JPS63307239A - Al alloy having excellent corrosion resistance - Google Patents
Al alloy having excellent corrosion resistanceInfo
- Publication number
- JPS63307239A JPS63307239A JP13997887A JP13997887A JPS63307239A JP S63307239 A JPS63307239 A JP S63307239A JP 13997887 A JP13997887 A JP 13997887A JP 13997887 A JP13997887 A JP 13997887A JP S63307239 A JPS63307239 A JP S63307239A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- corrosion resistance
- corrosion
- recrystallization
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 46
- 238000005260 corrosion Methods 0.000 title claims abstract description 46
- 229910000838 Al alloy Inorganic materials 0.000 title abstract 5
- 238000001953 recrystallisation Methods 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 5
- 230000001276 controlling effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 7
- 230000032683 aging Effects 0.000 description 5
- 238000004299 exfoliation Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、耐食性を改善したLiを含有するAn)合金
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to Li-containing An) alloys with improved corrosion resistance.
[従来の技術]
Liを含有するA11合金は、延靭性に乏しく、これら
を改善しようとする研究及び発明は多い。[Prior Art] A11 alloy containing Li has poor ductility and toughness, and there are many studies and inventions aimed at improving these properties.
これらの合金の耐食性に関しては、表面処理(陽極処理
、純Alのクラツディング等)により耐食性を改善しよ
うとする方法が提案されているものの製造方法による本
質的な改善を試みたものはない。表面処理による方法は
確かに耐食性改善に有効な手段であるものの耐食性が問
題となる。Regarding the corrosion resistance of these alloys, although methods have been proposed to improve the corrosion resistance through surface treatments (anodic treatment, cladding with pure Al, etc.), no substantial improvements have been attempted through manufacturing methods. Although the surface treatment method is certainly an effective means for improving corrosion resistance, corrosion resistance becomes a problem.
Liを含有するAj7合金の耐食性は成分の偏析及び析
出物の分布により大きく影響を受けることが知られてい
るが、簡便で且つ有効な耐食性改善方法は見出だされて
いないのが現状である。It is known that the corrosion resistance of Aj7 alloy containing Li is greatly affected by the segregation of components and the distribution of precipitates, but at present no simple and effective method for improving corrosion resistance has been found. .
[発明が解決しようとする問題点]
本発明は、下記に示す従来技術の有する問題点を解決し
ようとするものである。[Problems to be Solved by the Invention] The present invention attempts to solve the following problems of the prior art.
(1)Li含有AΩ合金の通常製造方法で得られる結晶
粒は、初期素材の結晶粒がパンケーキ状に展伸したもの
であり、この粒界が選択的に腐蝕されるため、いわゆる
剥離腐蝕が起りやすい。(1) The crystal grains obtained by the normal manufacturing method of Li-containing AΩ alloys are pancake-like extensions of the crystal grains of the initial material, and the grain boundaries are selectively corroded, resulting in so-called exfoliation corrosion. is likely to occur.
(2)又、応力負荷状態で使用される部材では同様に応
力腐蝕割れが発生する。(2) Stress corrosion cracking also occurs in members used under stress.
即ち本発明は、LL含有AΩ合金の耐食性を改善するこ
とを目的とするものである。That is, the present invention aims to improve the corrosion resistance of LL-containing AΩ alloys.
[問題点を解決するための手段]
本発明者等は、種々のLi含有のAN合金を供試材とし
、加熱温度、加工率(断面減少率)及び仕上り温度を圧
延及び押出しにより変化させ、溶体化処理一時効後の耐
食性をASTM G34並びにJIS H8711
規定による腐蝕試験によって研究調査した結果、Liを
0.5〜4.0重足%含有したAi)合金は再結晶率が
30〜80%の場合、剥離腐蝕試験を行った後において
も剥離が生ぜず、耐食性に優れることを知見した。[Means for solving the problem] The present inventors used various Li-containing AN alloys as test materials, changed the heating temperature, processing rate (area reduction rate), and finishing temperature by rolling and extrusion, Corrosion resistance after temporary solution treatment was determined according to ASTM G34 and JIS H8711.
As a result of research and investigation using prescribed corrosion tests, it was found that Ai) alloys containing 0.5 to 4.0 weight percent Li do not peel off even after performing peel corrosion tests when the recrystallization rate is 30 to 80%. It was found that the corrosion resistance was excellent.
即ち本発明は、Liを0.5〜4.0重量%含有し、且
つ再結晶率を30〜80%とすることを特徴とする耐食
性に優れたA47合金である。That is, the present invention is an A47 alloy with excellent corrosion resistance, which is characterized by containing 0.5 to 4.0% by weight of Li and having a recrystallization rate of 30 to 80%.
[作用]
本出願人は、先に特願昭61−47317号にて、“L
i含有An)合金の結晶粒微細化方法”を出願した。[Operation] The present applicant previously proposed in Japanese Patent Application No. 61-47317 that
A method for grain refinement of i-containing An) alloy was filed.
本発明者等は、このLi含有Aρ合金の結晶粒微細化方
法について更に検討を重ねた結果、Li含有AI!合金
の耐食性改善のためには、ミクロ組織の微細部分再結晶
化を図ることが必要であることを見出だした。以下にそ
の技術的要因を示す。As a result of further studies on the grain refinement method of this Li-containing Aρ alloy, the present inventors found that Li-containing AI! It has been found that in order to improve the corrosion resistance of alloys, it is necessary to recrystallize fine parts of the microstructure. The technical factors are shown below.
Li含有AΩ合金の場合、A11−Liδ相が粒界上に
連鎖状に析出すると粒界の優先腐蝕が生じ、静的下では
剥離腐蝕あるいは応力下では応力腐蝕割れが生ずる。In the case of Li-containing AΩ alloys, when the A11-Liδ phase precipitates in a chain on the grain boundaries, preferential corrosion of the grain boundaries occurs, and exfoliation corrosion occurs under static conditions or stress corrosion cracking occurs under stress.
然し、所定の強度を得るために、加工後溶体化〜時効等
の処理を行った場合には、A、17−Liδ相の析出を
皆無にすることは不可能である。However, when treatments such as solution treatment and aging are performed after processing in order to obtain a predetermined strength, it is impossible to completely eliminate the precipitation of the A, 17-Liδ phase.
ここで、加工条件及び熱処理条件を制御し、部分再結晶
化を図ることにより、組織も微細となり、δ相の析出を
主として未再結晶展伸粒界上に局所的に分散させること
が可能となる。By controlling the processing and heat treatment conditions and achieving partial recrystallization, the structure becomes finer and it is possible to locally disperse the precipitation of the δ phase mainly on the unrecrystallized stretched grain boundaries. Become.
このような材料においては、腐蝕も局部的なものとなり
その程度も軽微となる。In such materials, corrosion is localized and the degree of corrosion is slight.
本発明者等は後述する実施例の第1図並びに第2表に示
すように種々のLi含有のAfI合金について種々試験
した結果、本発明を完成したものである。即ち、本発明
は、Liを0.5〜4.0%含有するA、Q合金の再結
晶率を30〜80%に制御し、耐食性を大幅に改善しよ
うとするものである。The present inventors completed the present invention as a result of conducting various tests on various Li-containing AfI alloys as shown in FIG. 1 and Table 2 of Examples described later. That is, the present invention aims to control the recrystallization rate of A and Q alloys containing 0.5 to 4.0% Li to 30 to 80%, thereby significantly improving the corrosion resistance.
尚、80%より高い再結晶率の場合はδの分散化はなさ
れるものの局所化が達成出来ないために、耐食性が劣る
。Note that when the recrystallization rate is higher than 80%, although δ is dispersed, localization cannot be achieved, resulting in poor corrosion resistance.
ここで再結晶率の定義としてケラ−試薬でエツチング後
、400倍程鹿の光学顕微鏡で観察した時、白くエツチ
ングされない粒の面積率(%)を採用した。Here, the recrystallization rate was defined as the area ratio (%) of grains that were not etched white when observed with a deer optical microscope at a magnification of 400 times after etching with Keller's reagent.
本発明では、所定の再結晶率を得るための加工及び熱処
理条件については特に規定しない。In the present invention, processing and heat treatment conditions for obtaining a predetermined recrystallization rate are not particularly defined.
但し一般的な製造工程の一例としては、■均質化処理−
■加工(冷間〜熱間)−■溶体化処理−■時効あるいは
加工(冷間〜温間)又はその組合わせが考えられ、■と
■の制御が比較的重要である。However, as an example of a general manufacturing process, ■ Homogenization treatment -
(1) Processing (cold to hot) - (2) Solution treatment - (2) Aging or processing (cold to warm) or a combination thereof, and control of (1) and (2) is relatively important.
尚、本発明は、Liに加え、Cu:4.0%以下、Mg
:4.0%以下、Mn:1.0%以下、Cr:0.5%
以下、Zr:0.5%以下、Ti:0.2%以下、B:
0.015%以下、V二0.2%以下、Si:0.5%
以下、及びFe:0.5%以下を単独又は2種以上添加
しても耐食性を損なうものではない。In addition, in the present invention, in addition to Li, Cu: 4.0% or less, Mg
: 4.0% or less, Mn: 1.0% or less, Cr: 0.5%
Below, Zr: 0.5% or less, Ti: 0.2% or less, B:
0.015% or less, V2 0.2% or less, Si: 0.5%
Adding the following and Fe: 0.5% or less alone or in combination will not impair corrosion resistance.
又、インゴツト材又は粉末プリフォーム材においても同
様の効果が得られ、熱間加工法も圧延法、鍛造法又は押
出し法等いづれの方法でもよく、特−4=
に限定するものではない。Further, the same effect can be obtained with an ingot material or a powder preform material, and the hot working method may be any method such as a rolling method, a forging method, or an extrusion method, and is not limited to -4=.
次に本発明の限定理由について述べる。Next, the reasons for the limitations of the present invention will be described.
Li量二0.5〜4.0%
0.5%未満ではLi含有Al1合金の特長である比重
低減及び弾性率向上の効果が期待出来ない。Li content 2: 0.5 to 4.0% If it is less than 0.5%, the effects of reducing specific gravity and improving elastic modulus, which are the features of Li-containing Al1 alloys, cannot be expected.
又4.0%を超えるとδ相が粗大且つ多量に析出するた
め、延靭性が大幅に劣化する。Moreover, if it exceeds 4.0%, the δ phase will precipitate coarsely and in large quantities, resulting in a significant deterioration in ductility and toughness.
Cu及びMgは時効析出により強度を上昇させる重要な
元素であるが、各々4.0%を超過して含有してもそれ
以上の強化は得られないだけではなく、過度の添加は冷
間及び熱間における加工性を劣化させる。従って添加量
の上限は各々4,0%が好ましい。Cu and Mg are important elements that increase strength through aging precipitation, but even if they each contain more than 4.0%, not only will further strengthening not be obtained, but excessive addition will also cause Deteriorates hot workability. Therefore, the upper limit of the amount added is preferably 4.0%.
Mn、Cr及びZrは適量の添加により合金中において
、微細な金属間化合物を形成し、熱処理時の結晶粒粗大
化を阻止し、微細な結晶粒組織を形成せしめる重要な元
素である。然し、Mnは1.0%、Cr及びZrは各々
0.5%を超過して添加すると、粗大な金属間化合物が
形成されやすく、材料の冷間及び熱間における加工性を
劣化させるたけてなく、靭性を劣化させる。従ってMn
、Cr及びZrの添加量の上限は、Mnは1.0%、C
r及びZrは各々0.5%とすることが好ましい。各々
の元素は、その上限以下の添加量であれば1、上述の劣
化は見られず問題ない。Mn, Cr, and Zr are important elements that, when added in appropriate amounts, form fine intermetallic compounds in the alloy, prevent grain coarsening during heat treatment, and form a fine grain structure. However, if Mn is added in excess of 1.0% and Cr and Zr are added in excess of 0.5% each, coarse intermetallic compounds are likely to be formed, which may deteriorate the cold and hot workability of the material. without deteriorating toughness. Therefore, Mn
, the upper limits of the amounts of Cr and Zr added are 1.0% for Mn and 1.0% for C.
Preferably, r and Zr are each 0.5%. If each element is added in an amount below its upper limit, the above-mentioned deterioration is not observed and there is no problem.
Ti、B及びVは、鋳造組織を微細化するため冷間及び
熱間における加工後に微細組織を得るために有効な添加
成分である。即ち、Ti、B及び■は材料の組織の安定
化のために有用な元素である。しかし、Ti及びVは各
々0.2%、Bは0.015%を超えて含有しても上述
の効果は変らない。むしろ未固溶の金属間化合物の割合
が増し、冷間及び熱間における加工性を劣化させる。Ti, B, and V are effective additive components for obtaining a fine structure after cold and hot working in order to refine the casting structure. That is, Ti, B, and (2) are elements useful for stabilizing the structure of the material. However, even if Ti and V are contained in amounts exceeding 0.2% each and B in amounts exceeding 0.015%, the above-mentioned effects do not change. Rather, the proportion of undissolved intermetallic compounds increases, deteriorating cold and hot workability.
従ってTi、B及びVの添加量の上限は、Tiは0.2
%、Bは0.015%、Vl;lto、2%とすること
が好ましい。Therefore, the upper limit of the amount of Ti, B, and V added is 0.2 for Ti.
%, B is preferably 0.015%, Vl;lto, 2%.
Si及びFeは、材料の高強度化、耐熱性の向上に有効
な元素であるが、各々0.5%を超えて添加すると靭性
の低下を引起こす。従ってSi及びFeの添加量は各々
0.5%を上限とすることが好ましい。Si and Fe are effective elements for increasing the strength and heat resistance of materials, but if each is added in excess of 0.5%, they cause a decrease in toughness. Therefore, it is preferable that the upper limit of the amount of Si and Fe added is 0.5% each.
次に再結晶率を30〜80%と定めたのは、耐食性改善
のためには、部分再結晶化を図り、組織を不均一なもの
とし、全面的な腐蝕を防ぐ必要がある。再結晶率30%
未満では粒界δ相の局部分散化が図られない。又逆に8
0%を超えると同様に粒界δ相の局部分散化が図られな
いため、耐食性が改善されない。従って適正な範囲とし
て30〜80%とした。Next, the recrystallization rate was set at 30 to 80% because, in order to improve corrosion resistance, it is necessary to achieve partial recrystallization to make the structure non-uniform and prevent full-scale corrosion. Recrystallization rate 30%
If it is less than that, local dispersion of the grain boundary δ phase cannot be achieved. On the other hand, 8
If it exceeds 0%, local dispersion of the grain boundary δ phase cannot be achieved, so corrosion resistance cannot be improved. Therefore, the appropriate range is 30 to 80%.
次に本発明の実施例について述べる。Next, examples of the present invention will be described.
[実施例]
[実施例1]
先ず2.61j−1,3Cu−0,12Zr (以上重
量%)含有のAΩ合金(◇◆印)、及び2.BLi−2
,6Cu−0,7Mg−0,15Zr含有のAρ合金(
O・印)の2種類を供試材とし、加熱温度、加工率(断
面減少率)及び仕上り温度を圧延及び押出しにより次ぎ
の如く変化 ・させ、
a:450℃加熱、70%加工(押出し)b :400
°C加熱、70%加工(圧延)c:400℃加熱、50
%加工(圧延)d:450℃加熱、30%加工(圧延)
e : 500℃加熱、60%加工(圧延)次いて溶体
化処理(480〜520℃)一時効(190℃X24h
r)後の耐食性を調査した結果、再結晶率が30〜80
%の場合は、ASTMG34て規定される剥離腐蝕試験
を行った後においても剥離が生ぜず、耐食性に優れるこ
とが明らかになった。試験の結果を第1図に示す。[Example] [Example 1] First, an AΩ alloy (◇◆ mark) containing 2.61j-1,3Cu-0,12Zr (at least % by weight); BLi-2
, 6Cu-0,7Mg-0,15Zr-containing Aρ alloy (
The heating temperature, processing rate (section reduction rate), and finishing temperature were changed as follows by rolling and extrusion. b:400
°C heating, 70% processing (rolling) c: 400 °C heating, 50
% processing (rolling) d: 450°C heating, 30% processing (rolling)
e: 500°C heating, 60% processing (rolling), solution treatment (480-520°C), temporary aging (190°C x 24 hours)
As a result of investigating the corrosion resistance after r), the recrystallization rate was 30 to 80.
%, no peeling occurred even after conducting a peeling corrosion test specified by ASTM G34, and it was revealed that the corrosion resistance was excellent. The results of the test are shown in Figure 1.
尚、◇○・・・剥離腐蝕なし
◆・・・・剥離腐蝕有り
[実施例2コ
次に第1表に示す合金を用いて、第2表に示す加工及び
溶体化条件にて実施し、ASTM G34並びにJIS
H8711の規定による腐蝕試験を行った。In addition, ◇○... No exfoliation corrosion ◆... Exfoliation corrosion [Example 2] Next, using the alloys shown in Table 1, processing and solution treatment conditions shown in Table 2 were carried out, ASTM G34 and JIS
A corrosion test was conducted according to H8711.
第1表に供試合金の化学組成(重量%)を、第2表に加
工及び溶体化製造条件及び腐蝕試験結果を示す。Table 1 shows the chemical composition (% by weight) of the test gold, and Table 2 shows processing and solution treatment conditions and corrosion test results.
前記第2表の加工前に520〜550℃の均質化処理実
施、又溶体化に0〜8%の冷間加工及び180〜190
℃の時効を実施し強度レベル45〜60 )cg f
/ +n+a 2を得た合金の腐蝕の結果として示す。Before the processing in Table 2, homogenization treatment at 520-550°C, and cold working at 0-8% and 180-190°C for solution treatment.
Aging is carried out at a strength level of 45 to 60) cg f
/ +n+a 2 is shown as a result of corrosion of the obtained alloy.
第2表のNo、 1〜11までは、夫々適正な再結晶率
範囲となっているため剥離腐蝕試験においても高々ピッ
トに止まっており、応力腐蝕割れも生じていない。No
、 12は低温で厳しい加工を施しているた・め、再結
晶率が83%と高すぎて耐食性に劣る。又はNo、 1
3.14は逆に比較的高温で加工度も低く、再結晶率が
30%に満たず耐食性が劣る。No. 1 to No. 11 in Table 2 each had an appropriate recrystallization rate range, so even in the exfoliation corrosion test, they remained at most pits, and stress corrosion cracking did not occur. No
, No. 12 undergoes severe processing at low temperatures, so the recrystallization rate is too high at 83%, resulting in poor corrosion resistance. Or No, 1
On the other hand, No. 3.14 has a relatively high temperature and low workability, has a recrystallization rate of less than 30%, and has poor corrosion resistance.
[発明の効果コ
本発明の耐食性に優れた1合金は、通常のA1合金に比
べ比重が小さく、弾性率が高いため、航空機の重量軽減
に有効で且つ耐食性に優れているので、構造材料として
甚だ有望な合金であり、単に航空機のみならずロケット
、車両、海浜地区の軽量構造物等にもその用途を拡大せ
しめ得るものである。[Effects of the Invention] The corrosion-resistant alloy 1 of the present invention has a lower specific gravity and a higher elastic modulus than the normal A1 alloy, so it is effective in reducing the weight of aircraft and has excellent corrosion resistance, so it can be used as a structural material. It is a very promising alloy, and its uses can be expanded not only to aircraft but also to rockets, vehicles, light structures in coastal areas, etc.
第1図は、実施例1の加工仕上り温度と再結晶率との腐
蝕試験結果のグラフである。FIG. 1 is a graph of the corrosion test results of working finish temperature and recrystallization rate in Example 1.
Claims (1)
0〜80%とすることを特徴とする耐食性に優れたAl
合金。Contains 0.5 to 4.0% by weight of Li and has a recrystallization rate of 3
Al with excellent corrosion resistance characterized by a content of 0 to 80%
alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13997887A JPS63307239A (en) | 1987-06-05 | 1987-06-05 | Al alloy having excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13997887A JPS63307239A (en) | 1987-06-05 | 1987-06-05 | Al alloy having excellent corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63307239A true JPS63307239A (en) | 1988-12-14 |
Family
ID=15258096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13997887A Pending JPS63307239A (en) | 1987-06-05 | 1987-06-05 | Al alloy having excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63307239A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04504592A (en) * | 1989-03-24 | 1992-08-13 | コマルコ アルミニウム リミテッド | Tough aluminum-lithium, aluminum-magnesium and magnesium-lithium alloys |
JP2019104968A (en) * | 2017-12-12 | 2019-06-27 | 株式会社フジクラ | Manufacturing method of aluminum alloy wire, manufacturing method of wire using the same, and manufacturing method of wire harness |
-
1987
- 1987-06-05 JP JP13997887A patent/JPS63307239A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04504592A (en) * | 1989-03-24 | 1992-08-13 | コマルコ アルミニウム リミテッド | Tough aluminum-lithium, aluminum-magnesium and magnesium-lithium alloys |
JP2019104968A (en) * | 2017-12-12 | 2019-06-27 | 株式会社フジクラ | Manufacturing method of aluminum alloy wire, manufacturing method of wire using the same, and manufacturing method of wire harness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0031605B2 (en) | Method of manufacturing products from a copper containing aluminium alloy | |
JP3705320B2 (en) | High strength heat treatment type 7000 series aluminum alloy with excellent corrosion resistance | |
US5573608A (en) | Superplastic aluminum alloy and process for producing same | |
US4073667A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition | |
US4806174A (en) | Aluminum-lithium alloys and method of making the same | |
US5938867A (en) | Method of manufacturing aluminum aircraft sheet | |
JP4185247B2 (en) | Aluminum-based alloy and heat treatment method thereof | |
JPH0995750A (en) | Aluminum alloy excellent in heat resistance | |
JP3748859B2 (en) | High-strength copper alloy with excellent bendability | |
CN113215459B (en) | Al-Cu-Mn nano-structure heat-resistant deformation aluminum alloy and preparation method thereof | |
JPS58167757A (en) | Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability | |
JP3843363B2 (en) | Heat treatment type 7000 series aluminum alloy having high strength and excellent corrosion resistance and method for producing the same | |
CN111254324A (en) | Al-Mg-Si alloy plate and manufacturing method thereof | |
JP2004002987A (en) | Aluminum alloy material for forging superior in high-temperature property | |
JPS63307239A (en) | Al alloy having excellent corrosion resistance | |
JPH11343529A (en) | High strength, high ductility and high toughness titanium alloy member and its production | |
JPS6339661B2 (en) | ||
JPS61163232A (en) | High strength al-mg-si alloy and its manufacture | |
JPH01501325A (en) | Aluminum-lithium alloy and its manufacturing process | |
JPH062092A (en) | Method for heat-treating high strength and high formability aluminum alloy | |
JPH04160131A (en) | Al-mg-si alloy plate excellent in strength and formability, and its manufacture | |
KR102642641B1 (en) | Al-Zn-Mg-Cu aluminum alloys and heat treatment method of the same | |
JPH08134615A (en) | Production of high strength titanium alloy excellent in characteristic of balance of mechanical property | |
JPH06287670A (en) | Al-mg alloy having high corrosion resistance and high strength and its production | |
JPS6013050A (en) | Heat-resistant alloy |