JPH0350238B2 - - Google Patents

Info

Publication number
JPH0350238B2
JPH0350238B2 JP63027523A JP2752388A JPH0350238B2 JP H0350238 B2 JPH0350238 B2 JP H0350238B2 JP 63027523 A JP63027523 A JP 63027523A JP 2752388 A JP2752388 A JP 2752388A JP H0350238 B2 JPH0350238 B2 JP H0350238B2
Authority
JP
Japan
Prior art keywords
steam
coolant
vent pipe
relief vent
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63027523A
Other languages
Japanese (ja)
Other versions
JPS63308599A (en
Inventor
Motoaki Utamura
Koichi Kotani
Iwao Yokoyama
Kenji Tominaga
Ryuji Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63027523A priority Critical patent/JPS63308599A/en
Publication of JPS63308599A publication Critical patent/JPS63308599A/en
Publication of JPH0350238B2 publication Critical patent/JPH0350238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気排出装置に係り、特に、沸騰水
形原子炉の蒸気排出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steam exhaust system, and particularly to a steam exhaust system for a boiling water nuclear reactor.

〔従来の技術〕[Conventional technology]

第1図は、従来の沸騰水形原子炉の原子炉格納
容器の概略を示すものである。原子炉格納容器
は、原子炉圧力容器1を格納するドライウエル2
と、ドーナツ型の圧力抑制室(以下トーラスと称
する)3と、これらを結ぶベント系管路からな
り、トーラス3内には冷却水4が充填されてい
る。
FIG. 1 schematically shows a reactor containment vessel of a conventional boiling water reactor. The reactor containment vessel includes a dry well 2 that stores the reactor pressure vessel 1.
It consists of a donut-shaped pressure suppression chamber (hereinafter referred to as a torus) 3, and a vent system pipe line connecting these, and the torus 3 is filled with cooling water 4.

ベント系は第2図に示す如く、蒸気管路として
ベント管5とリリーフベント管6よりなり、これ
らのベント管5、リリーフベント管6の下部は冷
却水4中に浸漬されている。ベント管5は原子炉
配管破断を仮想した冷却材喪失事故時に原子炉圧
力容器1から配管破断部を通して漏れ出たドライ
ウエル2内の蒸気を圧力抑制室3内の冷却水4中
に導くものである。リリーフベント管6は、原子
炉圧力容器1内の蒸気を圧力抑制室3内の冷却水
4中に導くものである。リリーフベント管6内の
空気と原子炉圧力容器1から放出される高温高圧
の蒸気が冷却水4に放出されるまでの間、気泡の
膨張、圧縮が繰り返され、トーラス壁及び内部構
造材に過渡的に大きな荷重(気泡圧力脈動)が加
わる。さらに蒸気凝縮振動荷重は、蒸気がリリー
フベント管6より冷却水4中に放出される期間
に、リリーフベント管6の出口において長期管に
亘り発生する蒸気凝縮振動により生じる。
As shown in FIG. 2, the vent system consists of a vent pipe 5 and a relief vent pipe 6 as steam pipes, and the lower portions of these vent pipes 5 and relief vent pipe 6 are immersed in cooling water 4. The vent pipe 5 guides steam in the dry well 2 leaking from the reactor pressure vessel 1 through the pipe breakage into the cooling water 4 in the pressure suppression chamber 3 in the event of a coolant loss accident hypothesizing a reactor pipe breakage. be. The relief vent pipe 6 guides steam within the reactor pressure vessel 1 into the cooling water 4 within the pressure suppression chamber 3. Until the air in the relief vent pipe 6 and the high-temperature, high-pressure steam released from the reactor pressure vessel 1 are released into the cooling water 4, the bubbles expand and compress repeatedly, causing transient damage to the torus wall and internal structural materials. A large load (bubble pressure pulsation) is applied. Further, the steam condensation vibration load is caused by steam condensation vibration that occurs over a long period of time at the outlet of the relief vent pipe 6 during the period when steam is discharged from the relief vent pipe 6 into the cooling water 4 .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したこれらの荷重は、リリーフベント管及
び圧力抑制室等の構造物に伝わり、これらの構造
物が損傷を受ける危険性がある。
These loads mentioned above are transmitted to structures such as the relief vent pipe and the pressure suppression chamber, and there is a risk that these structures may be damaged.

本発明の目的は、流体放出時の気泡圧力脈動に
よる荷重を著しく緩和する蒸気排出装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steam exhaust device that significantly reduces the load caused by bubble pressure pulsations during fluid discharge.

〔課題を解決するための手段〕[Means to solve the problem]

前述の目的を解決する為の手段は、原子炉容器
内で発生した蒸気を管炉に通して圧力抑制室内の
冷却材中に排出して前記蒸気の凝縮を行う原子炉
の蒸気排出装置において、前記管路であつて、前
記冷却材中に水没している部分に多数の噴出口を
形成し、前記噴出口の形成領域の内容積をV、前
記噴出口の総面積をAhおよび前記噴出口のぬれ
ぶち長さをZhとした時、次式 =(V・Zh)/(4Ah 2) で求められるが 3×102<≦103 の範囲に存在することを特徴とする原子炉の蒸気
排出装置である。
Means for solving the above-mentioned object is provided in a steam exhaust system for a nuclear reactor that condenses steam generated in a reactor vessel by passing it through a tube furnace and discharging the steam into a coolant in a pressure suppression chamber. A large number of jet ports are formed in a portion of the pipe that is submerged in the coolant, and the internal volume of the region where the jet ports are formed is V, the total area of the jet ports is A h , and the jet ports are When the length of the wetted area at the exit is Z h , it is determined by the following formula = (V・Z h )/(4A h 2 ), and is characterized by existing in the range of 3×10 2 <≦10 3 This is a steam exhaust device for a nuclear reactor.

〔作用〕[Effect]

原子炉圧力容器で発生した蒸気の内、排出され
るべき蒸気は管路を通つて冷却材中に多数の噴出
口から噴出され、噴出した蒸気は冷却材により凝
縮される。そして、噴出口の形成領域において前
述の如く、無次元パラメータを設定したことに
より従来の凝縮時の動荷重レベルが軽減される上
に、排気流量の顕著な低下をまねくことがなくな
る。
Of the steam generated in the reactor pressure vessel, the steam to be discharged passes through the pipes and is jetted into the coolant from a number of jet ports, and the spouted steam is condensed by the coolant. As described above, by setting the dimensionless parameters in the jet nozzle formation region, the dynamic load level during condensation, which is conventional, is reduced, and a significant decrease in the exhaust flow rate is not caused.

〔実施例〕〔Example〕

以下に本発明の一実施例をリリーフベント管1
を例にして説明する。
An embodiment of the present invention will be described below.Relief vent pipe 1
This will be explained using an example.

第3図で、リリーフベント管12の先端部13
は、圧力抑制室3内の冷却水4中に没している。
先端部13の内径は、先端部13より上流側部分
の内径よりも大きい。先端部(以下拡大部とい
う)13には複数の冷却材流出口14が設置され
ている。リリーフベント管12は、図示されてい
ないが、リリーフ弁、主蒸気管を介して原子炉圧
力容器11に連絡されている。リリーフ弁が作動
すると原子炉圧力容器1内の高圧の蒸気がリリー
フベント管12内に流入し、元々リリーフベント
管12内に存在する空気を圧縮する。圧縮された
空気は高圧の気泡11(第5図)となつて冷却材
流出口14より圧力抑制室3の冷却水4中に噴出
する。本発明は、リリーフベント管12の先端に
拡大部13を拡大形成することにより管内圧力を
積極的に低下するとともに、水深方向に冷却材流
出口を配置することにより徐々に空気を排出す
る。上気の2つの作用により荷重が緩和される。
第4図および第5図を用いて本発明の効果を詳細
に説明し、荷重緩和の指標となる無次元パラメー
タを導出する。一般に、気泡の成長に伴うプール
水中の動的圧力Pは、気泡の体積変化率の時間微
分に比例する。
In FIG. 3, the tip 13 of the relief vent pipe 12
is submerged in the cooling water 4 in the pressure suppression chamber 3.
The inner diameter of the distal end portion 13 is larger than the inner diameter of the portion upstream of the distal end portion 13 . A plurality of coolant outlet ports 14 are installed in the tip portion (hereinafter referred to as the enlarged portion) 13 . Although not shown, the relief vent pipe 12 is connected to the reactor pressure vessel 11 via a relief valve and a main steam pipe. When the relief valve operates, high-pressure steam within the reactor pressure vessel 1 flows into the relief vent pipe 12 and compresses the air originally existing within the relief vent pipe 12. The compressed air becomes high-pressure bubbles 11 (FIG. 5) and is ejected from the coolant outlet 14 into the cooling water 4 of the pressure suppression chamber 3. The present invention actively reduces the pressure inside the relief vent pipe 12 by enlarging the enlarged portion 13 at its tip, and gradually exhausts air by arranging the coolant outlet in the water depth direction. The load is relieved by two effects of upper air.
The effects of the present invention will be explained in detail using FIGS. 4 and 5, and dimensionless parameters serving as indicators of load relaxation will be derived. Generally, the dynamic pressure P in pool water accompanying the growth of bubbles is proportional to the time derivative of the rate of change in volume of the bubbles.

P∝V¨B ……(1) リリーフベント管12内には液位15が形成さ
れている。液位15が矢印16方向に降下するに
伴い、冷却材流出口14の数が増すので、(1)式の
右辺は冷却材流出口14の流路面積の増加率Ah
に比例する。また、冷却材の質量流量はリリーフ
ベント管12内圧力P1に比例し、冷却材流出口
14の水力等価値径Dhに比例する。したがつて V¨B∝P1DhA〓h ……(2) となる。液位15の降下速度を一定とすれば、
Ahは単位長さあたりの流出口面積に比例する。
よつて A〓h∝na/S ……(3) ここで、nは同一高さにおける冷却材流出口1
4の数、 aは冷却材流出口1個の断面積、 Sは高さ方向の冷却材流出口配列ピツチであ
る。
P∝V¨B ... (1) A liquid level 15 is formed in the relief vent pipe 12. As the liquid level 15 falls in the direction of the arrow 16, the number of coolant outlets 14 increases, so the right side of equation (1) is the increase rate A h of the flow path area of the coolant outlets 14.
is proportional to. Further, the mass flow rate of the coolant is proportional to the internal pressure P 1 of the relief vent pipe 12 and proportional to the hydraulic equivalent diameter D h of the coolant outlet 14 . Therefore, V¨ B ∝P 1 D h A〓 h ……(2). If the falling speed of the liquid level 15 is constant,
A h is proportional to the outlet area per unit length.
Therefore, A〓 h ∝na/S ……(3) Here, n is the coolant outlet 1 at the same height.
4, a is the cross-sectional area of one coolant outlet, and S is the pitch of the coolant outlet array in the height direction.

また、リリーフベント管内圧力P1は拡大部1
3の断面積に反比例する P1∝A-1 P ……(4) したがつて、(1)式〜(4)式より動的圧力Pは P∝naDh/SAP ……(5) 流出口5のある部分の長さをLとすると、拡大
部13の体積V(=APL)、冷却材流出口14の
総面積Ah(=L/S×na)が成立ち、水力等価直径 DhはAhと冷却材流出口14のぬれぶち長さZh
用いて、Dh(=4Ah/Zh)となる。これを(5)式に代入 すると、次式を得る。
In addition, the relief vent pipe internal pressure P 1 is the enlarged part 1
P 1 ∝A -1 P ...(4) Therefore, from equations (1) to (4), the dynamic pressure P is P∝naD h /SAP ...(5) Flow If the length of the part where the outlet 5 is located is L, the volume of the enlarged part 13 is V (=A P L), the total area of the coolant outlet 14 is A h (=L/S×na), and the hydraulic equivalent The diameter D h is calculated as D h (=4A h /Z h ) using A h and the wetted edge length Z h of the coolant outlet 14. Substituting this into equation (5), we get the following equation.

P∝4Ah 2/ZhV ……(6) 無次元パラメータを次式で定義する。 P∝4A h 2 /Z h V ......(6) Define the dimensionless parameter using the following formula.

=ZhV/4Ah 2 ……(7) この無次元パラメータを横軸にとり、動荷重の
測定値を相対化して示したのが第6図である。こ
れからの値が大きくなると動荷重が低減するこ
とがわかる。縦軸の1.0は従来型の動荷重レベル
であり、対応するの値は100となる。したがつ
て>100の範囲で従来型よりも優れた性能が得
られる。特に、≧300の領域では、動荷重が著
しく減少する。また、第7図は、排気系蒸気流量
ととの関係をみたものであるが、が増加する
ことは一般的に冷却材流出口14の総面積が小さ
くなることに対応するので排気流量の低下を招く
ことになる。しかし、≦1000の領域では顕著な
排気流量の低下は見られず、本来のリリーフベン
ト管としての機能を十分に満足できる。
=Z h V/4A h 2 ...(7) This dimensionless parameter is plotted on the horizontal axis, and the measured values of the dynamic load are relativized and shown in Fig. 6. It can be seen that as the value increases from now on, the dynamic load decreases. 1.0 on the vertical axis is the conventional dynamic load level, and the corresponding value is 100. Therefore, better performance than the conventional type can be obtained in the range >100. In particular, in the region of ≧300, the dynamic load is significantly reduced. Furthermore, Fig. 7 shows the relationship between the exhaust system steam flow rate and the exhaust system steam flow rate. will be invited. However, in the range of ≦1000, no significant decrease in exhaust flow rate is observed, and the original function as a relief vent pipe can be fully satisfied.

ゆえにが 100<≦1000 の領域に存在する様なリリーフベント管構造とす
れば、リリーフベント管12の機能を損わずかつ
動荷重も従来より低減出来、特に300≦≦1000
の領域ではその低減について著しいという効果が
生まれる。
Therefore, if the relief vent pipe structure is such that the pressure exists in the range of 100<≦1000, the function of the relief vent pipe 12 will not be impaired and the dynamic load can be reduced compared to the conventional one, especially in the range of 300≦≦1000.
In the region of , the effect of reduction is significant.

ところで、式(7)から明らかなように、を大き
くして気泡圧力脈動の荷重を緩和する手段として
は、 (1) 配管径の拡大(Vの増大) (2) 冷却材流出口の総面積の減小(Ahの低下) (3) 冷却材流出口の口径の低下(Zhの増大) の3種類があり、第3図に例示した先端部分の拡
大(上記の(1))のみが有効な手段ではない。逆
に、配管径を小さくしても、上記手段の(2)、(3)に
よりの値を大きくとることによつて荷重低減に
有効な配管を製作できることに注意すべきであ
る。
By the way, as is clear from equation (7), the means to increase the value and alleviate the load of bubble pressure pulsation are as follows: (1) Enlarging the pipe diameter (increasing V) (2) Increasing the total area of the coolant outlet There are three types: (3) Decrease in the diameter of the coolant outlet (increase in Z h ), and only the enlargement of the tip ((1 ) above) is is not an effective method. On the contrary, it should be noted that even if the diameter of the pipe is made small, a pipe that is effective in reducing the load can be manufactured by increasing the values of the above measures (2) and (3).

また、第7図はリリーフベントに流入する排気
系蒸気流量ととの関係をみたものである。が
極端に増加すると排気流量の低下を招く。これ
は、冷却材流出口14の総面積が小さくなること
に特に依存している。なぜなら、式(7)において
を構成するパラメータのうちAhのみが2乗で影
響を与えるからである。≦1000の範囲では顕著
な流量低下はない。
Further, FIG. 7 shows the relationship between the flow rate of exhaust system steam flowing into the relief vent and the flow rate of the exhaust system steam flowing into the relief vent. An extreme increase in the amount causes a decrease in the exhaust flow rate. This is particularly dependent on the fact that the total area of the coolant outlet 14 is reduced. This is because, among the parameters constituting Equation (7), only A h has a square effect. There is no significant decrease in flow rate in the range of ≦1000.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、圧力抑制室内の
冷却材中に原子炉で発生した蒸気を排気する系統
において、その排気系統の顕著な流量低下をきた
すことなく排気時に生じる動荷重の著しい低減が
達成され得る。
As described above, according to the present invention, in a system for exhausting steam generated in a nuclear reactor into the coolant in a pressure suppression chamber, the dynamic load generated during exhaust is significantly reduced without causing a significant decrease in the flow rate of the exhaust system. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子炉の原子炉格納容器の外
観図、第2図は第1図に示すトーラスの断面図、
第3図は本発明の好適な一実施例であるリリーフ
ベント管の構造図、第4図は第3図に示すリリー
フベント管の機能を示す説明図、第5図は第4図
のV部拡大図、第6図は無次元パラメータと動荷
重の大きさとの関係を示す特性図、第7図は無次
元パラメータと排気系蒸気流量との関係を示す特
性図である。 1……原子炉圧力容器、2……ドライウエル、
3……圧力抑制室、4……冷却水、12……リリ
ーフベント管、13……拡大部、14……冷却材
放出口。
Figure 1 is an external view of the reactor containment vessel of a boiling water reactor, Figure 2 is a cross-sectional view of the torus shown in Figure 1,
Fig. 3 is a structural diagram of a relief vent pipe according to a preferred embodiment of the present invention, Fig. 4 is an explanatory diagram showing the function of the relief vent pipe shown in Fig. 3, and Fig. 5 is a V section of Fig. 4. The enlarged view, FIG. 6 is a characteristic diagram showing the relationship between the dimensionless parameter and the magnitude of the dynamic load, and FIG. 7 is a characteristic diagram showing the relationship between the dimensionless parameter and the exhaust system steam flow rate. 1...Reactor pressure vessel, 2...Dry well,
3... Pressure suppression chamber, 4... Cooling water, 12... Relief vent pipe, 13... Enlarged section, 14... Coolant discharge port.

Claims (1)

【特許請求の範囲】 1 原子炉容器内で発生した蒸気を管路を通して
圧力抑制室内の冷却材中に排出して前記蒸気の凝
縮を行う原子炉の蒸気排出装置において、前記管
路であつて、前記冷却材中に水没している部分に
多数の噴出口を形成し、前記噴出口の形成領域の
内容積をV、前記噴出口の総面積をAhおよび前
記噴出口のぬれぶち長さをZhとした時、次式 =(V・Zh)/(4Ah 2) で求められるが 3×102≦≦103 の範囲に存在することを特徴とする原子炉の蒸気
排出装置。
[Scope of Claims] 1. In a steam exhaust system for a nuclear reactor that discharges steam generated in a reactor vessel through a pipe into a coolant in a pressure suppression chamber and condenses the steam, the pipe , a large number of jet ports are formed in the part submerged in the coolant, the internal volume of the region where the jet ports are formed is V, the total area of the jet ports is A h , and the wetted length of the jet ports is A steam exhaust system for a nuclear reactor characterized by being found in the range of 3×10 2 ≦≦10 3 , which is calculated by the following formula = (V・Z h )/(4A h 2 ), where Z h is .
JP63027523A 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor Granted JPS63308599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027523A JPS63308599A (en) 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027523A JPS63308599A (en) 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4036280A Division JPS56137276A (en) 1980-03-31 1980-03-31 Steam exhausting device

Publications (2)

Publication Number Publication Date
JPS63308599A JPS63308599A (en) 1988-12-15
JPH0350238B2 true JPH0350238B2 (en) 1991-08-01

Family

ID=12223481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027523A Granted JPS63308599A (en) 1988-02-10 1988-02-10 Steam exhaust for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS63308599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000562A (en) * 2021-06-25 2023-01-03 한국수력원자력 주식회사 Apparatus for cooling emission vapor in the reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476495A (en) * 1990-07-18 1992-03-11 Toshiba Corp Turbine exhaust steam sparger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540362A (en) * 1978-09-18 1980-03-21 Susumu Kiyokawa Adiabatic material contained metal leaf piece

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540362A (en) * 1978-09-18 1980-03-21 Susumu Kiyokawa Adiabatic material contained metal leaf piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000562A (en) * 2021-06-25 2023-01-03 한국수력원자력 주식회사 Apparatus for cooling emission vapor in the reactor

Also Published As

Publication number Publication date
JPS63308599A (en) 1988-12-15

Similar Documents

Publication Publication Date Title
EP0514914B1 (en) Steam injector system
US20130276926A9 (en) Aerated Swirling Vertical Shaft with Double Volute Chambers
US4562036A (en) Shock wave absorber having apertured plate
US4822557A (en) Emergency reactor core cooling structure
EP1198660B1 (en) Apparatus and method for multi-conduit waterlift engine silencing
JPH0350238B2 (en)
US4315800A (en) Nuclear reactor
JPH0618693A (en) Steam separator
US3731903A (en) Ball canister and system for controlling cavitation in liquids
JP4533957B2 (en) Accumulated water injection tank and flow damper manufacturing method
JPS6223839B2 (en)
US4305896A (en) Vent exit device for condensing steam
KR200438619Y1 (en) Air chamber system for prevention of water hammer
US3866630A (en) Ball canister and system for controlling cavitation in liquids
US4428904A (en) Blow-off device for limiting excess pressure in nuclear power plants, especially of the boiling water reactor-type
EP0619582A1 (en) Reactor pressure vessel nozzle
JPS6136960Y2 (en)
JPS6122319Y2 (en)
JPS6223837B2 (en)
JP2538894Y2 (en) Pressurizer water level control device
JP3345509B2 (en) Drain discharge device
JPS5932846Y2 (en) Anti-noise steam condensing device
RU2112831C1 (en) Spillway of hydraulic engineering structure
CN106437988A (en) Underwater exhaust port structure preventing water backflow
Bharathan et al. Lower plenum voiding