JPS63308971A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPS63308971A
JPS63308971A JP62145838A JP14583887A JPS63308971A JP S63308971 A JPS63308971 A JP S63308971A JP 62145838 A JP62145838 A JP 62145838A JP 14583887 A JP14583887 A JP 14583887A JP S63308971 A JPS63308971 A JP S63308971A
Authority
JP
Japan
Prior art keywords
substrate
substance
amorphous silicon
phib
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145838A
Other languages
Japanese (ja)
Inventor
Hidekazu Yamamoto
秀和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62145838A priority Critical patent/JPS63308971A/en
Publication of JPS63308971A publication Critical patent/JPS63308971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To select cut-off wavelength continuously at low cost by providing a means through which a substance which has first and second main surfaces, is brought into contact with a substrate on the first main surface and includes a large number of localized levels in a forbidden band is brought into contact with a substance having high conductivity on the second main surface, and voltage is applied between the substrate and the substance having high conductivity. CONSTITUTION:When amorphous silicon 2 is irradiated with infrared beams 8 having energy hupsilon, electrons 4 and holes 5 are generated. Holes having energy larger than an energy barrier phib shaped in the amorphous silicon 2 on the interface of a P-type single crystal silicon substrate 1 and the amorphous silicon 2 are discharged to the P-type single crystal silicon substrate 1 by a tunnel effect by an electric field, and changed into photocurrents (the arrow A). On the other hand, electrons 4 are discharged similarly to a metal 3 (the arrow B), and an empty localized level can be shaped. Cut-off wavelength lambdac is determined by the energy barrier phib, and phib is decided by the work function of the amorphous silicon 2. Accordingly, the energy barrier phib can also be selected within a wide range continuously, thus freely selecting cut-off wavelength lambdac.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は光検出装置にIIA−するものて゛ある。[Detailed description of the invention] [Industrial application field] The present invention is applicable to a photodetecting device.

[従来の技術] 第4図は、従来の光検出装置で゛あるショク[−キバリ
ア光検出装)の断面構、3を示づ操式図て゛あ(′〕、
第5図はそのエネルギバンド図である。図に、りいて、
1はP型中結晶シリコン、4は電子、5は正孔、6は白
金シリサイド、8は赤外光である。また、F、はフェル
ミ準位、Φbはショットキバリアの障壁の高さ、hしは
光のエネルギを示す。
[Prior Art] Fig. 4 is a cross-sectional structure of a conventional photodetecting device (a type of photodetecting device), and an operational diagram showing 3.
FIG. 5 is its energy band diagram. Look at the diagram,
1 is P-type medium crystal silicon, 4 is an electron, 5 is a hole, 6 is platinum silicide, and 8 is infrared light. Further, F represents the Fermi level, Φb represents the height of the Schottky barrier, and h represents the energy of light.

次に動作について説明する。第4図は、P型用結晶シリ
コン1と白金シリサイド6のショットキ接合により形成
されたショットキバリア光検出装置の構造を示す。第5
図のエネルギバンド図で、白金シリサイド6に赤外光8
が照射されると電子4と正孔5が生成され、正孔5は白
金シリサイド6中を電子と再結合するまでランダムに運
動するが、運動中白金シリサイド6とP型用結晶シリコ
ン1のショットキ接合の界面に達した正孔5のうち、エ
ネルギがショットキバリアの障壁の高さΦbより大きい
ものは、白金シリサイド6からP型甲拮晶シリコン1中
に放出され光電流となる。ここで、ショットキバリア障
壁の高さΦbは、白金シリサイド6の仕事関数により決
まる。このときの光検出gi置の遮断波長λCは、ショ
ットキバリアの障壁の高さΦbにより決まり、λC(μ
l1l)−1,24/Φb(eV)となる。
Next, the operation will be explained. FIG. 4 shows the structure of a Schottky barrier photodetecting device formed by a Schottky junction of P-type crystalline silicon 1 and platinum silicide 6. In FIG. Fifth
In the energy band diagram shown in the figure, infrared light 8 is applied to platinum silicide 6.
When is irradiated, electrons 4 and holes 5 are generated, and the holes 5 move randomly in the platinum silicide 6 until they recombine with electrons. During the movement, the platinum silicide 6 and the Schottky Among the holes 5 that have reached the junction interface, those whose energy is greater than the height Φb of the Schottky barrier are emitted from the platinum silicide 6 into the P-type antagonist silicon 1 and become a photocurrent. Here, the height Φb of the Schottky barrier is determined by the work function of platinum silicide 6. At this time, the cutoff wavelength λC of the photodetection gi position is determined by the height Φb of the Schottky barrier, and λC(μ
l1l)-1,24/Φb(eV).

[′R明が解決しようとする問題点] 従来の光検出装置は以上のように構成されており、白金
を使用することにより高価となり、また、白金シリサイ
ド6の仕事関数によりショットキバリア障壁の高さΦb
が決まり、遮断波長λCが決まるので、したがって、遮
断波長/ICを自由に選択できないなどの問題点があっ
た。
[Problems to be solved by R-mei] Conventional photodetection devices are constructed as described above, but the use of platinum makes them expensive, and the work function of platinum silicide 6 increases the Schottky barrier. SaΦb
is determined, and the cutoff wavelength λC is determined, so there are problems such as the cutoff wavelength/IC cannot be freely selected.

この発明は、上記のような問題点を解瀾するためになさ
れたもので、安価でしかも遮断波長を連続的に高範囲で
選択できる光検出装置を行ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a photodetecting device that is inexpensive and can continuously select cutoff wavelengths over a wide range.

F問題点を解決するための手段] この発明に係る光検出装置は、第1および第2の主表面
を有し、第1の主表面で基板と接触され、禁制洛中に多
数の局在単位を含む物質を、その第2の主表面で導電性
の高い物質と接触させ、基板と導電性の高い物質間に電
圧をかける手段を有するものである。
Means for Solving Problem F] A photodetecting device according to the present invention has first and second main surfaces, the first main surface is in contact with a substrate, and a large number of localized units are detected in a forbidden state. The second main surface of the substrate is brought into contact with a highly conductive substance, and a voltage is applied between the substrate and the highly conductive substance.

[作用1 この発明における光検出装置は、第1および第2の主表
面を有する、禁制書中に多数の局在準位を含む物質を、
第1および第2のそれぞれの主表面において、基板およ
び導電性の高いvA質に接触さけ、基板と導電性の高い
物質間に電圧をかけることにより構成されるので、安価
で、しかも禁制洛中に多数の局在準位を含む物質の組成
を変化させることにより、仕事関数を連続的に広範囲に
変化させることが可能どなり、基板と禁制洛中に多数の
局在準位を含む物nとの界面にできるエネルギ障壁を連
続的に広範囲に変化させることができ、遮断波長を自由
に選択できる融通性の占いらのとなる。
[Operation 1] The photodetection device according to the present invention detects a substance having a first and second main surface and containing a large number of localized levels in a forbidden book.
Since it is constructed by applying a voltage between the substrate and the highly conductive material on each of the first and second main surfaces, avoiding contact with the substrate and the highly conductive material, it is inexpensive and can be used in prohibited locations. By changing the composition of a material containing a large number of localized levels, it is possible to continuously change the work function over a wide range. This makes it possible to continuously change the energy barrier that can be generated over a wide range, making it possible to freely select the cutoff wavelength.

r発明の実施例] 第1図は、この発明の実施例を示す断面構造を示す模式
図で、第2図は、そのエネルギバンド図である。図にお
いて、1はP型中結晶シリコン、2はアモルファスシリ
コン、3はアルミニウムなどの金属、・4は電子、5は
正孔、7は直流電圧、8は赤外光である。また、Erは
フェルミ準位、Φbはエネルギ障壁、hνは光のエネル
ギを示す。
Embodiment of the Invention] FIG. 1 is a schematic diagram showing a cross-sectional structure of an embodiment of the invention, and FIG. 2 is an energy band diagram thereof. In the figure, 1 is P-type medium crystalline silicon, 2 is amorphous silicon, 3 is a metal such as aluminum, 4 is an electron, 5 is a hole, 7 is a DC voltage, and 8 is infrared light. Further, Er represents the Fermi level, Φb represents the energy barrier, and hν represents the energy of light.

次に動作について説明する。第1図は、P型用結晶シリ
コン1に、禁制洛中に多数の局在単位を含む非晶質半導
体である50人程度の厚さのアモルファスシリコン2を
接触し、さらにアルミニウムなどの導電性の高い金属3
をアモルファスシリコン2に接触し、シリコン基板1に
対し、金属3が正電位となるような直流電圧7をかけた
光検出装置の断面図である。なお、局在単位を多く含ん
だ、非晶質半導体は、たとえば、300℃以上のP6喝
でプラズマCVD法によりシリコン系非晶質半導体を堆
積することにより得られる。第2図に示すように、アモ
ルファスシリコン2は抵抗率が高いため、電界はここに
集中する。また、アモルファスシリコン2は多くの局在
準位が存在するが、概略フェルミ準位「rの下の単位は
電子で満され、上の単位は電子で満されていない。ここ
で、アモルファスシリコン2にエルギhνの赤外光8が
照)1されると、電子4と正孔5が生成される。正孔5
のうち、P型車結晶シリコン基板1とアモルフアスシリ
コン2の界面で、アモルファスシリコン2に形成される
エネルギ障壁Φbより大きなエネルギを待つしのは、電
界により]〜〕/粂ル効果によってP型子結晶シリコン
基板1に放出され光電流どなる(矢印A)。一方、1子
11は同)〉に筋V1に放出され(矢印B)空いた局在
準位ができる。
Next, the operation will be explained. In Fig. 1, an amorphous silicon 2 with a thickness of about 50 mm, which is an amorphous semiconductor containing many localized units, is brought into contact with a P-type crystalline silicon 1, and then a conductive material such as aluminum is added. high metal 3
2 is a cross-sectional view of a photodetecting device in which a metal 3 is brought into contact with amorphous silicon 2 and a DC voltage 7 is applied to the silicon substrate 1 so that a metal 3 has a positive potential. Note that an amorphous semiconductor containing many localized units can be obtained, for example, by depositing a silicon-based amorphous semiconductor using a plasma CVD method in a P6 atmosphere at 300° C. or higher. As shown in FIG. 2, since the amorphous silicon 2 has a high resistivity, the electric field is concentrated here. In addition, amorphous silicon 2 has many localized levels, but approximately the units below the Fermi level "r" are filled with electrons, and the units above are not filled with electrons.Here, amorphous silicon 2 When infrared light 8 of energy hν is illuminated by 1), electrons 4 and holes 5 are generated. Holes 5
Among them, at the interface between the P-type crystalline silicon substrate 1 and the amorphous silicon 2, the electric field waits for an energy greater than the energy barrier Φb formed in the amorphous silicon 2. A photocurrent is emitted to the child crystal silicon substrate 1 (arrow A). On the other hand, the first child 11 is released into the muscle V1 (arrow B), creating an empty localized level.

この場合の遮断波長λ0は、従来のシ」ツ1−キバリア
光検出装置と同様に、エネルギ障壁Φbによ〕で決まり
、Φbはアモルファスシリコン2の仕事関数によって決
まる。アモルファスシリコン2のようなシリコン系の非
晶質半導体は、たと−)ばゲルマニウム、窒素または錫
を混入するなどして組成を変化さけることにより、物性
定数を連続的に広範囲で変化させることが可能であり、
したがってエネルギ障壁Φbも3!統的に広範囲で選択
できるので、遮断波長λCを自由に選択できる。
The cutoff wavelength λ0 in this case is determined by the energy barrier Φb, which is determined by the work function of the amorphous silicon 2, as in the conventional photo-detecting device. Silicon-based amorphous semiconductors such as amorphous silicon 2 can have their physical constants changed continuously over a wide range by changing the composition by, for example, adding germanium, nitrogen, or tin. and
Therefore, the energy barrier Φb is also 3! Since it can be systematically selected over a wide range, the cutoff wavelength λC can be freely selected.

なお、上記実施例では、単結晶半導体として、P型車結
晶シリコン1を用いたが、N型単結晶半導体を用いても
よい。ただしこの場合、金属3がN型単結晶半導体に対
し、負電位どなるような直流電圧7をかける必1要があ
る。また、シリーノン五ノ外の物質を使用しノてもよい
。さらに、禁制書中に多数の局在li1位を含む物質と
して、上記実施例のような非晶質半導体であるアモルフ
ァスシリコン2以外にも、禁制帯中に多数の局在準位を
含む物質であれば、多結晶半導体でも絶縁体でらよく、
その厚さは、キャリアがトンネル可能であれば、100
0 A f!i!度までは厚く4ることができる。一方
、金属3のような導電性の高い甥引を数10Aまで薄く
すれば、第3図に示すように、金属3表面側から入射し
た光をも検知することが可能となる。
In the above embodiment, P-type wheel crystal silicon 1 was used as the single-crystal semiconductor, but N-type single-crystal semiconductor may also be used. However, in this case, it is necessary to apply a DC voltage 7 such that the metal 3 has a negative potential with respect to the N-type single crystal semiconductor. Further, substances other than silicone may be used. Furthermore, in addition to amorphous silicon 2, which is an amorphous semiconductor as in the above example, the substance containing a large number of localized li1 levels in the forbidden band may also be a substance containing a large number of localized levels in the forbidden band. If available, polycrystalline semiconductors or insulators are fine.
Its thickness is 100 mm if the carrier is tunnelable.
0 A f! i! It can be thickened up to 4 degrees. On the other hand, if a highly conductive wire such as the metal 3 is made thin to several tens of amperes, it becomes possible to detect even light incident from the surface side of the metal 3, as shown in FIG.

[発明の効果] 1ス上のように、この発明によねば、第1および第2の
主表面を有し、禁制帯中に多数の局在It!位を含む1
1J質を、第1および第2のそれぞれの主表面において
、3板および導電性の高い物質に接触させ、基板と導電
性の高い物質間に電圧をかけろことにより構成されるの
で、安価で、しかも遮断波長を連続的に広範囲に選択可
能な、融通性の高い光検出装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, it has first and second main surfaces, and a large number of localized It! 1 including place
1J quality is brought into contact with the three plates and a highly conductive substance on each of the first and second main surfaces, and a voltage is applied between the substrate and the highly conductive substance, so it is inexpensive and Furthermore, it is possible to obtain a highly flexible photodetection device in which the cutoff wavelength can be continuously selected over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す断面図であり、第
2図はそのエネルギバンド図であり、第3図はこの発明
の他の実施例を示す断面図であり、第4図は従来の装置
を示す断面図であり、第5図はそのエネルギバンド図で
ある。 図において、1はP!¥I甲結晶シリコン、2はアモル
ファスシリコン、3は金属、4は電子、5は正孔、6は
白金シリサイド、7は直流電圧、8は赤外光である。 なあ、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing one embodiment of this invention, FIG. 2 is an energy band diagram thereof, FIG. 3 is a sectional view showing another embodiment of this invention, and FIG. 4 is a sectional view showing another embodiment of this invention. is a sectional view showing a conventional device, and FIG. 5 is an energy band diagram thereof. In the figure, 1 is P! ¥I A crystalline silicon, 2 is amorphous silicon, 3 is metal, 4 is electron, 5 is hole, 6 is platinum silicide, 7 is DC voltage, and 8 is infrared light. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (8)

【特許請求の範囲】[Claims] (1)基板と、第1および第2の主表面を有し、前記第
1の主表面で前記基板と接触した、禁制帯中に多数の局
在準位を含む物質と、前記物質の前記第2の主表面で接
触した導電性の高い物質と、前記基板と前記導電性の高
い物質間に電圧をかける手段からなる光検出装置。
(1) A substance that has a substrate, first and second main surfaces, is in contact with the substrate at the first main surface, and includes a large number of localized levels in a forbidden band; A photodetector comprising a highly conductive substance in contact with a second main surface, and means for applying a voltage between the substrate and the highly conductive substance.
(2)前記禁制帯中に多数の局在準位を含む物質が非晶
質半導体である特許請求の範囲第1項記載の光検出装置
(2) The photodetection device according to claim 1, wherein the substance containing a large number of localized levels in the forbidden band is an amorphous semiconductor.
(3)前記非晶質半導体がアモルファスシリコンである
特許請求の範囲第2項記載の光検出装置。
(3) The photodetecting device according to claim 2, wherein the amorphous semiconductor is amorphous silicon.
(4)前記基板が単結晶半導体である特許請求の範囲第
1項ないし第3項のいずれかに記載の光検出装置。
(4) The photodetecting device according to any one of claims 1 to 3, wherein the substrate is a single crystal semiconductor.
(5)前記単結晶半導体が単結晶シリコンである特許請
求の範囲第4項記載の光検出装置。
(5) The photodetecting device according to claim 4, wherein the single crystal semiconductor is single crystal silicon.
(6)前記導電性の高い物質が金属である特許請求の範
囲第1項ないし第5項いずれかに記載の光検出装置。
(6) The photodetecting device according to any one of claims 1 to 5, wherein the highly conductive substance is a metal.
(7)前記金属がアルミニウムである特許請求の範囲第
6項記載の光検出装置。
(7) The photodetecting device according to claim 6, wherein the metal is aluminum.
(8)前記電圧は、入射光により前記物質中に生成され
た電子および正孔をトンネル効果により、それぞれ基板
または導電性の高い物質の側へ放出させるのに十分な電
界を、前記禁制帯中に多数の局在準位を含む物質に生じ
させる値である特許請求の範囲第1項ないし第7項記載
の光検出装置。
(8) The voltage creates an electric field in the forbidden band that is sufficient to cause electrons and holes generated in the material by incident light to be emitted toward the substrate or a highly conductive material, respectively, by a tunnel effect. 8. The photodetecting device according to claim 1, wherein the value is a value generated in a substance containing a large number of localized levels.
JP62145838A 1987-06-10 1987-06-10 Photodetector Pending JPS63308971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145838A JPS63308971A (en) 1987-06-10 1987-06-10 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145838A JPS63308971A (en) 1987-06-10 1987-06-10 Photodetector

Publications (1)

Publication Number Publication Date
JPS63308971A true JPS63308971A (en) 1988-12-16

Family

ID=15394274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145838A Pending JPS63308971A (en) 1987-06-10 1987-06-10 Photodetector

Country Status (1)

Country Link
JP (1) JPS63308971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201740A1 (en) * 2019-04-01 2020-10-08 Imperial College Innovations Limited Schottky-barrier type infrared photodetector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091877A (en) * 1983-10-21 1985-05-23 Matsushita Electric Ind Co Ltd Piezoelectric linear motor
JPS60207469A (en) * 1984-03-30 1985-10-19 Showa Electric Wire & Cable Co Ltd Supersonic motor
JPS60210172A (en) * 1984-04-02 1985-10-22 Canon Inc Vibration wave motor
JPS62225181A (en) * 1986-03-25 1987-10-03 Canon Inc Oscillatory wave motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091877A (en) * 1983-10-21 1985-05-23 Matsushita Electric Ind Co Ltd Piezoelectric linear motor
JPS60207469A (en) * 1984-03-30 1985-10-19 Showa Electric Wire & Cable Co Ltd Supersonic motor
JPS60210172A (en) * 1984-04-02 1985-10-22 Canon Inc Vibration wave motor
JPS62225181A (en) * 1986-03-25 1987-10-03 Canon Inc Oscillatory wave motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201740A1 (en) * 2019-04-01 2020-10-08 Imperial College Innovations Limited Schottky-barrier type infrared photodetector
CN113678268A (en) * 2019-04-01 2021-11-19 帝国理工学院创新有限公司 Schottky barrier type infrared photoelectric detector

Similar Documents

Publication Publication Date Title
Tobin et al. 1/f noise in (Hg, Cd) Te photodiodes
ATE126355T1 (en) DIAMOND NEUTRON DETECTOR.
ES2154850T3 (en) FORMATION OF CONTACTS IN SEMICONDUCTIVE SUBSTRATES FOR RADIATION DETECTORS AND IMAGE CREATION DEVICES.
GB1431209A (en) Method and apparatus for sensing radiation and providing electri cal readout
US3473032A (en) Photoelectric surface induced p-n junction device
EP0178148A2 (en) Thin film photodetector
US4951105A (en) Solid-state image pickup device
JPS63308971A (en) Photodetector
TW201932873A (en) Methods of making a radiation detector
US4686761A (en) Method of fabrication of low crosstalk photodiode array
GB2275820A (en) Optoelectronic device
JPH114012A (en) Pin photodiode
JPS5846069B2 (en) Infrared charge transfer device
JPH0794806A (en) Quantum box aggregation element and light beam input/ output method
JPS5516408A (en) Detector for multiple light communication
US20230317869A1 (en) Photodiodes
US11329095B2 (en) Barrier photodetectors matrix with pixellation by local depletions
JPH01270363A (en) Semiconductor photodetector
JPS62152184A (en) Photodiode
JPS5391622A (en) Solid state pick up unit
JPS61204988A (en) Semiconductor light receiving element
USRE27775E (en) Photoelectric induced i -n junction devices
JPH0342878A (en) Semiconductor position detector
JPH02177480A (en) Manufacture of optical semiconductor device
Dafinei et al. On the electrical conductivity in porous silicon under light and electron beams