JPS63307289A - Pressure control device for ion exchange membrane method electrolytic cell - Google Patents

Pressure control device for ion exchange membrane method electrolytic cell

Info

Publication number
JPS63307289A
JPS63307289A JP62140553A JP14055387A JPS63307289A JP S63307289 A JPS63307289 A JP S63307289A JP 62140553 A JP62140553 A JP 62140553A JP 14055387 A JP14055387 A JP 14055387A JP S63307289 A JPS63307289 A JP S63307289A
Authority
JP
Japan
Prior art keywords
control valve
flow rate
chlorine
differential pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140553A
Other languages
Japanese (ja)
Inventor
Toichi Maruyama
丸山 東一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP62140553A priority Critical patent/JPS63307289A/en
Publication of JPS63307289A publication Critical patent/JPS63307289A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably realize control of differential pressures is a region of high pressures and good efficiency by operating large and small flow rate control valves respectively provided to chlorine and hydrogen output pipelines from an electrolytic cell by controllers based on the respective pressures. CONSTITUTION:The 1st and 2nd large and small flow rate control valves 13, 14; 18, 19 are provided in parallel to the Cl2, H2 output pipelines 5, 6 of the electrolytic cell 1. The 1st and 2nd controllers 15, 16 with a gap function and ordinary function are inputted with a measured pressure value PV1 and set value SV1 and make P.I.D. control computation with deviations for the parts where the respective deviations exceed the gap width. The opening degrees of the valves 13, 14 are controlled by outputs MV11, MV12. A sensor 17 measures the differential pressure DELTAPV of Cl2 and H2 The 3rd, 4th controllers 20, 21 with the gap function and ordinary function are inputted with the measured value DELTAPV and set value DELTASV and control the opening angles of the valves 18, 19 by the respective outputs MW21, MV22 in the same manner as mentioned above.

Description

【発明の詳細な説明】 く゛産業上の利用分野〉 本発明は、塩水より塩素と水素及び苛性ソーダを製造す
るイオン交換脱法電槽の出力塩素及び出力水素の圧力制
御の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in pressure control of output chlorine and output hydrogen of an ion exchange removal cell for producing chlorine, hydrogen and caustic soda from salt water.

・〈従来技術二・ 第2図に基いて従来技術の一例を説明する。1はイオン
交換を実行するための電槽であり、イオン交換膜2によ
って陽極室101と陰極室102に区分されている。
・〈Prior art 2〉 An example of the conventional technology will be explained based on FIG. 2. Reference numeral 1 denotes a battery container for performing ion exchange, which is divided into an anode chamber 101 and a cathode chamber 102 by an ion exchange membrane 2.

3は塩水を陽極室101に導く入力管路、4は循環陰極
液を陰極室102に導くための入力管路、5はイオン交
換後の塩素の出力管路、6はイオン交換後の水素の出力
管路である。
3 is an input pipe for introducing salt water to the anode chamber 101, 4 is an input pipe for introducing circulating catholyte to the cathode chamber 102, 5 is an output pipe for chlorine after ion exchange, and 6 is an output pipe for hydrogen after ion exchange. This is the output pipe.

7は塩素の出力管路に設けられた圧力センサーで、P 
V +はその測定値、8は同じく出力管路に設けられた
流量制御弁である。9は塩素の圧力調節計であり、測定
値PVIと設定値SVIの差を制御演綽した操作出力M
 V +により制御弁8の開度を操作して塩素の出力圧
をS V +に制御する。
7 is a pressure sensor installed in the chlorine output line, P
V + is the measured value, and 8 is a flow control valve also provided in the output pipe. 9 is a chlorine pressure regulator, which has an operational output M that controls the difference between the measured value PVI and the set value SVI.
The opening degree of the control valve 8 is controlled by V + to control the output pressure of chlorine to S V +.

10は水素の出力管路に設けられた圧力センサーで、P
V2はその測定値、11は同じく出力管路に設けられた
流量制御弁である。12は水素の圧力調節計であり、測
定値P V 2と設定値S V 2の差を制御演算した
操作出力M V 2により制御弁11の開瓜を操作して
水素の出力圧をSV2に制御する。
10 is a pressure sensor installed in the hydrogen output pipe, P
V2 is the measured value, and 11 is a flow control valve also provided in the output pipe. Reference numeral 12 denotes a hydrogen pressure regulator, which operates the opening of the control valve 11 using the operation output M V 2 obtained by controlling and calculating the difference between the measured value P V 2 and the set value SV 2 to adjust the hydrogen output pressure to SV 2. Control.

この様な電槽においては、イオン交換膜2を境にして副
極側に塩素が、陰極側に水素が発生する。
In such a battery case, chlorine is generated on the sub-electrode side and hydrogen is generated on the cathode side with the ion-exchange membrane 2 as a boundary.

塩素ガス内に数%以上の水素ガスが入ると爆発の可能性
があるので、混入率は0.5%以下で運転する必要があ
る。
If more than a few percent of hydrogen gas enters chlorine gas, there is a possibility of an explosion, so it is necessary to operate at a mixing rate of 0.5% or less.

このため、イオン交換膜に小さな膜破れがある場1合に
も水素が塩素側に侵入しないように、塩素側の圧力を水
素側の圧力よりやや高めに制御することが行われている
For this reason, the pressure on the chlorine side is controlled to be slightly higher than the pressure on the hydrogen side so that hydrogen does not enter the chlorine side even if there is a small membrane tear in the ion exchange membrane.

従って、第2図における構成では、SV+−8v2+Δ
Pの関係で各圧力調節計を設定して運転する。
Therefore, in the configuration shown in FIG. 2, SV+-8v2+Δ
Set each pressure regulator according to P and operate.

〈発明が解決しようとする問題点〉 一般に、電解効率を上げるためには圧力を高くする運転
が好ましいが、この様な個別圧力設定の問題点は、設定
圧力レンジ(致方mmH20)に対して差圧ΔPを数百
mmH2Oに管理しなければならず、圧力センサー、調
節計の精度を考えると安定な制御は難しく、差圧のバラ
ンスがくずれやすいので、圧力を低くして小さなレンジ
で実現せざるを得なかった。
<Problems to be solved by the invention> Generally, in order to increase electrolysis efficiency, it is preferable to operate at a high pressure, but the problem with such individual pressure settings is that The differential pressure ΔP must be controlled to several hundred mm H2O, and stable control is difficult considering the accuracy of the pressure sensor and controller, and the differential pressure balance is easily lost, so it is possible to achieve this by lowering the pressure and using a small range. I had no choice.

さらに、差圧の設定は大きtノれば膜破れの原因となり
、小さすぎる場合は膜破れのときの水素の侵入が防げな
いので、設定値は微妙であり、高精度の制御が要求され
る。
Furthermore, if the differential pressure setting is too large, it will cause membrane rupture, and if it is too small, it will not be possible to prevent hydrogen from entering when the membrane ruptures, so the setting value is delicate and requires highly accurate control. .

本発明は、圧力の高い効率良い領域でしかも差圧の制御
も安定に実現できる制御ll装置の構成を目的とする。
An object of the present invention is to construct a control device that can stably control differential pressure in a high-pressure and efficient region.

・ぐ問題点を解決Δ−るための手段〉 本発明の構成上の特徴は、塩素と水素を出力するイオン
交換膜法電界プラントにおける電槽の圧力制御装置にお
いて、電槽からの塩素出力管路に設けられた第1大流吊
制御弁及び第1小流間制御弁と、上記塩素出力管路の圧
力測定値と設定値に基づく操作出力により上記大流量制
御弁を操作するギャップ機能付きの第1調節計手段と、
上記圧力測定値と設定値を共通に受けその操作出力によ
り上記小流間制御弁を操作する第2調節計手段と、上記
電槽からの水素出力管路に段【ノられた第2犬流邑制御
弁及び第2小流組制御弁と、上記塩素出力管路の圧力測
定値と上記水素出力管路の圧力測定値の差圧測定値ど差
圧設定値に基づく操作出力により上記第2犬流吊制御弁
を操作するギャップ機能付きの第3調部J1手段と、上
記差圧測定値と差圧設定値を共通に受けその操作出力に
より上記第2小流間制御弁を操作する第4調節計手段と
を具備せしめた点にある。
・Means for solving the problems> The structural feature of the present invention is that in a pressure control device for a battery tank in an ion-exchange membrane electric field plant that outputs chlorine and hydrogen, the chlorine output pipe from the battery tank is A first large-flow suspension control valve and a first small-flow inter-flow control valve provided in the passage, and a gap function that operates the large-flow control valve by an operation output based on the pressure measurement value and set value of the chlorine output pipe. a first controller means of;
a second controller means that commonly receives the pressure measurement value and the set value and operates the small flow control valve according to its operation output; The second control valve and the second small flow group control valve are operated by the operation output based on the differential pressure set value such as the differential pressure measurement value between the pressure measurement value of the chlorine output pipe and the pressure measurement value of the hydrogen output pipe. a third adjustment section J1 means with a gap function for operating the dog flow suspension control valve; and a third adjustment section J1 means for commonly receiving the differential pressure measurement value and the differential pressure setting value and operating the second small flow control valve using the operation output thereof. 4 controller means.

・ぐ作用〕・ 電槽からの塩素出力管路に大流量制御弁及び小流間制御
弁が設けられ、塩素出力管路の圧力測定値と設定値を入
力するギャップ機能付きの調節計5一 手段の操作出力により大流量制御弁が操作され、上記圧
力測定値と設定値を共通に受ける通常機能の調節計の操
作出力により小流間制御弁が操作される。
・Function]・ A large flow rate control valve and a small flow control valve are provided in the chlorine output line from the tank, and a controller 5 with a gap function is installed to input the pressure measurement value and set value of the chlorine output line. The large flow control valve is operated by the operation output of the means, and the small flow control valve is operated by the operation output of the normal function controller which receives the pressure measurement value and the set value in common.

電槽からの水素出力管路に大流量制御弁及び小流間制御
弁が設けられ、塩素出力管路の圧力測定値と上記水素出
力管路の圧力測定値の差圧測定値と差圧設定値を入力す
るギャップ機能付きの調節計手段の操作出力により大流
量制御弁が操作され、上記差圧測定値と差圧設定値を共
通に受ける通常機能の調節計の操作出力により小流間制
御弁が操作される。
A large flow rate control valve and a small flow control valve are installed in the hydrogen output line from the battery tank, and the differential pressure measurement value and differential pressure setting between the pressure measurement value of the chlorine output line and the pressure measurement value of the hydrogen output line is provided. The large flow rate control valve is operated by the operation output of the controller means with a gap function that inputs the value, and the small flow control valve is operated by the operation output of the normal function controller that receives the differential pressure measurement value and the differential pressure set value in common. The valve is operated.

〈実施例〉 第1図に基いて本発明の詳細な説明する。第2図で説明
した要素と同一な構成要素については、同一符号を付し
てその説明は省略する。
<Example> The present invention will be explained in detail based on FIG. Components that are the same as those described in FIG. 2 are given the same reference numerals, and their description will be omitted.

°13は塩素の出力管路5に設けた第1大流量制御弁、
14は13と並列的に設けられた第1小流間制御弁であ
る。
°13 is the first large flow rate control valve provided in the chlorine output line 5;
14 is a first small flow control valve provided in parallel with 13.

15はギャップ機能を有する第1調節計であり、−〇− 圧力測定値P V + と設定値S V +を入力して
、偏差がギャップ幅を越えた部分に付いてP、I、D制
御演算を実行し、その操作出力MV++により第1犬流
量制御弁13の開度を操作する。
15 is the first controller with a gap function, which inputs the measured pressure value P V + and the set value S V +, and performs P, I, and D control when the deviation exceeds the gap width. The calculation is executed, and the opening degree of the first canine flow control valve 13 is controlled based on the operation output MV++.

16は通常機能の第2調節計であり、圧力測定値P V
 + と設定値SV+を15と共通に入力して、偏差偏
差に対してP、I、D制御演粋を実行し、その操作出力
MVI2により第1小流間制御弁14の開度を操作づる
16 is a second controller with normal function, and the pressure measurement value P V
+ and set value SV+ are input in common with 15, P, I, and D control operations are executed for the deviation deviation, and the opening degree of the first small flow control valve 14 is controlled by the operation output MVI2. .

17は差圧セン9″−で、出力管路5,6間の差圧、即
ち塩素と水素の差圧を測定する。ΔPVはその測定値で
ある。
17 is a differential pressure sensor 9'' which measures the differential pressure between the output pipes 5 and 6, that is, the differential pressure between chlorine and hydrogen. ΔPV is the measured value.

18は水素の出力管路6に設けた第2大流量制御弁、1
9は18と並列的に設置ノられた第2小流間制御弁であ
る。
18 is a second large flow rate control valve provided in the hydrogen output pipe 6;
9 is a second small flow control valve installed in parallel with 18.

20はギャップ機能を有する第3調節t1であり、差圧
測定値ΔPVと差圧設定値ΔSvを入力して、偏差がギ
ャップ幅を越えた部分に付いてP、I。
20 is a third adjustment t1 having a gap function, which inputs the measured differential pressure value ΔPV and the set differential pressure value ΔSv, and adjusts P and I for the portion where the deviation exceeds the gap width.

D制御演算を実行し、その操作出力MV2+により第2
大流量制御弁18の開度を操作する。
D control calculation is executed, and the second
The opening degree of the large flow rate control valve 18 is controlled.

21は通常機能の第4調節計であり、差圧測定値ΔPV
と差圧設定値ΔSvを20と共通に入力して、偏差に対
してP、1.D制御演算を実行し、その操作出力MV2
2により第2小流間制御弁19の開度を操作する。
21 is the fourth controller with normal function, and the differential pressure measurement value ΔPV
and differential pressure setting value ΔSv are input in common with 20, and P, 1. Executes D control calculation and outputs its operation output MV2
2 to control the opening degree of the second small flow control valve 19.

この様に、本発明の特徴の第1は、塩素側並びに水素側
の圧力制御をギャップ機能付きの調節計で操作される大
流量制御弁と、通常機能の調節計で操作される小流間制
御弁の並列制御構成とし、偏差が小さくギャップ幅以内
のときは小流間制御弁により高精度の圧力制御を実行し
、偏差がギャップ幅を越えて大きくなったときに大流量
制御弁を操作するようにして測定スパン内の圧力に対し
て均一の高精度の制御を実現している。
As described above, the first feature of the present invention is that the pressure control on the chlorine side and the hydrogen side is performed between a large flow control valve operated by a controller with a gap function and a small flow control valve operated by a controller with a normal function. The control valves are controlled in parallel, and when the deviation is small and within the gap width, the small flow control valve performs high precision pressure control, and when the deviation exceeds the gap width, the large flow control valve is operated. In this way, uniform and highly accurate control of the pressure within the measurement span is achieved.

この場合、ギャップのゲインをゼロより大きくづ゛る変
更を実行すれば、偏差がギャップ幅内の場合でも大流量
制御弁を緩やかに操作し、より安定な制御を実現するこ
ともできる。
In this case, if the gap gain is changed to be larger than zero, even if the deviation is within the gap width, the large flow rate control valve can be operated gently and more stable control can be achieved.

本発明の特徴の第2は、水素側の制御を、安定に制御さ
れている塩素側の圧力を基準とした差圧制御により実現
している点であり、差圧の安定かつ高精度な制御が実現
される。
The second feature of the present invention is that the hydrogen side is controlled by differential pressure control based on the stably controlled pressure on the chlorine side, resulting in stable and highly accurate differential pressure control. is realized.

〈発明の効果〉 以上説明したように、本発明によれば陽極室並びに陰極
室の圧力を高いレベルで一定差圧を有して安定、高精喰
で制御できる装置を容易に実現できるために、イオン交
換膜法の電界プロセスの効率を高める運転が可能とり、
省エネに寄与することができる。
<Effects of the Invention> As explained above, according to the present invention, it is possible to easily realize a device that can control the pressure in the anode chamber and the cathode chamber at a high level with a constant differential pressure, stably, and with high accuracy. , it is possible to operate to increase the efficiency of the electric field process of the ion exchange membrane method,
It can contribute to energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図は従来技
術の一例を示す構成図である。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing an example of the prior art.

Claims (1)

【特許請求の範囲】[Claims] 塩素と水素を出力するイオン交換膜法電界プラントにお
ける電槽の圧力制御装置において、電槽からの塩素出力
管路に設けられた第1大流量制御弁及び第1小流量制御
弁と、上記塩素出力管路の圧力測定値と設定値に基づく
操作出力により上記大流量制御弁を操作するギャップ機
能付きの第1調節計手段と、上記圧力測定値と設定値を
共通に受けその操作出力により上記小流量制御弁を操作
する第2調節計手段と、上記電槽からの水素出力管路に
設けられた第2大流量制御弁及び第2小流間制御弁と、
上記塩素出力管路の圧力測定値と上記水素出力管路の圧
力測定値の差圧測定値と差圧設定値に基づく操作出力に
より上記第2大流量制御弁を操作するギャップ機能付き
の第3調節計手段と、上記差圧測定値と差圧設定値を共
通に受けその操作出力により上記第2小流量制御弁を操
作する第4調節計手段とよりなるイオン交換膜法電槽圧
力制御装置。
In a pressure control device for a battery tank in an ion-exchange membrane method electric field plant that outputs chlorine and hydrogen, a first large flow rate control valve and a first small flow rate control valve provided in a chlorine output pipe from the battery tank, a first controller means with a gap function that operates the large flow rate control valve with a manipulated output based on the pressure measurement value and set value of the output pipe; a second controller for operating a small flow control valve; a second large flow control valve and a second small flow control valve provided in the hydrogen output line from the battery tank;
A third valve with a gap function that operates the second large flow rate control valve by an operation output based on a differential pressure measurement value and a differential pressure setting value between the pressure measurement value of the chlorine output pipe and the pressure measurement value of the hydrogen output pipe. An ion exchange membrane method cell pressure control device comprising a controller means, and a fourth controller means that receives the differential pressure measurement value and the differential pressure set value in common and operates the second small flow rate control valve by the operation output thereof. .
JP62140553A 1987-06-04 1987-06-04 Pressure control device for ion exchange membrane method electrolytic cell Pending JPS63307289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140553A JPS63307289A (en) 1987-06-04 1987-06-04 Pressure control device for ion exchange membrane method electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140553A JPS63307289A (en) 1987-06-04 1987-06-04 Pressure control device for ion exchange membrane method electrolytic cell

Publications (1)

Publication Number Publication Date
JPS63307289A true JPS63307289A (en) 1988-12-14

Family

ID=15271351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140553A Pending JPS63307289A (en) 1987-06-04 1987-06-04 Pressure control device for ion exchange membrane method electrolytic cell

Country Status (1)

Country Link
JP (1) JPS63307289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043885A (en) * 2002-07-11 2004-02-12 L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Fluorine gas-generating apparatus
CN111519208A (en) * 2020-04-21 2020-08-11 新疆中泰创新技术研究院有限责任公司 Electrolytic cell differential pressure control device and method
CN115011999A (en) * 2022-05-26 2022-09-06 同济大学 High-precision active pressure control method for alkaline water electrolytic cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043885A (en) * 2002-07-11 2004-02-12 L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Fluorine gas-generating apparatus
KR101065906B1 (en) * 2002-07-11 2011-09-19 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Apparatus for the generation of fluorine gas
CN111519208A (en) * 2020-04-21 2020-08-11 新疆中泰创新技术研究院有限责任公司 Electrolytic cell differential pressure control device and method
CN115011999A (en) * 2022-05-26 2022-09-06 同济大学 High-precision active pressure control method for alkaline water electrolytic cell
CN115011999B (en) * 2022-05-26 2023-08-29 同济大学 High-precision active pressure control method for alkaline water electrolysis tank

Similar Documents

Publication Publication Date Title
CN114134527B (en) Water electrolysis hydrogen production device and method with multiple electrolytic tanks
KR20020023217A (en) Hydrogen fuel replenishment process and system
JPS63307289A (en) Pressure control device for ion exchange membrane method electrolytic cell
US20210079545A1 (en) Hydrogen Gas Dissolving Apparatus
GB2607754A (en) Process and apparatus for production of ozone
EP0026591A1 (en) Control of the pH or ion concentration of an electrolyte stream
KR920003241B1 (en) Sodium hydro sulfite electrolytic cell process control system
CN210951273U (en) Automatic liquid level control system for deaerator of supercritical unit
ATE220735T1 (en) PRESSURE CONTROL SYSTEM FOR WATER ELECTROLYSIS CELLS
JP2007031739A (en) Method for controlling operation of water electrolysis apparatus, and device therefor
WO2023226285A1 (en) High-precision active pressure control method for alkaline water electrolyzer
CN114790551A (en) Liquid level balance control system and method for water electrolysis hydrogen production equipment
AU2022201771A1 (en) Electrolysis arrangement for alkaline electrolysis and method therefor
CN220450313U (en) Water electrolysis hydrogen production control debugging device
JPS58166672A (en) Operation control method of fuel cell
JP2518361Y2 (en) Oxygen gas Hydrogen gas supply device
CN117070963A (en) Device, system and method for controlling gas purity in water electrolysis hydrogen production system
JP2003119586A (en) Hydrogen supply system
CN108396327A (en) A kind of device and method of continuity method production tetramethylammonium hydroxide
JPS5975572A (en) Controller for pressure difference across the electrodes of fuel cell
KR102625513B1 (en) Separate type bop applied water electrolysis device
JPH0389466A (en) Feed gas flow control device for fuel cell
CN211199434U (en) Constant-pressure-controlled automatic variable-frequency liquid supply system
GB1149416A (en) Manufacture of chlorine and caustic alkali in diaphragm cells
JPS62160666A (en) Fuel cell power generation system