JPS63307450A - Method for forming resist pattern - Google Patents

Method for forming resist pattern

Info

Publication number
JPS63307450A
JPS63307450A JP14444087A JP14444087A JPS63307450A JP S63307450 A JPS63307450 A JP S63307450A JP 14444087 A JP14444087 A JP 14444087A JP 14444087 A JP14444087 A JP 14444087A JP S63307450 A JPS63307450 A JP S63307450A
Authority
JP
Japan
Prior art keywords
resist
irradiated
exposed
substrate
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14444087A
Other languages
Japanese (ja)
Inventor
Naomichi Abe
阿部 直道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14444087A priority Critical patent/JPS63307450A/en
Publication of JPS63307450A publication Critical patent/JPS63307450A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the thermal flow of a resist by crosslinking previously the resist polymer applied on a substrate, and then, selectively irradiating a radiation energy ray to the obtd. resist thereby decomposing and vaporizing an irradiated part. CONSTITUTION:The resist is formed by applying for example, a solution contg. a methyl polymethacrylate and a crosslinking agent on the substrate, followed by thermally or optically crosslinking the obtd. resist. Next, the above-mentioned resist is selectively irradiated by a light, an electron ray, a X-ray or an ion beam, and the irradiated part is decomposed and vaporized, thereby self- developing said part. As the polymer of the part irradiated the radiation energy ray is hard to liquefy, the thermal flow does not occur, whereby a minute pat tern is formed with a good accuracy.

Description

【発明の詳細な説明】 [概要] 照射部分を分解気化させて、露光と同時に現像する自己
現像法であって、予め架橋させた後、レジストポリマー
に選択的に光、電子線、X線またはイオンビームを照射
し、照射部分を分解気化させてパターンを形成する。
[Detailed Description of the Invention] [Summary] This is a self-developing method in which the irradiated area is decomposed and vaporized and developed at the same time as exposure. After crosslinking in advance, the resist polymer is selectively exposed to light, electron beams, A pattern is formed by irradiating an ion beam and decomposing and vaporizing the irradiated portion.

そうすれば、熱フローが解消して精度良いパターンが形
成される。
This eliminates the heat flow and forms a highly accurate pattern.

〔産業上の利用分野〕[Industrial application field]

本発明は自己現像によるレジストパターンの形成方法に
関する。
The present invention relates to a method for forming a resist pattern by self-development.

周知のように、IC,LSI等の半導体装置を製造する
際、微細加工は専らリソグラフィ技術によっておこなわ
れているが、このようなりソグラフィ技術は高精度にレ
ジストパターンが形成され、且つ、露光・現像などの処
理が簡単で、製造コストが安価なことが要望されている
As is well known, when manufacturing semiconductor devices such as ICs and LSIs, microfabrication is carried out exclusively by lithography technology. There is a demand for easy processing and low manufacturing costs.

[従来の技術] レジストとは一般に高分子塗膜で、光、電子線。[Conventional technology] Resist is generally a polymeric coating that can be exposed to light or electron beams.

X線、イオンビームなどの放射エネルギー線を照射して
溶媒に対する溶解性を変化させる性質の材料のことであ
り、それを応用して、半導体基板などの被露光基板をエ
ツチング加工する場合の保護マスクとして利用している
ものである。
A material whose solubility in a solvent changes when irradiated with radiant energy rays such as X-rays or ion beams, and is used as a protective mask when etching exposed substrates such as semiconductor substrates. It is used as a.

且つ、°レジストにはポジ型とネガ型とがあり、ポジ型
とは照射(露光)部分が溶媒に溶は易くなるレジストで
、ネガ型とは露光部分が溶媒に溶は難くなるレジストの
ことであるが、代表的なものの一つは、露光によってレ
ジストの分子量が変化し、分子量の小さい方が溶媒に溶
ける性質をもっている。即ち、光分解性のポリマー(!
!会合体は未露光部分の分子量が約1万である場合には
、露光すれば露光部分が分解して、例えば約1千の分子
量になり、従って、露光部分が溶媒に溶けてポジ型とな
る性質がある。また、光架橋型のポリマーは未露光部分
の分子量が小さく、それが露光されると露光部分が架橋
して分子量が増大し、従って、ネガ型となる。
In addition, there are two types of resists: positive type and negative type.Positive type refers to resists in which the irradiated (exposed) areas are easily dissolved in solvents, and negative types are resists in which exposed areas are difficult to dissolve in solvents. However, one typical example is that the molecular weight of the resist changes with exposure to light, and those with smaller molecular weights have the property of being more soluble in solvents. That is, photodegradable polymers (!
! If the unexposed part of the aggregate has a molecular weight of about 10,000, when exposed to light, the exposed part decomposes and becomes, for example, a molecular weight of about 1,000, and therefore the exposed part dissolves in the solvent and becomes positive type. It has a nature. Furthermore, photocrosslinkable polymers have a low molecular weight in unexposed areas, and when exposed, the exposed areas crosslink and increase in molecular weight, thus becoming negative-type.

ところで、従来より、レジストを被露光基板に塗布して
、次に、露光装置内でマスクを通して選択的にレジスト
面に光などの放射エネルギー線を照射し、しかる後、有
機溶剤などの溶媒に浸漬して溶解部分を除去(現像)し
て1、レジストの保護マスクを形成している。
By the way, conventionally, a resist is applied to a substrate to be exposed, and then the resist surface is selectively irradiated with radiant energy rays such as light through a mask in an exposure device, and then immersed in a solvent such as an organic solvent. The dissolved portion is removed (developed) to form a protective mask for the resist.

しかし、最近、自己現像と云う方法が検討されてきてお
り、その自己現像法の概要図を第3図に示している。同
図において、1は真空容器、2は排気口、3はマスク(
転写パターンを有するマスク)、4はヒータを収めたス
テージ、5は被露光基板であるが、このパターン形成方
法は被露光基板5を真空容器lに収容し、約100℃に
加熱しておいて、光などの放射エネルギー線をマスク3
を透過させて選択的にレジストに照射する。そうすると
、露光部分のレジストの分子量が小さくなって、その部
分のレジストが気化し排気され、パターンニングされる
と云うポジ型レジストの形成方法である。
However, recently, a method called self-development has been studied, and a schematic diagram of this self-development method is shown in FIG. In the figure, 1 is a vacuum container, 2 is an exhaust port, and 3 is a mask (
4 is a stage containing a heater, and 5 is a substrate to be exposed. In this pattern forming method, the substrate to be exposed 5 is housed in a vacuum container L and heated to about 100°C. , Masks radiant energy rays such as light 3
The resist is selectively irradiated through the light. This is a method of forming a positive resist in which the molecular weight of the resist in the exposed area becomes smaller, the resist in that area is vaporized and evacuated, and patterned.

この自己現像法は従来の溶媒による現像工程が不要なた
めに、処理工程が簡単になって、処理コストが安価にな
り、且つ、溶媒に浸漬する必要がないから、レジストパ
ターンが膨潤せず、従って、精度良いパターンが得られ
易い利点のある方法である。
This self-developing method does not require the conventional development process using a solvent, so the processing process is simplified and the processing cost is low.In addition, since there is no need to immerse the resist pattern in a solvent, the resist pattern does not swell. Therefore, this method has the advantage that it is easy to obtain a highly accurate pattern.

[発明が解決しようとする問題点] しかし、このような自己現像法によるパターン形成方法
においては、レジストが固体から気体に気化する過程で
熱フローが起こり、十分に正常なパターンが形成できな
いと云う問題がある。第4図にそれを図示しており、自
己現像法の露光処理中において、被露光基板5上の光照
射された部分は光分解の結果、低分子化し気化する前に
液状になるため、これが未露光部を這い上り図のような
形となり、パターン切れが十分にできなくなる。
[Problems to be Solved by the Invention] However, in such a pattern forming method using a self-developing method, heat flow occurs during the process in which the resist evaporates from a solid to a gas, making it impossible to form a sufficiently normal pattern. There's a problem. This is illustrated in FIG. 4. During the exposure process of the self-developing method, the portion of the exposed substrate 5 that is irradiated with light undergoes photodecomposition and is converted into a liquid state before being vaporized. It creeps up in the unexposed area, forming the shape shown in the figure, making it impossible to cut the pattern sufficiently.

本発明はこのレジストの熱フローを解消させて、自己現
像法によって精度良いレジストパターンを形成させるこ
とを目的とするものである。
The object of the present invention is to eliminate this heat flow in the resist and form a highly accurate resist pattern by a self-developing method.

[問題点を解決するための手段] その目的は、レジストポリマーを被露光基板に塗布し、
予め架橋させた後、該レジストポリマーに選択的に放射
エネルギー線を照射し、照射部分を分解気化させて、自
己現像するようにしたレジストパターンの形成方法によ
って達成される。
[Means for solving the problem] The purpose is to apply a resist polymer to the substrate to be exposed,
This is achieved by a resist pattern forming method in which the resist polymer is crosslinked in advance, and then the resist polymer is selectively irradiated with radiant energy rays, and the irradiated portions are decomposed and vaporized to self-develop.

[作用] 即ち、本発明は、予め架橋させた後、レジストポリマー
に選択的に放射エネルギー線を照射し、照射部分を分解
気化させてパターンニングする方法である。
[Function] That is, the present invention is a method of patterning by crosslinking the resist polymer in advance, selectively irradiating the resist polymer with radiant energy rays, and decomposing and vaporizing the irradiated portions.

そのように、予め架橋させれば、レジストが架橋剤で繋
がり、被露光基板面で1分子のように三次元的立体構造
に繋がる。それが放射エネルギー線を照射されると、照
射部分が分解して円い形状の分子となり、この円い形状
の分子は液化し難く、従って、軟化せずに直ぐ昇華して
熱フローが起こらなくなる。従って、精度良いパターン
が形成される。・ [実施例] 以下、実施例によって詳細に説明する。
If the resist is crosslinked in advance in this way, the resist will be connected by the crosslinking agent and will be connected to a three-dimensional three-dimensional structure like one molecule on the exposed substrate surface. When it is irradiated with radiant energy, the irradiated part decomposes into circular-shaped molecules, and these circular-shaped molecules are difficult to liquefy, so they sublimate immediately without softening, and no heat flow occurs. . Therefore, a highly accurate pattern is formed. - [Example] Hereinafter, it will be explained in detail using an example.

(2,6−Bis(4’ −Azido Benzal
)cyclohexanone)を混合したものを用い
る。
(2,6-Bis(4'-Azido Benzal
) cyclohexanone) is used.

それを被露光基板を塗布して、約150℃でプリベ−ク
する。そうすると、直鎖状ポリマー(PMMA)が架橋
されて繋がり、第1図にその反応式を示している。
A substrate to be exposed is coated with it and prebaked at about 150°C. Then, the linear polymer (PMMA) is crosslinked and connected, and the reaction formula is shown in FIG.

次いで、被露光基板を100℃に加熱しながら、エキシ
マレーザ(ArF;波長198n*)で露光する。そう
すると、レーザ光強度が約100mW/ad、  3分
間の照射でl]1Jff、0.5μmのレジストが精度
良く解像し、熱フローは起こらない。第2図はレーザ照
射による直鎖状ポリマーの分解の反応を示した図で、ギ
ザギザは直鎖状ポリマーである。
Next, the substrate to be exposed is exposed to light using an excimer laser (ArF; wavelength 198n*) while being heated to 100°C. Then, with a laser beam intensity of about 100 mW/ad and irradiation for 3 minutes, a 0.5 μm resist with l]1 Jff can be resolved with good accuracy, and no heat flow will occur. FIG. 2 is a diagram showing the reaction of decomposition of a linear polymer by laser irradiation, and the jagged parts are linear polymers.

この第1実施例は熱架橋させて、光分解させる例である
が、次に、光架橋させて、熱分解させる第2実施例を説
明する。
This first example is an example in which the material is thermally crosslinked and photodecomposed, and next, a second example in which the material is photocrosslinked and thermally decomposed will be described.

それを被露光基板を塗布して、水銀ランプ(波長435
.8nI++)で全面露光する。そうすると、直鎖状ポ
リマー(環化イソプレン)が光架橋されて繋がる。
Apply it to the substrate to be exposed, and use a mercury lamp (wavelength 435).
.. Expose the entire surface to 8nI++). Then, the linear polymer (cyclized isoprene) is photocrosslinked and connected.

次いで、被露光基板を100℃に加熱しながら、エキシ
マレーザ(KrF;波長248nm)で露光する。そう
すると、レーザ光強度約IW/cj  1パルス(Io
ns /パルス)の照射で膜厚0.6μmのレジストが
精度良く解像し、熱フローは起こらなくなる。
Next, the substrate to be exposed is exposed to light using an excimer laser (KrF; wavelength 248 nm) while being heated to 100°C. Then, the laser light intensity is approximately IW/cj 1 pulse (Io
The 0.6 μm thick resist is accurately resolved by irradiation (ns/pulse), and no heat flow occurs.

これは強いエネルギーを1パルス照射し、熱分解させる
方法である。
This is a method of irradiating one pulse of strong energy to cause thermal decomposition.

これらの実施例のように、本発明は予め架橋させて、細
長い直鎖状ポリマーを架橋剤で繋いで立体構造にしてお
く、それに放射エネルギー線を照射すると、丸い形状の
分子に分解され、この丸い形状の分子は液化し難<、従
って、昇華し易いために熱フローが起こらずに、精度良
いパターンが形成される。
As in these examples, the present invention involves pre-crosslinking elongated linear polymers, connecting them with a crosslinking agent to form a three-dimensional structure, and then irradiating it with radiant energy rays, which decomposes it into round-shaped molecules. Round-shaped molecules are difficult to liquefy and therefore easily sublime, so that a highly accurate pattern can be formed without heat flow.

他方、従来の予め架橋させていない自己現像法では、細
長い直鎖状ポリマーがそのまま露光して分解されるが、
この細長い形状の分子は液化し易く、従って、熱フロー
が起こり易いものである。
On the other hand, in conventional self-development methods that do not crosslink in advance, elongated linear polymers are exposed to light and decomposed;
Molecules with this elongated shape are more likely to liquefy and, therefore, more likely to generate heat flow.

[発明の効果] 以上の説明から明らかなように、本発明によれば照射部
分を分解気化させて、露光と同時に現像する自己現像法
において、熱フローが解消して精度良1)微細パターン
が形成され、従って、半導体装置のコスト低減と品質向
上に大きく貢献するものである。
[Effects of the Invention] As is clear from the above description, according to the present invention, in the self-development method in which the irradiated area is decomposed and vaporized and developed at the same time as exposure, heat flow is eliminated and 1) fine patterns can be formed with high accuracy. Therefore, it greatly contributes to cost reduction and quality improvement of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は架橋の反応式を示す例図、 第2図は分解の反応を示す図、 第3図は自己現像法の概要図、 第4図は従来の問題点を示す図である。 図において、 1は真空容器、    2は排気口、 3はマスク、      4はステージ、5は被露光基
板 を示している。 Cご →CH2−C→−(PMMA) −O H3 C=O C¥−13 ¥jIhつ反応177例閃 第1図 自己■免イ本迭/1積拳乙U 第3図
FIG. 1 is an example diagram showing the crosslinking reaction formula, FIG. 2 is a diagram showing the decomposition reaction, FIG. 3 is a schematic diagram of the self-developing method, and FIG. 4 is a diagram showing conventional problems. In the figure, 1 is a vacuum container, 2 is an exhaust port, 3 is a mask, 4 is a stage, and 5 is a substrate to be exposed. C→CH2−C→−(PMMA) −O H3 C=O C¥−13 ¥jIhtsu reaction 177 examples Flash Figure 1 Self ■ Men's book / 1 product fist U Figure 3

Claims (1)

【特許請求の範囲】[Claims]  レジストポリマーを被露光基板に塗布し、予め架橋さ
せた後、該レジストポリマーに選択的に光、電子線、X
線またはイオンビームを照射し、照射部分を分解気化さ
せて、自己現像するようにしたことを特徴とするレジス
トパターンの形成方法。
After applying a resist polymer to a substrate to be exposed and crosslinking it in advance, the resist polymer is selectively exposed to light, electron beams, and X-rays.
A method for forming a resist pattern, which comprises irradiating a resist pattern with a line or an ion beam, decomposing and vaporizing the irradiated portion, and self-developing the resist pattern.
JP14444087A 1987-06-09 1987-06-09 Method for forming resist pattern Pending JPS63307450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14444087A JPS63307450A (en) 1987-06-09 1987-06-09 Method for forming resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14444087A JPS63307450A (en) 1987-06-09 1987-06-09 Method for forming resist pattern

Publications (1)

Publication Number Publication Date
JPS63307450A true JPS63307450A (en) 1988-12-15

Family

ID=15362265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14444087A Pending JPS63307450A (en) 1987-06-09 1987-06-09 Method for forming resist pattern

Country Status (1)

Country Link
JP (1) JPS63307450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460941A2 (en) * 1990-06-08 1991-12-11 Fujitsu Limited Resist composition and process for forming resist pattern thereby
KR20020050524A (en) * 2000-12-21 2002-06-27 박종섭 Method for making fine photoresist pattern
KR100510448B1 (en) * 1998-01-13 2005-10-21 삼성전자주식회사 Manufacturing method of small photoresist pattern using thermal flow process for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460941A2 (en) * 1990-06-08 1991-12-11 Fujitsu Limited Resist composition and process for forming resist pattern thereby
KR100510448B1 (en) * 1998-01-13 2005-10-21 삼성전자주식회사 Manufacturing method of small photoresist pattern using thermal flow process for semiconductor device
KR20020050524A (en) * 2000-12-21 2002-06-27 박종섭 Method for making fine photoresist pattern

Similar Documents

Publication Publication Date Title
US5366851A (en) Device fabrication process
JP3277114B2 (en) Method of producing negative tone resist image
JPH07261393A (en) Negative resist composition
JPH07261392A (en) Chemical amplification resist and resist pattern forming method using the same
JPS63307450A (en) Method for forming resist pattern
JPH0722156B2 (en) Method for forming pattern of semiconductor device
JP4418605B2 (en) Pattern forming material and pattern forming method
KR100367502B1 (en) Manufacturing method for fine pattern of semiconductor device
JPH032869A (en) Manufacture of high heat-resistant relief structure
JP2662141B2 (en) Device manufacturing method
JPH04151668A (en) Formation of pattern
JPH03223857A (en) Pattern forming method
JP3437138B2 (en) Pattern forming material and pattern forming method
JPS6048023B2 (en) positive resist
JP3130672B2 (en) Photomask pattern forming method
JPH0263114A (en) Manufacture of semiconductor device
JPH04149441A (en) Formation of pattern
US8512937B2 (en) Lithographic dry development using optical absorption
JPH05216233A (en) Chemically amplified type resist and method for forming resist pattern
JPH08234434A (en) Chemical amplification type negative resist
JPH06267812A (en) Material and method for forming fine pattern
JPH0627668A (en) Negative resist sensitive to ionized radiation
JPH0425114A (en) Resist pattern forming method
JPS63288016A (en) Manufacture of photomask
JPH07301912A (en) Photosensitive composition and forming method of negative pattern