル。 3、潜熱蓄熱材が無機水和物である特許請求の範囲第1
項記載の蓄熱材カプセル。 4、中空環状ノズルの外側の紡糸孔から液状硬化型のシ
リコーンゴムを、またその内側の紡糸孔から溶融状態の
潜熱蓄熱材をそれぞれ共押出し、共押出された潜熱蓄熱
材充填中空糸の外部シリコーンゴム層を半硬化状態とす
る加熱および内部潜熱蓄熱材層を固化させる冷却を順次
行なった後、中空糸を任意の長さに切断すると共にその
切断面を半硬化シリコーンゴムで握い、次いで半硬化シ
リコーンゴムの完全硬化温+、yiに加熱することを特
徴とする蓄熱材カプセルの製造法。 5、液状硬化型のシリコーンゴムが2液性硬化型のシリ
コーンゴムである特許請求の範囲第4項記載の蓄熱材カ
プセルの製造法。 6、潜熱蓄熱材が無機水和物である特許請求の範囲第4
項記載の蓄熱材カプセルの製造法。
[Scope of Claims] 1. A heat storage material capsule formed by filling a latent heat storage material into a silicone rubber capsule. 2. The heat storage material capsule according to claim 1, wherein the silicone rubber capsule is a cylindrical body. 3. Claim 1 in which the latent heat storage material is an inorganic hydrate
The heat storage material capsule described in Section 1. 4. Co-extrude the liquid curing silicone rubber from the outer spinning hole of the hollow annular nozzle and the molten latent heat storage material from the inner spinning hole to form the outer silicone of the coextruded hollow fiber filled with the latent heat storage material. After heating the rubber layer to a semi-hardened state and cooling to solidify the internal latent heat storage material layer, the hollow fiber is cut to a desired length and the cut surface is held with semi-hardened silicone rubber. A method for producing a heat storage material capsule, which comprises heating to a complete curing temperature of cured silicone rubber +, yi. 5. The method for producing a heat storage material capsule according to claim 4, wherein the liquid curing silicone rubber is a two-component curing silicone rubber. 6. Claim 4 in which the latent heat storage material is an inorganic hydrate
A method for producing a heat storage material capsule as described in Section 1.
JP59024646A 1984-02-10 1984-02-10 Heat accumulating material capsule and manufacture thereof Granted JPS60169090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024646A JPS60169090A (en) 1984-02-10 1984-02-10 Heat accumulating material capsule and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024646A JPS60169090A (en) 1984-02-10 1984-02-10 Heat accumulating material capsule and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60169090A true JPS60169090A (en) 1985-09-02
JPH0245800B2 JPH0245800B2 (en) 1990-10-11

Family

ID=12143899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024646A Granted JPS60169090A (en) 1984-02-10 1984-02-10 Heat accumulating material capsule and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60169090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077765A1 (en) * 2007-12-19 2009-06-25 Frederik George Best Improved latent heat storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077765A1 (en) * 2007-12-19 2009-06-25 Frederik George Best Improved latent heat storage device
GB2468619A (en) * 2007-12-19 2010-09-15 Frederick George Best Improved latent heat storage device
GB2468619B (en) * 2007-12-19 2012-09-12 Frederick George Best Improved latent heat storage device

Also Published As

Publication number Publication date
JPH0245800B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
CN106232064B (en) Heating device with latent heat accumulator unit
JPS6211632A (en) Method and device for forming hermetic sealing body of sealing body
JPH03151228A (en) Manufacture of container
AU2003276369B2 (en) Method for rotational moulding of a workpiece comprising a thermoplastic foam layer
JPS61171504A (en) Apparatus for centrifugal molding of yarn bundle
JPS58197011A (en) Manufacturing method and equipment for skin forming material
JP2003506230A (en) Filmable material with selectively modifiable properties by applying a specific type of energy
JPS60169090A (en) Heat accumulating material capsule and manufacture thereof
TW200914252A (en) Hollow forming method for composite
JPS63309580A (en) Production of heat storage material capsule
US2331572A (en) Fabrication of capsule shells and filled capsules
JPH0518038B2 (en)
CN103318578B (en) Forming method of large-scale metal storage tank with high bonding strength inner wall anticorrosive layer
JPS6151321A (en) Internal dusting of film pipe consisting of thermoplastic resin
CA1226106A (en) Pressure molding process using salt cores and a composition for making cores
JPS63115718A (en) Manufacture of heat accumulating material covered with polymer
CN217541082U (en) Spray body and heating device thereof
JPS62144913A (en) Molding device for powder slush
JPS63312121A (en) Method and device for molding hollow structure from powdered thermoplastic raw material
JP3761828B2 (en) Manufacturing method of resin molded products
US4934917A (en) Apparatus for forming hollow structures from powdered thermoplastic materials
CN218749181U (en) Flame-retardant plastic water stop production device
CN101177031B (en) Plastic forming method and device thereof
CN100434252C (en) Plastic shaping method and apparatus thereof
JPH0645174B2 (en) Method for manufacturing plastic tubular body