JPS63309307A - Method for hot rolling to control crystal grains of austenitic stainless steel - Google Patents

Method for hot rolling to control crystal grains of austenitic stainless steel

Info

Publication number
JPS63309307A
JPS63309307A JP14523287A JP14523287A JPS63309307A JP S63309307 A JPS63309307 A JP S63309307A JP 14523287 A JP14523287 A JP 14523287A JP 14523287 A JP14523287 A JP 14523287A JP S63309307 A JPS63309307 A JP S63309307A
Authority
JP
Japan
Prior art keywords
rolling
draft
temperature
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14523287A
Other languages
Japanese (ja)
Other versions
JPH0814002B2 (en
Inventor
Takanori Nakazawa
中澤 崇徳
Mizuo Sakakibara
榊原 瑞夫
Toru Suzuki
亨 鈴木
Tetsuo Yoshimoto
吉本 哲雄
Ryosuke Takahashi
良輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14523287A priority Critical patent/JPH0814002B2/en
Publication of JPS63309307A publication Critical patent/JPS63309307A/en
Publication of JPH0814002B2 publication Critical patent/JPH0814002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To control a dimension of crystal grains of an austenitic stainless steel to be uniform and their size to be small by specifying a relation between the total draft and a draft condition and a cooling condition, amount in final two passes in hot rolling and a draft temp. CONSTITUTION:A relation of the total amount of drafts A1 and A2 in final two passes and a draft temps. is positioned in the hatched region shown by points of A, B, C, D for hot rolling of an austenitic stainless steel. Rolling is performed under conditions in which a relation between the A1 and A2 meets the condition shown by the inequality I and an interval between A1 draft and A2 draft is set to a time of >=10sec. Then, cooling is started from a temp. of >=T( deg.C) shown by the equation II. In another way, a relation of the total amount of drafts in final two passes and draft temp. is positioned in the hatched region shown by points of E, F, G, H, I. After rolling under the same conditions as the above conditions, solution heat treatment, which heats a stock at a temp. of >=950 deg.C and between a temp. shown by the equation II and 1150 deg.C and water cools the stock, is performed. Thus, a homogeneous thick steel plate having high strength and good ductility is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はオーステナイト系ステンレス鋼の結晶粒を整粒
且つ細粒に制御する熱間圧延方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a hot rolling method for controlling the crystal grains of austenitic stainless steel to be uniform and fine.

[従来の技術] オーステナイト系ステンレス鋼はその優れた高温特性、
加工性および・溶接性の点から、たとえば高速増殖炉の
一次系構造材料として使用されている。高速増殖炉は大
型の溶接構造物であることから、厚肉の鋼板が使用され
る。高速増殖炉の大型化にともない、使用されるオース
テナイト系ステンレス鋼板の板厚はさらに増加する傾向
に゛ある。
[Prior art] Austenitic stainless steel has excellent high-temperature properties,
Due to its workability and weldability, it is used, for example, as a primary structural material for fast breeder reactors. Since fast breeder reactors are large welded structures, thick steel plates are used. As fast breeder reactors become larger, the thickness of the austenitic stainless steel plates used tends to further increase.

一般に板厚の増大にともない、結晶粒は粗大化する。一
方材料の特性は結晶粒度と密接な関係にあり、例えば強
度は結晶粒の粗大化とともに低下する、さらに結晶粒の
粗大化とともに超音波の透過能が低下するため、超音波
探傷検査が十分に行なえない等の問題点も生じる。この
ように板厚の増大にともなう結晶粒の粗大化は、材料の
使用性能および施工性を大幅に低下させることから、細
粒化のための工夫が必要となる。オーステナイト系ステ
ンレス鋼は工業的な熱間加工温度域では相変態が生じな
いため、結晶粒の制御は専ら溶体化処理時の再結晶を利
用することになる。従って従来の細粒化の方法としては
、出来るだけ低い温度で熱間加工することにより歪を蓄
積し、その後の溶体化処理時の再結晶粒を微細化するこ
とが一般的な考え方であった。あるいは”I’i、Nb
等の添加により安定な炭化物、窒化物を形成し結晶粒の
微細化を計ること等も行なわれている。しかしながらこ
のような方法にはそれぞれ次のような問題点がある。す
なわち歪蓄積による細粒化については、板厚の増大にと
もない圧延歪を均一に導入することが困難になる。換言
すれば、厚手材に均一に歪を導入するためには低温で大
きい圧下がかけられる圧延力の非常に強い圧延機を必要
とする。また後者のT1あるいはNb等を利用する方法
は、これらの添加元素による材質の変イビ、あるいは炭
化物、窒化物の析出制御に難しさがあることから安定性
に欠ける等の問題点がある。
Generally, as the plate thickness increases, the crystal grains become coarser. On the other hand, the properties of materials are closely related to the grain size; for example, the strength decreases as the grains become coarser, and the ultrasonic penetration ability decreases as the grains coarsen, so ultrasonic flaw detection is not sufficient. There are also problems such as not being able to do so. As described above, coarsening of the crystal grains as the plate thickness increases significantly reduces the usability and workability of the material, and therefore it is necessary to take measures to make the grains finer. Since phase transformation does not occur in austenitic stainless steel in the industrial hot working temperature range, crystal grain control relies exclusively on recrystallization during solution treatment. Therefore, the conventional grain refinement method was to accumulate strain by hot working at the lowest possible temperature, and then refine the recrystallized grains during the subsequent solution treatment. . Or “I'i, Nb
It has also been attempted to form stable carbides and nitrides by adding such substances to refine crystal grains. However, each of these methods has the following problems. That is, regarding grain refinement due to strain accumulation, it becomes difficult to uniformly introduce rolling strain as the plate thickness increases. In other words, in order to uniformly introduce strain into a thick material, a rolling mill with a very strong rolling force that can apply a large reduction at low temperature is required. The latter method using T1, Nb, etc. has problems such as a lack of stability due to changes in the material properties due to these additive elements or difficulty in controlling the precipitation of carbides and nitrides.

[発明が解決しようとする問題点1 以上のように従来のオーステナイト系ステンレス鋼の結
晶粒を微細化させる方法で、圧延歪蓄積法では板厚の増
大にともない巨大な圧延機を必要とし、TLあるいはN
b添加法は材質変化および不均質化をまねき易い等の問
題点があった。本発明は圧延機を大型化することなく、
且つ添加元素を利用することなく、厚手鋼板の結晶粒を
微細化させる圧延方法を提供するものである。
[Problem to be solved by the invention 1 As mentioned above, in the conventional method of refining the crystal grains of austenitic stainless steel, the rolling strain accumulation method requires a huge rolling mill as the plate thickness increases. Or N
The b addition method has problems such as being susceptible to changes in material properties and non-uniformity. The present invention does not require increasing the size of the rolling mill.
In addition, the present invention provides a rolling method for refining the crystal grains of a thick steel sheet without using any additive elements.

[問題点を解決するための手段] 本発明は、 (1)オーステナイト系ステンレス鋼の熱間圧延におい
て、最終の2バスの圧ド率A、、A、(本明細書では熱
間圧延の最終パスの圧下率(%)をA2、最終パス直前
のパスの圧下率(%)をA1という)の合計量と圧下温
度が第1図の斜線の領域(^、 B、 C。
[Means for Solving the Problems] The present invention provides the following features: (1) In hot rolling of austenitic stainless steel, the rolling ratio A in the final two baths, A, (in this specification, the final rolling The total amount of the rolling reduction rate (%) of the pass is called A2, and the rolling reduction rate (%) of the pass immediately before the final pass is called A1) and the rolling temperature are in the diagonally shaded areas in Figure 1 (^, B, C).

D)にあり、且つA、と八つの関係が下記式(1)を満
たし、さらにA□正圧下A2圧下の間隔を10秒以上確
保する条件で圧延を行い、しかる後下記式(2)に示す
温度T (”C)以−ヒから水冷することを特徴とする
結晶粒制御圧延方法であり、 0.6<A工/A、<1.4・・・・・・・・・・・・
・・・(1)T=2000X(鋼中の炭?14m:重址
%)+gto・・・(2)又 (2)オーステナイト系ステンレス鋼の熱間圧延におい
て、最終の2パスの圧下率AいA2の合計量と圧下温度
が第2図の斜線の領域([E、 F、 G、 It、 
I)にあり、かつA□とAJの関係が上記式(1)を満
たし、さらにA1圧下とA□正圧下間隔を10秒以上確
保する条件で圧延を行い、しかる後950℃以上かつ上
記式(2)に示す温度’r(”c)以上から1150℃
の間に加熱後水冷する溶体化処理を施すことを特徴とす
る結晶粒制御熱間圧延方法である。
D), and the eight relationships with A satisfy the following formula (1), further rolling is carried out under conditions that ensure the interval of A This is a grain control rolling method characterized by water cooling from a temperature T (''C) below, 0.6<A/A, <1.4...・
... (1) T = 2000 The total amount of A2 and the rolling temperature are in the shaded area in Figure 2 ([E, F, G, It,
I), and the relationship between A From the temperature 'r(''c) shown in (2) to 1150℃
This is a grain control hot rolling method characterized by performing a solution treatment of heating and water cooling during the process.

なお1本発明におけるオーステナイト系ステンレス鋼と
はNiニア 〜17’%、Cr:15〜22%2MO:
0〜5%を基本成分とするものである。また水冷とは水
中への浸漬あるいはスプレィによる冷却処理である。
Note that the austenitic stainless steel in the present invention is Ni: ~17'%, Cr: 15~22%, MO:
The basic component is 0 to 5%. Furthermore, water cooling refers to cooling treatment by immersion in water or spraying.

[作用] 本発明の基本的な考え方は、熱間圧延直後に進行する再
結晶現象を利用することにある。さらにこの再結晶粒は
初期結晶粒径が細かい程微細化することから、このよう
な現象の生じる条件下で繰り返し圧延することにより細
粒組織を得ることができる0次に発明の詳細について説
明する。
[Operation] The basic idea of the present invention is to utilize the recrystallization phenomenon that progresses immediately after hot rolling. Furthermore, since the recrystallized grains become finer as the initial crystal grain size becomes finer, details of the invention will be explained in which a fine grain structure can be obtained by repeated rolling under conditions where such a phenomenon occurs. .

第:う図は第1表に示す化学成分の5US304系ステ
ンレス鋼について、圧延まま材の結晶粒度に及ぼす圧延
条件の影響を調査した結果である。この図から低温ある
いは低圧下領域では再結晶が進行せず、再結晶のために
はある程度以上の圧下斌と圧延温度の確保が必要である
ことが判る。また温度がさらに高くなると結晶粒の成長
速度が増加し、結晶粒が粗大化4る傾向が呪われ120
0℃以上ではかなりの粗粒組織となる。第4図は熱間圧
延後の時間の経過にともなう再結晶挙動の変化を示した
もので、時間とともに再結晶率が増加し約10秒で再結
晶は完了することが判る0本発明(1)はこのような知
見に基づいて成されたもので、第3図に示した再結晶を
引き起す圧延条件範囲を基本としている。この圧延条件
範囲に対し、温度に関しては結晶粒粗大化防止の点から
上限を1200℃とした。
Figures 1 and 2 show the results of investigating the influence of rolling conditions on the grain size of as-rolled materials for 5US304 series stainless steel having the chemical composition shown in Table 1. From this figure, it can be seen that recrystallization does not proceed in the low temperature or low rolling area, and that it is necessary to ensure a certain level of reduction and rolling temperature for recrystallization. Furthermore, as the temperature rises further, the growth rate of crystal grains increases, and the tendency for crystal grains to become coarse is cursed120.
At temperatures above 0°C, the structure becomes quite coarse. Figure 4 shows the change in recrystallization behavior over time after hot rolling, and it can be seen that the recrystallization rate increases with time and recrystallization is completed in about 10 seconds. ) was made based on such knowledge, and is based on the range of rolling conditions that cause recrystallization shown in FIG. Regarding the temperature in this range of rolling conditions, the upper limit was set at 1200° C. in order to prevent grain coarsening.

また圧下率については、過度の圧下は従来の圧延機の大
幅な能力増を必要とすること、および圧延形状の確保が
極めて困難になることから、2パス−合計で40%以下
とした。したがって圧延条件の請求範囲としては第1図
に示された斜線部の領域となる。さらに繰り返し圧延に
よる細粒化をはかるためには、前の圧延での再結晶が完
了している必要があり、そのため10秒以上の間隔を確
保している。さらに最終の2パスそれぞれにおいて再結
晶させる必要条件として、八〇および八つはそれぞれあ
る圧下斌を確保する必要がある。この関係は上記式(1
)として表されることから、累積圧延効果を利用するた
めにはこの式を満たす必要がある。
Further, the rolling reduction ratio was set to 40% or less in total for two passes, since excessive rolling requires a significant increase in the capacity of the conventional rolling mill and it becomes extremely difficult to secure the rolled shape. Therefore, the claimed range of rolling conditions falls within the shaded area shown in FIG. Furthermore, in order to achieve grain refinement through repeated rolling, recrystallization from the previous rolling must be completed, and therefore intervals of 10 seconds or more are ensured. Furthermore, as a necessary condition for recrystallization in each of the final two passes, it is necessary to ensure a certain degree of reduction in 80 and 80, respectively. This relationship is expressed by the above formula (1
), it is necessary to satisfy this formula in order to utilize the cumulative rolling effect.

このような条件で熱間圧延を行なうことにより、圧延ま
まで比較的結晶粒の細かい均質な組織が確保できる。従
って圧延後の冷却中の炭化物析出が防止できれば、溶体
化熱処理を省略できることになる。第5図は圧延後の水
冷開始温度および鋼中の炭素量と炭化物析出の関係を示
したもので、炭素量の増加とともに固溶状態を確保する
ためには冷却開始温度を高める必要があることが判る。
By performing hot rolling under such conditions, a homogeneous structure with relatively fine grains can be ensured as rolled. Therefore, if carbide precipitation during cooling after rolling can be prevented, solution heat treatment can be omitted. Figure 5 shows the relationship between the water cooling start temperature after rolling, the carbon content in the steel, and carbide precipitation, and shows that as the carbon content increases, it is necessary to increase the cooling start temperature to ensure a solid solution state. I understand.

その限界温度は式(2)であられされることから、圧延
後の水冷開始温度を式(2)で表される”l’(℃)以
」−にする必要がある。
Since the limit temperature is given by equation (2), it is necessary to set the water cooling start temperature after rolling to "1' (° C.) or higher" expressed by equation (2).

第6図は第3図に示した材料について、さらに1050
℃・1時間・急冷の溶体化処理を行なった材料の再結晶
挙動および結晶粒度を示したものである。溶体化処理を
行なうことにより再結晶領域が大きく拡大する。なお図
中の斜線外領域、すなオ〕ちfl(圧下領域でも再結晶
は溶体化処理により進行するが、結晶粒の大きさの変動
が大きいいわゆる混粒組織となり材質の均質性の点から
好ましくない領域となる0発明(2)はこのような知見
に基づいて成されたもので、第6図に示した整粒組織の
得られる圧延条件範囲を基本としている。この圧延条件
範囲に対し、温度に関しては結晶粒粗大化防止の点から
」1限を1200℃とした。また圧下率については、過
度の圧下は従来の圧延機の大幅な能力増を必要とするこ
と、および圧延形状の確保が極めて困難になることから
、2パス合計で40%以下とした。また第6図によれば
、900℃以下の圧下温度においても細粒化をはかるこ
とができる。
Figure 6 shows the material shown in Figure 3 with an additional 1050
This figure shows the recrystallization behavior and crystal grain size of a material subjected to solution treatment at ℃ for 1 hour. By performing solution treatment, the recrystallized region is greatly expanded. In addition, in the area outside the shaded area in the figure, i.e. fl (reduction area), recrystallization proceeds by solution treatment, but it becomes a so-called mixed grain structure with large fluctuations in crystal grain size, and from the point of view of material homogeneity. The invention (2), which is in an unfavorable region, was made based on this knowledge and is based on the range of rolling conditions in which the grain size structure shown in Fig. 6 can be obtained.For this range of rolling conditions, Regarding the temperature, the first limit was set at 1200°C in order to prevent crystal grain coarsening.As for the rolling reduction rate, it is important to note that excessive rolling requires a significant increase in the capacity of conventional rolling mills, and that Since it would be extremely difficult to ensure this, the total amount of the two passes was set at 40% or less.According to FIG. 6, grain refinement can be achieved even at a rolling temperature of 900°C or less.

しかし温度低下にともなう変形抵抗の増大により、厚肉
鋼板に対して圧下率を確保するためには、従来の圧延機
の圧延力の大幅な増強を必要とすることから950℃以
下の温度は現実的でない、したがって圧延の下限温度を
950℃とした。以上の理由により第2図に示された斜
線部の領域を圧延条件の請求範囲とした。さらに繰り返
し圧延による細粒化を計るためには、前の圧延での再結
晶が完了している必要があり、そのため10秒以上の間
隔を確保している。溶体化処理条件については、炭化物
の固溶の点から下限は式(2)に示される温度71’(
℃)以上である必要があるが、再結晶を完了させるため
には950℃以上の加熱が必要である。したがって溶体
化処理の下限温度としては、950℃あるいは式(2)
に示される’r(℃)が950”C以上のときは’r(
℃)となる。一方1150℃以上の処理は結晶粒の粗大
化を引き起すことがらこの温度を上限とした。
However, due to the increase in deformation resistance associated with a decrease in temperature, it is necessary to significantly increase the rolling force of conventional rolling mills in order to secure the rolling reduction rate for thick steel plates, so temperatures below 950℃ are realistic. Therefore, the lower limit temperature for rolling was set at 950°C. For the above reasons, the shaded area shown in FIG. 2 is defined as the claimed range of rolling conditions. Furthermore, in order to achieve grain refinement through repeated rolling, recrystallization from the previous rolling must be completed, and therefore intervals of 10 seconds or more are ensured. Regarding the solution treatment conditions, from the viewpoint of solid solution of carbides, the lower limit is the temperature 71' (
℃) or higher, but heating to 950°C or higher is necessary to complete recrystallization. Therefore, the lower limit temperature for solution treatment is 950°C or according to formula (2)
When 'r (℃) shown in is 950"C or more, 'r (
℃). On the other hand, since treatment at 1150° C. or higher causes coarsening of crystal grains, this temperature was set as the upper limit.

[実施例コ 第2表に示した4種類のオーステナイト系ステンレス鋼
について、第3表に示す本発明による結晶粒制御圧延方
法による圧延条件および従来の圧延方法による圧延条件
により鋼板を製造した。これらの鋼板についての結晶粒
度および機械的性質を第4表に示した。これらの組織に
1察結果および機械的性質より明らかなように、本発明
の圧延および圧延−溶体化方法は従来の圧延方法に比べ
結晶粒が細か<1[っ整粒組織であることが判る。
[Example 2] Steel plates were manufactured using the four types of austenitic stainless steels shown in Table 2 under the rolling conditions according to the grain control rolling method according to the present invention and the rolling conditions according to the conventional rolling method shown in Table 3. Table 4 shows the grain size and mechanical properties of these steel plates. As is clear from the results and mechanical properties of these microstructures, it can be seen that the rolling and rolling-solution treatment methods of the present invention have finer grains than conventional rolling methods, resulting in a well-ordered structure with <1 .

[発明の効果] 以上述べたごとく、本発明法による圧延あるいは圧延−
溶体化材は結晶粒が細か< itっ整粒組織であること
から、強度および延性に優れ[Lつ均質性にも優れた材
料となっており、大型構造物用の厚内鋼板として工業的
にきわめて有効なものである。
[Effect of the invention] As stated above, rolling or rolling by the method of the present invention
The solution-treated material has fine crystal grains and an evenly grained structure, making it a material with excellent strength and ductility [L] and excellent homogeneity, making it suitable for industrial use as thick steel plates for large structures. It is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は圧延条件についての特許請求の範
囲を示す図、第3図は圧延ままでの再結晶挙動および結
晶粒度と圧延条件の関係を示す図。 第4図は圧延後の再結晶率に及ぼす保持時間の影響を示
す図、第5図は圧延後の炭化物析出に及ぼす冷却開始温
度と炭素にの影響を示す図、第6I32Iは溶体化処理
後の結晶粒組織と圧延条件の関係を示す図である。
FIGS. 1 and 2 are diagrams showing claims regarding rolling conditions, and FIG. 3 is a diagram showing recrystallization behavior as rolled and the relationship between grain size and rolling conditions. Figure 4 is a diagram showing the influence of holding time on the recrystallization rate after rolling, Figure 5 is a diagram showing the influence of cooling start temperature and carbon on carbide precipitation after rolling, and Figure 6I32I is after solution treatment. FIG. 3 is a diagram showing the relationship between grain structure and rolling conditions.

Claims (1)

【特許請求の範囲】[Claims] (1)オーステナイト系ステンレス鋼の熱間圧延におい
て、最終の2パスの圧下率A_1、A_2の合計量と圧
下温度が第1図の斜線の領域(A、B、C、D)にあり
、かつA_1とA_2の関係が下式(1)を満たし、さ
らにA_1圧下とA_2圧下の間隔を10秒以上確保す
る条件で圧延を行い、しかる後下記式(2)に示す温度
T(℃)以上から水冷することを特徴とする結晶粒制御
熱間圧延方法。 0.6<A_1/A_2<1.4・・・(1)T=20
00×(鋼中の炭素量:重量%)+810・・・(2)
(2)オーステナイト系ステンレス鋼の熱間圧延におい
て、最終の2パスの圧下率A_1、A_2の合計量と圧
下温度が第2図の斜線の領域(E、F、G、H、I)に
あり、かつA_1とA_2の関係が上記式(1)を満た
し、さらにA_1圧下とA_2圧下の間隔を10秒以上
確保する条件で圧延を行い、しかる後950℃以上かつ
上記式(2)に示す温度T(℃)以上から1150℃の
間に加熱後水冷する溶体化熱処理を施すことを特徴とす
る結晶粒制御熱間圧延方法。
(1) In hot rolling of austenitic stainless steel, the total amount of rolling reduction ratios A_1 and A_2 and rolling temperature in the final two passes are in the shaded area (A, B, C, D) in Figure 1, and Rolling is carried out under the conditions that the relationship between A_1 and A_2 satisfies the following formula (1), and the interval between A_1 rolling and A_2 rolling is secured for 10 seconds or more, and then the temperature T (℃) shown in the following formula (2) or higher is applied. A grain control hot rolling method characterized by water cooling. 0.6<A_1/A_2<1.4...(1) T=20
00×(carbon content in steel: weight%)+810...(2)
(2) In hot rolling of austenitic stainless steel, the total amount of reduction ratios A_1 and A_2 and the reduction temperature in the final two passes are in the shaded area (E, F, G, H, I) in Figure 2. , and the relationship between A_1 and A_2 satisfies the above formula (1), further rolling is performed under conditions that ensure an interval of 10 seconds or more between A_1 rolling and A_2 rolling, and then rolling is performed at a temperature of 950°C or higher and the temperature shown in the above formula (2). A grain control hot rolling method characterized by performing a solution heat treatment of heating and water cooling between T (°C) or higher and 1150°C.
JP14523287A 1987-06-12 1987-06-12 Grain-controlled hot rolling method for austenitic stainless steel Expired - Fee Related JPH0814002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14523287A JPH0814002B2 (en) 1987-06-12 1987-06-12 Grain-controlled hot rolling method for austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14523287A JPH0814002B2 (en) 1987-06-12 1987-06-12 Grain-controlled hot rolling method for austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS63309307A true JPS63309307A (en) 1988-12-16
JPH0814002B2 JPH0814002B2 (en) 1996-02-14

Family

ID=15380394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14523287A Expired - Fee Related JPH0814002B2 (en) 1987-06-12 1987-06-12 Grain-controlled hot rolling method for austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH0814002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173696A (en) * 2013-03-25 2013-06-26 宜兴北海封头有限公司 Stainless steel hot-rolled steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173696A (en) * 2013-03-25 2013-06-26 宜兴北海封头有限公司 Stainless steel hot-rolled steel plate

Also Published As

Publication number Publication date
JPH0814002B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
Padilha et al. Annealing of cold-worked austenitic stainless steels
Ouchi et al. Dynamic recrystallization behavior of austenite in Nb-bearing high strength low alloy steels and stainless steel
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JPH03264618A (en) Rolling method for controlling crystal grain in austenitic stainless steel
CN114891994B (en) Method for controlling rolling grain size of 316H austenitic stainless steel medium plate for nuclear power
JPS63241114A (en) Manufacture of high toughness and high tension steel having superior resistance to stress corrosion cracking
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPS63309307A (en) Method for hot rolling to control crystal grains of austenitic stainless steel
JPS6075518A (en) Hot rolling method which is effective in improving toughness at low temperature
JPH04276042A (en) Austenitic stainless steel and its production
JP3222695B2 (en) Ferrite-pearlite thick steel plate with less material variation and method for producing the same
JPS649379B2 (en)
JPH0615692B2 (en) Method for manufacturing austenitic stainless steel plate
Tajima Thermo-mechanical treatment of a high Nb-high V bearing microalloyed steel
JPH07316653A (en) Production of thick stainless steel plate excellent in very low temperature characteristic
JP3559073B2 (en) Ferrite thick steel plate with less material variation and method of manufacturing the same
JPH0575809B2 (en)
JP2680424B2 (en) Method for producing low yield strength austenitic stainless steel sheet
JPS5819725B2 (en) Manufacturing method of ferritic stainless steel sheet
JPS60100629A (en) Production of austenite stainless steel
JPS59110767A (en) Austenite stainless steel
CN117721280A (en) Grain size control method for niobium-containing austenitic stainless steel hot-rolled medium plate
JP2000199011A (en) Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JPH06271933A (en) Production of mo-containing austenitic stainless steel excellent in nitric acid resistance
KR920000766B1 (en) Method of producing a high strength hot rolled steel sheet with an excellency toughness in low temperature

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees