JPS6136960Y2 - - Google Patents
Info
- Publication number
- JPS6136960Y2 JPS6136960Y2 JP1980044243U JP4424380U JPS6136960Y2 JP S6136960 Y2 JPS6136960 Y2 JP S6136960Y2 JP 1980044243 U JP1980044243 U JP 1980044243U JP 4424380 U JP4424380 U JP 4424380U JP S6136960 Y2 JPS6136960 Y2 JP S6136960Y2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- vent pipe
- water
- relief vent
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000001629 suppression Effects 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims 3
- 239000007788 liquid Substances 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 45
- 238000007654 immersion Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 8
- 230000010349 pulsation Effects 0.000 description 8
- 230000005494 condensation Effects 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Description
本考案は、蒸気排出装置に係り、特に、リリー
フベント管を有する蒸気排出装置に関するもので
ある。
従来のものを示す第1図において、1は圧力炉
圧力容器、2は原子炉圧力容器1に連通する主蒸
気管、4はリリーフ弁3を備えたリリーフベント
管で、第2図に示す如く主蒸気管2から分岐して
おり、リリーフベント管管4の他端は圧力抑制室
5内の冷却水であるプール6の水中に開口してい
る。
原子炉停止及び原子炉事故時において、原子炉
圧力容器1内の圧力を下げるためにリリーフ弁3
を開き蒸気をプール水6中に放出する。この場合
にプール水6中に気泡圧力脈動を生ずる。第3図
において、イに示すようにリリーフベント管4内
は、リリーフ弁3が開く前は、空気部分4aと水
面位置以下の水柱4bとからなつている。リリー
フ弁3を開くと原子炉圧力容器1内の蒸気4cが
リリーフベント管4内に放出され、管内の空気部
分4aを圧縮しながら水柱4bを下方に押しや
る。蒸気4cは音速で放出されるので、空気部分
4aと蒸気4cは殆んど混合せず、空気部分4a
はリリーフベント管4出口から気泡となつてプー
ル6の水中に放出される。第3図ロ,ハ,ニはこ
の状態を示す。
この間、空気部分4aは20〜30Kg/cm2gに加圧
されており、プール水6中へ放出とともに減圧し
急膨張を行い空気泡4a′を生ずる。気泡膨張の過
程においては、押しやられたプール水6の慣性
で、気圧の圧力がプール水6の圧力まで下がつて
も、更に気泡は膨張し気泡圧力は負圧になる。慣
性が無くなると、気泡の負圧により周囲のプール
水6が引き寄せられ、プール水6の慣性により気
泡は圧縮され気泡の圧力は放出時の圧力よりも高
くなる。空気泡4a′の圧縮、膨張の過程を第4図
に示す。第4図に示すイ,ロ,ハおよびニは第3
図のイ,ロ,ハおよびニにそれぞれ対応する状態
を示す。このような空気泡4a′の脈動は、気泡が
プール6水面に到達するまで続く。この圧力脈動
は水中波となり、プール6水中の構造物に加わ
り、動的な荷重として作用する。米国などの実機
プラントでの測定結果によると、この水中波は、
5〜15Hzで正圧3Kg/cm2g、負圧−1.5Kg/cm2g
程度になり、気泡が水面で破裂するまで約1秒続
く。また、リリーフ弁3作動時に高圧の空気部分
4aによりリリーフベント管4内の水柱4bが高
速で排出される。この水流による水ジエツト力
が、第3図の矢印4dのようにダイナミツクな力
として圧力抑制室5の底に加わり、原子炉格納容
器、特に圧力抑制室5を損傷させるおそれがあ
る。
このようなリリーフ弁3の作動による繰り返え
し振動は、プラント寿命中4000〜5000回となり、
(1)気泡圧力脈動、(2)水ジエツト力により水面下の
構造物および圧力抑制室5底部に疲労応力を加え
るので、圧力抑制室の損傷の恐れが生じる。
本考案の目的は、リリーフベント管を水浸長さ
の異なる複数本の排気管に分岐することによつ
て、かかる圧力脈動の荷重を緩和する管蒸気排出
装置を供給することにある。
本考案は、圧力抑制室に発生する圧力脈動の荷
重が緩和されるように、該リリーフベント管を水
浸部長さの異なる複数本の排気管に分岐し、各分
岐管の蒸気凝縮能力の合計が値を満足するように
各分岐管の蒸気流路面積を設定する。
第5図および第6図に、本考案の実施例を示
す。
本考案は、リリーフ弁に接続されるリリーフベ
ント管4にヘツダ7を取付けて左右に分岐し、更
に、ヘツダ7に各々のプール水6内での水浸部長
が複数の異なる排気管8を設置する。各々の排気
管8の水浸部長さはリリーフベント管4に対して
左右対称であり、且つ中心部の排気管8の水浸部
長が最小である。
更に、各々の排気管8の流路面積は左右対称で
且つリリーフベント管4の流路面積より狭くなつ
ているが、一方各々の排気管8の流路面積の合計
値は広い。更に中心部程流路面積は狭くなつてい
る。第7図に、本実施例の具体的な寸法関係を示
す。すべての排気管8の流路断面積を合計した流
路断面積A1は、リリーフベント管4の流路断面
積A0の2倍である。流路断面積A1は、
The present invention relates to a steam exhaust device, and more particularly to a steam exhaust device having a relief vent pipe. In Fig. 1 showing a conventional system, 1 is a pressure reactor pressure vessel, 2 is a main steam pipe communicating with the reactor pressure vessel 1, and 4 is a relief vent pipe equipped with a relief valve 3, as shown in Fig. 2. It branches from the main steam pipe 2, and the other end of the relief vent pipe 4 opens into the water of the pool 6, which is the cooling water in the pressure suppression chamber 5. A relief valve 3 is provided to reduce the pressure inside the reactor pressure vessel 1 in the event of reactor shutdown or reactor accident.
is opened to release steam into the pool water 6. In this case, bubble pressure pulsations occur in the pool water 6. In FIG. 3, as shown in A, the interior of the relief vent pipe 4, before the relief valve 3 opens, consists of an air portion 4a and a water column 4b below the water surface level. When the relief valve 3 is opened, the steam 4c in the reactor pressure vessel 1 is released into the relief vent pipe 4, compressing the air portion 4a inside the pipe and pushing the water column 4b downward. Since the steam 4c is released at the speed of sound, the air portion 4a and the steam 4c hardly mix, and the air portion 4a
is released into the water of the pool 6 from the outlet of the relief vent pipe 4 in the form of bubbles. Figure 3 B, C and D show this state. During this time, the air portion 4a is pressurized to 20 to 30 kg/cm 2 g, and as it is discharged into the pool water 6, the pressure is reduced and the air portion 4a rapidly expands to produce air bubbles 4a'. In the process of bubble expansion, even if the atmospheric pressure drops to the pressure of the pool water 6 due to the inertia of the pushed pool water 6, the bubble expands further and the bubble pressure becomes negative pressure. When the inertia disappears, the surrounding pool water 6 is attracted by the negative pressure of the bubbles, the inertia of the pool water 6 compresses the bubbles, and the pressure of the bubbles becomes higher than the pressure at the time of release. FIG. 4 shows the process of compression and expansion of the air bubble 4a'. A, B, C and D shown in Figure 4 are the third
The states corresponding to A, B, C, and D in the figure are shown. Such pulsation of the air bubbles 4a' continues until the air bubbles reach the water surface of the pool 6. This pressure pulsation becomes an underwater wave and is added to the underwater structure of the pool 6, acting as a dynamic load. According to measurement results at actual plants in the United States and other countries, these underwater waves are
Positive pressure 3Kg/cm 2 g, negative pressure -1.5Kg/cm 2 g at 5-15Hz
It lasts about 1 second until the bubble bursts on the water surface. Furthermore, when the relief valve 3 is activated, the water column 4b inside the relief vent pipe 4 is discharged at high speed by the high-pressure air portion 4a. The water jet force caused by this water flow is applied to the bottom of the pressure suppression chamber 5 as a dynamic force as indicated by the arrow 4d in FIG. 3, and there is a risk of damaging the reactor containment vessel, especially the pressure suppression chamber 5. The repeated vibration due to the operation of the relief valve 3 will be 4000 to 5000 times during the life of the plant.
(1) Bubble pressure pulsations and (2) water jet force apply fatigue stress to structures below the water surface and the bottom of the pressure suppression chamber 5, which may cause damage to the pressure suppression chamber. An object of the present invention is to provide a pipe steam exhaust device that relieves the load of such pressure pulsations by branching a relief vent pipe into a plurality of exhaust pipes having different water immersion lengths. In this invention, the relief vent pipe is branched into multiple exhaust pipes with different water immersion lengths in order to alleviate the load of pressure pulsations occurring in the pressure suppression chamber, and the total steam condensation capacity of each branch pipe is The steam flow path area of each branch pipe is set so that the value is satisfied. An embodiment of the present invention is shown in FIGS. 5 and 6. In the present invention, a header 7 is attached to the relief vent pipe 4 connected to the relief valve, and the header 7 is branched to the left and right, and a plurality of exhaust pipes 8 are installed in the header 7, each having a different length of water immersion in the pool water 6. do. The water immersion length of each exhaust pipe 8 is symmetrical with respect to the relief vent pipe 4, and the water immersion length of the central exhaust pipe 8 is the smallest. Further, the passage area of each exhaust pipe 8 is symmetrical and narrower than the passage area of the relief vent pipe 4, but on the other hand, the total value of the passage area of each exhaust pipe 8 is wide. Furthermore, the flow path area becomes narrower toward the center. FIG. 7 shows the specific dimensional relationship of this example. The flow path cross-sectional area A 1 , which is the sum of the flow path cross-sectional areas of all the exhaust pipes 8 , is twice the flow path cross-sectional area A 0 of the relief vent pipe 4 . The flow path cross-sectional area A1 is
【式】で表わされる。a1は、各排気管8
の流路断面積である。従来の水浸長さをh0とする
と、h1はh1=h0/2で表わされる。
以上より、以下の効果がある。
(1) 蒸気凝縮量低減に伴う荷重低減
第8図は、水浸部長h及び流路面積Aに対す
る蒸気放出時にプール水内に発生する荷重と蒸
気凝縮の関係を示す。特性,,および
と後者に行くほど、A1が大きくなり、特性
はA1=2A0における特性である。
図から分るように、水浸部長が短い程、蒸気
凝縮量及び荷重が減少する。一方、同一水浸部
長においては、流路面積が小さい程、蒸気凝縮
量及び荷重が減少する。
従つて、流路抵抗の小さい中心部の排気管8
程、水浸部長を短く、且つ流路面積を狭くする
ことにより、蒸気凝縮量は低減し、これに伴つ
て発生する荷重を低減できる。例えば、第8図
より流路面積を従来の2倍、ベント水浸長さを
従来の1/2にすると荷重は約3割に低減でき
る。P点が従来例、Q点が本実施例を示す。
(2) 非凝縮性ガス気泡形成に伴う荷動低減
リリーフ弁3の作動開始によりプール水中で
形成される非凝縮性ガスの気泡半径の大きさ
は、排気管8の水浸長が短い程小さくなる。従
つて、気泡に伴う荷重も水浸長が短い程低くな
り、その関係は次式のようになる。
F∝h
ただし、Fは荷重、hは排気管の水浸長さで
ある。
また、第9図に、第7図のような構造で、水
浸長が、h0/2及びh0/4の排気管8を有する
リリーフベント管による荷重の変化図中の記号
を次に示す。h0は従来の水浸長さである。
(a)は水浸長h1の排気管8から気泡が放出され
た時の荷重の変化、
(b)は水浸長h1/2の排気管8から気泡が放出
された時の荷重の変化を示している。
(c)は(a)+(c)の荷重の変化である。
(d)は従来の特性である。
この図から、まず水浸長h1/2の排気管8か
ら非凝縮性ガスが放出されることに伴う荷重(a)
が発生し、次に遅れてから、水浸長hの排気管
8から放出される非凝縮性ガスに伴う荷重(a)が
発生する。これら2つの荷重を加えた荷重(c)
は、従来の荷重より低減することが判る。
本考案によれば、リリーフ弁開放時において、
高圧の空気を水浸長が異なるベント分岐管から順
次ブール水中に放出できるので、空気脈動振動を
効果的に低減できる。It is represented by [Formula]. a 1 is the flow path cross-sectional area of each exhaust pipe 8 . When the conventional water immersion length is h 0 , h 1 is expressed as h 1 =h 0 /2. From the above, there are the following effects. (1) Load reduction due to reduction in amount of steam condensation Figure 8 shows the relationship between the load generated in the pool water when steam is released and the steam condensation for the water immersion length h and the flow path area A. As the characteristics , , and the latter, A 1 becomes larger, and the characteristics are those when A 1 =2A 0 . As can be seen from the figure, the shorter the water immersion section, the lower the amount of steam condensation and the load. On the other hand, in the same water-immersed section, the smaller the flow path area, the smaller the amount of steam condensation and the load. Therefore, the central exhaust pipe 8 with low flow path resistance
By shortening the water immersion section and narrowing the flow path area, the amount of steam condensation can be reduced, and the load generated accordingly can be reduced. For example, as shown in FIG. 8, if the flow path area is doubled and the vent water immersion length is made half of the conventional length, the load can be reduced to about 30%. Point P indicates the conventional example, and point Q indicates the present embodiment. (2) Reducing load movement due to the formation of non-condensable gas bubbles The radius of the non-condensable gas bubbles formed in the pool water when the relief valve 3 starts operating becomes smaller as the water immersion length of the exhaust pipe 8 becomes shorter. Become. Therefore, the load associated with bubbles also decreases as the water immersion length becomes shorter, and the relationship is as shown in the following equation. F∝h where F is the load and h is the water immersion length of the exhaust pipe. In addition, in Fig. 9, the symbols in the diagram of the change in load due to the relief vent pipe having the structure as shown in Fig. 7 and the exhaust pipe 8 with water immersion lengths of h 0 /2 and h 0 /4 are as follows. show. h 0 is the conventional water immersion length. (a) shows the change in load when air bubbles are released from the exhaust pipe 8 with water immersion length h 1 , and (b) shows the change in load when air bubbles are released from the exhaust pipe 8 with water immersion length h 1/2 . It shows change. (c) is the change in load of (a) + (c). (d) is the conventional characteristic. From this figure, first, the load (a) associated with the release of non-condensable gas from the exhaust pipe 8 with water immersion length h 1 /2
occurs, and then, after a delay, the load (a) associated with the non-condensable gas discharged from the exhaust pipe 8 with the water immersion length h occurs. Load (c) that is the sum of these two loads
It can be seen that the load is reduced compared to the conventional load. According to the present invention, when the relief valve is opened,
Since high-pressure air can be sequentially discharged into the boule water from vent branch pipes with different water immersion lengths, air pulsation vibration can be effectively reduced.
第1図は沸謄水型原子炉の原子炉格納容器の外
観図、第2図は従来のリリーフベント管の構造
図、第3図は空気圧力脈動振動のプロセスを示す
もので、イ,ロ,ハおよびニの順でリリーフベン
ト管内の空気および蒸気の放出が進行していくこ
とを示す説明図、第4図は圧力抑制室内の空気泡
圧力変動を示す特性図、第5図は本考案の実施例
の斜視図、第6図は第5図に示す実施例の側面
図、第7図は第5図に示す実施例の寸法関係を示
す説明図、第8図は排気管の水浸長さによる発生
荷重の変化を示す特性図、第9図は本考案による
効果を示す特性図である。
1……原子炉圧力容器、4……リリーフベント
管、5……圧力抑制室、6……プール水、8……
排気管。
Figure 1 is an external view of the reactor containment vessel of a boiling water reactor, Figure 2 is a structural diagram of a conventional relief vent pipe, and Figure 3 shows the process of air pressure pulsation vibration. , C, and D are explanatory diagrams showing that the release of air and steam inside the relief vent pipe progresses in the order shown. Figure 4 is a characteristic diagram showing air bubble pressure fluctuations in the pressure suppression chamber. Figure 5 is a diagram showing the progress of the release of air and steam in the relief vent pipe in the order of FIG. 6 is a side view of the embodiment shown in FIG. 5, FIG. 7 is an explanatory diagram showing the dimensional relationship of the embodiment shown in FIG. FIG. 9 is a characteristic diagram showing the change in generated load depending on the length. FIG. 9 is a characteristic diagram showing the effects of the present invention. 1... Reactor pressure vessel, 4... Relief vent pipe, 5... Pressure suppression chamber, 6... Pool water, 8...
Exhaust pipe.
Claims (1)
た圧力抑制室内に導くリリーフベント管を有す
る蒸気排出装置において、前記圧力抑制室内の
前記冷却材の液面より上方の空間でヘツダを、
前記リリーフベント管に取り付け、前記排出管
を前記圧力抑制室内の前記空間内で前記リリー
フベント管に対して対称となるようにしかも下
向きにしてのみ前記ヘツダに設け、前記リリー
フベント管に近づく程、前記排気管の長さを短
かくするとともにその流路面積を小さくするこ
とを特徴とする蒸気排出装置。 2 前記リリーフベント管に対して各々の前記排
出管の長さ及び流路面積が対称になつている特
許請求の範囲第1項記載の蒸気排出装置。[Claims for Utility Model Registration] 1. In a steam exhaust device having a relief vent pipe that guides steam in a reactor pressure vessel into a pressure suppression chamber filled with coolant, the liquid level of the coolant in the pressure suppression chamber is lower than the liquid level of the coolant in the pressure suppression chamber. The header in the space above,
attached to the relief vent pipe, the discharge pipe is provided in the header so as to be symmetrical with respect to the relief vent pipe within the space within the pressure suppression chamber, and only facing downward, the closer to the relief vent pipe; A steam exhaust device characterized in that the length of the exhaust pipe is shortened and the flow path area thereof is reduced. 2. The steam exhaust device according to claim 1, wherein the length and flow path area of each of the exhaust pipes are symmetrical with respect to the relief vent pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980044243U JPS6136960Y2 (en) | 1980-03-31 | 1980-03-31 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980044243U JPS6136960Y2 (en) | 1980-03-31 | 1980-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56144396U JPS56144396U (en) | 1981-10-30 |
JPS6136960Y2 true JPS6136960Y2 (en) | 1986-10-25 |
Family
ID=29639511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1980044243U Expired JPS6136960Y2 (en) | 1980-03-31 | 1980-03-31 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6136960Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5646492A (en) * | 1979-09-21 | 1981-04-27 | Tokyo Shibaura Electric Co | Steam condensation demice |
-
1980
- 1980-03-31 JP JP1980044243U patent/JPS6136960Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5646492A (en) * | 1979-09-21 | 1981-04-27 | Tokyo Shibaura Electric Co | Steam condensation demice |
Also Published As
Publication number | Publication date |
---|---|
JPS56144396U (en) | 1981-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4252611A (en) | Pressure suppression apparatus of a nuclear power plant | |
JP6632081B2 (en) | Containment vessel drain system | |
EP0514914B1 (en) | Steam injector system | |
JPS6136960Y2 (en) | ||
EP0369876B1 (en) | Gas-liquid contacting method | |
CN2851247Y (en) | Ultrasonic vacuum oxygen removing device for boiler water | |
JPS6018960B2 (en) | reactor containment vessel | |
JPS5922197B2 (en) | Reactor safety valve blow-down parts | |
CN111599492B (en) | Pressure restraining pipe and pressure restraining pond using same | |
Parmakian | One-way surge tanks for pumping plants | |
JPS60213885A (en) | Escape safety valve exhaust system for main steam | |
JPS6045837B2 (en) | relief vent pipe | |
RU2031217C1 (en) | Expansion tank for liquid cooling system of internal combustion engine | |
US3082784A (en) | Sump tank including pump | |
CN213954675U (en) | Silencing and noise reducing device for noise reduction of emptying pipe during filling of LNG tank | |
JPS63308599A (en) | Steam exhaust for nuclear reactor | |
Kim et al. | ICONE11-36212 NUMERICAL STUDY ON THE CHARACTERISTICS OF AIR BUBBLE OSCILLATION IN WATER | |
JPS6223839B2 (en) | ||
JP2523526B2 (en) | Pressure suppression structure for containment vessel | |
JPS6339672Y2 (en) | ||
JPS6378096A (en) | Underwater steam condenser | |
SU1013699A2 (en) | Device for suppressing pressure pulsations in hydraulic main lines | |
JPH0353484B2 (en) | ||
JPS58129289A (en) | Escape safety valve exhaust gas system | |
JPS6134640B2 (en) |