JPS63308599A - Steam exhaust for nuclear reactor - Google Patents

Steam exhaust for nuclear reactor

Info

Publication number
JPS63308599A
JPS63308599A JP63027523A JP2752388A JPS63308599A JP S63308599 A JPS63308599 A JP S63308599A JP 63027523 A JP63027523 A JP 63027523A JP 2752388 A JP2752388 A JP 2752388A JP S63308599 A JPS63308599 A JP S63308599A
Authority
JP
Japan
Prior art keywords
coolant
distal end
end portion
steam
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63027523A
Other languages
Japanese (ja)
Other versions
JPH0350238B2 (en
Inventor
Motoaki Utamura
元昭 宇多村
Koichi Kotani
小谷 皓市
Iwao Yokoyama
巖 横山
Kenji Tominaga
富永 研司
Ryuji Kubota
久保田 龍治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63027523A priority Critical patent/JPS63308599A/en
Publication of JPS63308599A publication Critical patent/JPS63308599A/en
Publication of JPH0350238B2 publication Critical patent/JPH0350238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable a load due to a bubble pressure pulsation generated when a liquid is discharged to be reduced in a pipeline that is dipped in a coolant and has a number of ejecting nozzles by making the content volume of the ejecting nozzles such that a dimensionless parameter defined by a specific relational expression is not larger than a prescribed value. CONSTITUTION:The distal end portion 13 of a relief bent pipe 12 is dipped in a coolant 4 in a pressure restraining chamber. The inner diameter of the distal end portion 13 is larger than that of a portion upstream of the distal end portion 13. The distal end portion 13 is provided with a plurality of coolant outlets 14. The distal end portion 13 is constructed such that, when the content volume of a region wherein the outlets, namely, ejecting nozzles 14 are formed, the whole area of the nozzles 14 and the length of the wetted perimeter thereof are V, Ah and Zh, respectively, a dimensionless parameter phi defined by phi=(V.Zh)/(4Ah<2>) satisfies 10<2phi<=10<3>. Thus, a conventional dynamic load level at a condensation is reduced, and moreover, an extreme reduction in discharge flow rate can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気排出装置に係り、特に、沸騰水形原子炉
の蒸気排出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steam exhaust system, and particularly to a steam exhaust system for a boiling water nuclear reactor.

〔従来の技術〕[Conventional technology]

第1図は、従来の沸騰水形原子炉の原子炉格納容器の概
略を示すものである。原子炉格納容器は、原子炉圧力容
器1を格納するドライウェル2と、ドーナツ型の圧力抑
制室(以下1・−ラスと称する)3と、これらを結ぶベ
ント系管路からなり、トーラス3内には冷却水4が充填
されている。
FIG. 1 schematically shows a reactor containment vessel of a conventional boiling water reactor. The reactor containment vessel consists of a dry well 2 that houses the reactor pressure vessel 1, a doughnut-shaped pressure suppression chamber (hereinafter referred to as 1-rus) 3, and a vent system pipe line that connects these. is filled with cooling water 4.

ベント系は第2図に示す如く、蒸気管路としてベント管
5とリリーフベン1−管6よりなり、これらのベント管
5、リリーフベント管6の下部は冷却水4中に浸漬され
ている。ペン1〜管5は原子炉配管破断を仮想した冷却
材喪失事故時に原子炉圧力容器1から配管破断部を通し
て漏れ出たドライウェル2内の蒸気を圧力抑制室3内の
冷却水4中に導くものである。リリーフベント管6は、
原子炉圧力容器1内の蒸気を圧力抑制室3内の冷却水4
中に導くものである。リリーフベント管6内の空気と原
子炉圧力容器1から放出される高温高圧の蒸気が冷却水
4に放出されるまでの間、気泡の膨張、圧縮が繰り返さ
れ、トーラス壁及び内部構造材に過渡的に大きな荷重(
気泡圧力脈動)が加わる。さらに蒸気凝縮振動荷重は、
蒸気がリリーフベント管6より冷却水4中に放出される
期間に、リリーフベント管6の出口において長期間に亘
り発生する蒸気凝縮振動により生じる。
As shown in FIG. 2, the vent system consists of a vent pipe 5 and a relief vent pipe 1-6 as steam lines, and the lower portions of these vent pipes 5 and 6 are immersed in cooling water 4. Pens 1 to 5 guide steam in the dry well 2 leaking from the reactor pressure vessel 1 through the pipe breakage into the cooling water 4 in the pressure suppression chamber 3 in the event of a coolant loss accident hypothesizing a reactor pipe breakage. It is something. The relief vent pipe 6 is
The steam in the reactor pressure vessel 1 is transferred to the cooling water 4 in the pressure suppression chamber 3.
It leads inside. Until the air in the relief vent pipe 6 and the high-temperature, high-pressure steam released from the reactor pressure vessel 1 are released into the cooling water 4, the bubbles expand and compress repeatedly, causing transient damage to the torus wall and internal structural materials. Large load (
bubble pressure pulsation) is added. Furthermore, the steam condensation vibration load is
This is caused by steam condensation vibration that occurs over a long period of time at the outlet of the relief vent pipe 6 during the period when steam is released from the relief vent pipe 6 into the cooling water 4 .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したこれらの荷重は、リリーフベント管及び圧力抑
制室等の構造物に伝わり、これらの構造物が損傷を受け
る危険性がある。
These loads mentioned above are transmitted to structures such as the relief vent pipe and the pressure suppression chamber, and there is a risk that these structures may be damaged.

本発明の目的は、流体放出時の気泡圧力脈動による荷重
を緩和する蒸気排出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steam exhaust device that alleviates the load caused by bubble pressure pulsations during fluid discharge.

〔課題を解決するための手段〕[Means to solve the problem]

前述の目的を解決する為の手段は、原子炉容器内で発生
した蒸気を管路に通して圧力抑制室内の冷却材中に排出
して前記蒸気の凝縮を行う原子炉の蒸気排出装置におい
て、前記管路であって、前記冷却材中に水没している部
分に多数の噴出口を形成し、前記噴出口の形成領域の内
容積をV、前記噴出口の総面積をAhおよび前記噴出口
のぬれぶち長さをZhとした時、次式 %式%) の範囲に存在することを特徴とする原子炉の蒸気排出装
置である。
Means for solving the above-mentioned object is provided in a steam exhaust system for a nuclear reactor that condenses steam generated in a reactor vessel by passing it through a pipe and discharging it into a coolant in a pressure suppression chamber. A large number of jet ports are formed in a portion of the pipe that is submerged in the coolant, and the internal volume of the region where the jet ports are formed is V, the total area of the jet ports is Ah, and the jet ports are This is a steam exhaust device for a nuclear reactor characterized by existing in the range of the following formula (% formula %) when the wetted edge length is Zh.

〔作用〕[Effect]

原子炉圧力容器で発生した蒸気の内、排出されるべき蒸
気は管路を通って冷却材中に多数の噴出口から噴出され
、噴出した蒸気は冷却材により凝縮される。そして、噴
出口の形成領域において前述の如く、無次元パラメータ
rを設定したことにより従来の凝縮時の動荷重レベルが
軽減される上に、排気流量の顕著な低下をまねくことが
なくなる。
Of the steam generated in the reactor pressure vessel, the steam to be discharged passes through a pipe and is spouted into the coolant from a number of jet ports, and the spouted steam is condensed by the coolant. As described above, by setting the dimensionless parameter r in the jet nozzle forming region, the dynamic load level during condensation, which is conventional, is reduced, and a significant decrease in the exhaust flow rate is not caused.

〔実施例〕〔Example〕

以下に本発明の一実施例をリリーフベント管1を例にし
て説明する。
An embodiment of the present invention will be described below using a relief vent pipe 1 as an example.

第3図で、リリーフベント管12の先端部13は、圧力
抑制室3内の冷却水4中に没している。
In FIG. 3, the tip 13 of the relief vent pipe 12 is submerged in the cooling water 4 in the pressure suppression chamber 3.

先端部13の内径は、先端部13より上流側部分の内径
よりも大きい。先端部(以下拡大部という)13には複
数の冷却材流出口14が設置されている。リリーフベン
ト管12は、図示されていないが、リリーフ弁、主蒸気
管を介して原子炉圧力容器11に連絡されている。リリ
ーフ弁が作動すると原子炉圧力容器1内の高圧の蒸気が
リリーフベント管12内に流入し、元々リリーフベント
管12内に存在する空気を圧縮する。圧縮された空気は
高圧の気泡11(第5図)となって冷却材流出口14よ
り圧力抑制室3の冷却水4中に噴出する。本発明は、リ
リーフベント管12の先端に拡大部13を拡大形成する
ことにより管内圧力を積極的に低下するとともに、水深
方向に冷却材流出口を配置することにより徐々に空気を
排出する。
The inner diameter of the distal end portion 13 is larger than the inner diameter of the portion upstream of the distal end portion 13 . A plurality of coolant outlet ports 14 are installed in the tip portion (hereinafter referred to as the enlarged portion) 13 . Although not shown, the relief vent pipe 12 is connected to the reactor pressure vessel 11 via a relief valve and a main steam pipe. When the relief valve operates, high-pressure steam within the reactor pressure vessel 1 flows into the relief vent pipe 12 and compresses the air originally existing within the relief vent pipe 12. The compressed air becomes high-pressure bubbles 11 (FIG. 5) and is ejected from the coolant outlet 14 into the cooling water 4 of the pressure suppression chamber 3. The present invention actively reduces the pressure inside the relief vent pipe 12 by enlarging the enlarged portion 13 at its tip, and gradually exhausts air by arranging the coolant outlet in the water depth direction.

上記の2つの作用により荷重が緩和される。第4図およ
び第5、図を用いて本発明の効果を詳細に説明し、荷重
緩和の指標となる無次元パラメータを導出する。一般に
、気泡の成長に伴うプール水中の動的圧力Pは、気泡の
体積変化率の時間微分に比例する。
The load is relieved by the above two effects. The effects of the present invention will be explained in detail using FIGS. 4 and 5, and dimensionless parameters serving as indicators of load relaxation will be derived. Generally, the dynamic pressure P in pool water accompanying the growth of bubbles is proportional to the time derivative of the rate of change in volume of the bubbles.

P cc V B              ・・・
(1)リリーフベント管12内には液位1−5が形成さ
れている。液位15が矢印16方向に降下するに伴い、
冷却材流出口14の数が増すので、(1)式の右辺は冷
却材流出口14の流路面積の増加率A、に比例する。ま
た、冷却材の質量流量はリリーフベント管12内圧力P
1に比例し、冷却材流出口14の水力等価直径D hに
比例する。したがって VB” PtDhAh              ・
・12)となる。液位15の降下速度を一定とすれば、
A、 hは単位長さあたりの流出口面積に比例する。
Pcc VB...
(1) Liquid levels 1-5 are formed within the relief vent pipe 12. As the liquid level 15 falls in the direction of arrow 16,
Since the number of coolant outlet ports 14 increases, the right side of equation (1) is proportional to the rate of increase A of the flow path area of the coolant outlet ports 14. Moreover, the mass flow rate of the coolant is the internal pressure P of the relief vent pipe 12.
1 and proportional to the hydraulic equivalent diameter D h of the coolant outlet 14 . Therefore, VB” PtDhAh・
・12). If the falling speed of the liquid level 15 is constant,
A, h is proportional to the outlet area per unit length.

よって ここで、nは同一高さにおける冷却材流出口14の数、 aは冷却材流出口1個の断面積、 Sは高さ方向の冷却材流出口配列ピッチである。Therefore Here, n is the number of coolant outlets 14 at the same height, a is the cross-sectional area of one coolant outlet, S is the coolant outlet arrangement pitch in the height direction.

また、リリーフベント管内圧力P1は拡大部13の断面
積に反比例する Plo:AP・・・(4) したがって、(1)弐〜(4)式より、動的圧力PはA
p 流出口5のある部分の長さをLとすると、拡大部13の
体積v(=APL)、冷却材流出口14の総DhはAh
と冷却材流出口14のぬれぶち長さZhに代入すると、
次式を得る。
Also, the relief vent pipe internal pressure P1 is inversely proportional to the cross-sectional area of the enlarged portion 13 Plo:AP...(4) Therefore, from equations (1)2 to (4), the dynamic pressure P is A
p If the length of the part where the outlet 5 is located is L, the volume of the enlarged part 13 is v (=APL), and the total Dh of the coolant outlet 14 is Ah
Substituting into the wet edge length Zh of the coolant outlet 14, we get
We get the following equation.

hV 無次元パラメータψを次式で定義する。hV The dimensionless parameter ψ is defined by the following equation.

この無次元パラメータを横軸にとり、動荷重の測定値を
相対化して示したのが第6図である。これからTの値が
大きくなると動荷重が低減することがわかる。縦軸の1
.0  は従来型の動荷重レベルであり、対応するψの
値は100となる。したがってψ>100の範囲で従来
型よりも優れた性能が得られる。特に、r≧300の領
域では、動荷重が著しく減少する。また、第7図は、排
気系蒸気流量とψどの関係をみたものであるが、Tが増
加することは一般的に冷却材流出口14の総面積が小さ
くなることに対応するので排気流量の低下を招くことに
なる。しかし、ψ≦1000の領域では顕著な排気流量
の低下は見られず、本来のリリーフベント管としての機
能を十分に満足できる。
FIG. 6 shows a relative representation of the measured value of the dynamic load with this dimensionless parameter taken as the horizontal axis. It can be seen from this that as the value of T increases, the dynamic load decreases. 1 on the vertical axis
.. 0 is the conventional dynamic load level and the corresponding value of ψ is 100. Therefore, performance superior to the conventional type can be obtained in the range ψ>100. In particular, in the region of r≧300, the dynamic load is significantly reduced. In addition, Fig. 7 shows the relationship between the exhaust system steam flow rate and ψ, but since an increase in T generally corresponds to a decrease in the total area of the coolant outlet 14, the exhaust flow rate This will lead to a decline. However, in the region of ψ≦1000, no significant decrease in exhaust flow rate is observed, and the original function as a relief vent pipe can be fully satisfied.

ゆえにψが 100<’f’≦1000 の領域に存在する様なリリーフベント管構造とすれば、
リリーフベント管12の機能を損わずかつ動荷重も低減
できるという効果が生まれる。
Therefore, if the relief vent pipe structure is such that ψ exists in the region of 100<'f'≦1000,
The effect is that the function of the relief vent pipe 12 is not impaired and the dynamic load can be reduced.

ところで1式(7)から明らかなように、Tを大きくし
て気泡圧力脈動の荷重を緩和する手段としては、 (1)配管径の拡大(■の増大) (2)冷却材流出口の総面積の減小(Ahの低下)(3
)冷却材流出口の口径の低下(zhの増大)の3種類が
あり、第3図に例示した先端部分の拡大(上記の(1)
)のみが有効な手段ではない。逆に、配管径を小さくし
ても、上記手段の(2)、 (3)によりrの値を大き
くとることによって荷重低減に有効な配管を製作できる
ことに注意すべきである。
By the way, as is clear from Equation 1 (7), the means to increase T and alleviate the load of bubble pressure pulsation are as follows: (1) Enlarging the pipe diameter (increasing ■) (2) Increasing the total number of coolant outlet ports Decrease in area (decrease in Ah) (3
) There are three types: decrease in the diameter of the coolant outlet (increase in zh), enlargement of the tip part illustrated in Figure 3 ((1)
) is not the only effective method. On the contrary, it should be noted that even if the pipe diameter is made smaller, a pipe that is effective in reducing the load can be manufactured by increasing the value of r using the above measures (2) and (3).

また、第7図はリリーフベントに流入する排気系蒸気流
量とでとの関係をみたものである。rが極端に増加する
と排気流量の低下を招く。これは、冷却材流出口14の
総面積が小さくなることに特に依存している。なぜなら
、式(7)においてrを構成するパラメータのうちAh
のみが2乗で影響を与えるからである。T≦1−〇〇〇
の範囲では顕著な流量低下はない。
Moreover, FIG. 7 shows the relationship between the flow rate of exhaust system steam flowing into the relief vent and . An extreme increase in r causes a decrease in the exhaust flow rate. This is particularly dependent on the fact that the total area of the coolant outlet 14 is reduced. This is because among the parameters that constitute r in equation (7), Ah
This is because the effect is squared. There is no significant decrease in flow rate in the range of T≦1-〇〇〇.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、圧力抑制室内の冷却材中
に原子炉で発生した蒸気を排気する系統において、その
排気系統の顕著な流量低下をきたすことなく排気時に生
じる動荷重の低減が達成され得る。
As described above, according to the present invention, in a system for exhausting steam generated in a nuclear reactor into the coolant in a pressure suppression chamber, it is possible to reduce the dynamic load that occurs during exhaust without causing a significant decrease in the flow rate of the exhaust system. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉の原子炉格納容器の外観図、第
2図は第1図に示す1−−ラスの断面図、第3図は本発
明の好適な一実施例であるリリーフベント管の構造図、
第4図は第3図に示すリリーフベント管の機能を示す説
明図、第5図は第4図のv部拡大図、第6図は無次元パ
ラメータと動荷重の大きさとの関係を示す特性図、第7
図は無次元パラメータと排気系蒸気流量との関係を示す
特性図である。 1・・・原子炉圧力容器、2・・ドライウェル、3・・
・圧力抑制室、4・・・冷却水、12・・・リリーフベ
ント管、13・・・拡大部、14・・・冷却材放出口。
Fig. 1 is an external view of the reactor containment vessel of a boiling water reactor, Fig. 2 is a sectional view taken along the line 1--1 shown in Fig. 1, and Fig. 3 is a relief which is a preferred embodiment of the present invention. Structural diagram of vent pipe,
Fig. 4 is an explanatory diagram showing the function of the relief vent pipe shown in Fig. 3, Fig. 5 is an enlarged view of the v section of Fig. 4, and Fig. 6 is a characteristic showing the relationship between dimensionless parameters and the magnitude of dynamic load. Figure, 7th
The figure is a characteristic diagram showing the relationship between dimensionless parameters and exhaust system steam flow rate. 1...Reactor pressure vessel, 2...Dry well, 3...
- Pressure suppression chamber, 4... Cooling water, 12... Relief vent pipe, 13... Enlarged part, 14... Coolant discharge port.

Claims (1)

【特許請求の範囲】 1、原子炉容器内で発生した蒸気を管路を通して圧力抑
制室内の冷却材中に排出して前記蒸気の凝縮を行う原子
炉の蒸気排出装置において、前記管路であつて、前記冷
却材中に水没している部分に多数の噴出口を形成し、前
記噴出口の形成領域の内容積をV、前記噴出口の総面積
をA_hおよび前記噴出口のぬれぶち長さをZ_hとし
た時、次式 ψ=(V・Z_h)/(4A_h^2) で求められるψが 10^2<ψ≦10^3 の範囲に存在することを特徴とする原子炉の蒸気排出装
置。
[Scope of Claims] 1. A steam exhaust system for a nuclear reactor that discharges steam generated in a reactor vessel through a pipe into a coolant in a pressure suppression chamber and condenses the steam, wherein the pipe is A large number of jet ports are formed in the part submerged in the coolant, and the internal volume of the region where the jet ports are formed is V, the total area of the jet ports is A_h, and the length of the wet end of the jet ports is Steam exhaust from a nuclear reactor characterized in that ψ, which is determined by the following formula ψ=(V・Z_h)/(4A_h^2), exists in the range of 10^2<ψ≦10^3, where is Z_h. Device.
JP63027523A 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor Granted JPS63308599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027523A JPS63308599A (en) 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027523A JPS63308599A (en) 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4036280A Division JPS56137276A (en) 1980-03-31 1980-03-31 Steam exhausting device

Publications (2)

Publication Number Publication Date
JPS63308599A true JPS63308599A (en) 1988-12-15
JPH0350238B2 JPH0350238B2 (en) 1991-08-01

Family

ID=12223481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027523A Granted JPS63308599A (en) 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS63308599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476495A (en) * 1990-07-18 1992-03-11 Toshiba Corp Turbine exhaust steam sparger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591207B1 (en) * 2021-06-25 2023-10-20 한국수력원자력 주식회사 Apparatus for cooling emission vapor in the reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540362A (en) * 1978-09-18 1980-03-21 Susumu Kiyokawa Adiabatic material contained metal leaf piece

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540362A (en) * 1978-09-18 1980-03-21 Susumu Kiyokawa Adiabatic material contained metal leaf piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476495A (en) * 1990-07-18 1992-03-11 Toshiba Corp Turbine exhaust steam sparger

Also Published As

Publication number Publication date
JPH0350238B2 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
US20130276926A9 (en) Aerated Swirling Vertical Shaft with Double Volute Chambers
JPS6153094B2 (en)
US5841020A (en) Apparatus and method for mixing, measuring and forwarding a multi-phase gas mixture
US6273772B1 (en) Apparatus and method for multi-conduit waterlift engine silencing
JPS63308599A (en) Steam exhaust for nuclear reactor
JPS622135B2 (en)
JPS6018960B2 (en) reactor containment vessel
US4838316A (en) Accumulator provided with an insert
KR200438619Y1 (en) Air chamber system for prevention of water hammer
Yildirim et al. Critical submergence for dual pipe intakes
JPS6223839B2 (en)
CN210410197U (en) Slurry flow guiding device of desulfurization absorption tower
CN208683550U (en) A kind of high-temp liquid dump tank buffer structure
US4428904A (en) Blow-off device for limiting excess pressure in nuclear power plants, especially of the boiling water reactor-type
JPS6122319Y2 (en)
JP3345509B2 (en) Drain discharge device
JPS6136960Y2 (en)
JPS6223837B2 (en)
JP2538894Y2 (en) Pressurizer water level control device
CN221072849U (en) Waterproof hammer diaphragm type expansion tank
KR101540158B1 (en) Low noise injection apparatus for outlet pipe of vessel and vessel having the same
CN212732187U (en) Novel gauze groove and high-low temperature damp-heat test box
CN106437988A (en) Underwater exhaust port structure preventing water backflow
JP3341240B2 (en) Vertical pump
SU1013699A2 (en) Device for suppressing pressure pulsations in hydraulic main lines