JPS63306870A - Polishing device - Google Patents

Polishing device

Info

Publication number
JPS63306870A
JPS63306870A JP62143076A JP14307687A JPS63306870A JP S63306870 A JPS63306870 A JP S63306870A JP 62143076 A JP62143076 A JP 62143076A JP 14307687 A JP14307687 A JP 14307687A JP S63306870 A JPS63306870 A JP S63306870A
Authority
JP
Japan
Prior art keywords
polishing
polishing tool
tool
pressure
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62143076A
Other languages
Japanese (ja)
Other versions
JPH0675822B2 (en
Inventor
Tsuneo Oku
於久 常雄
Koichi Noto
幸一 能戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62143076A priority Critical patent/JPH0675822B2/en
Publication of JPS63306870A publication Critical patent/JPS63306870A/en
Publication of JPH0675822B2 publication Critical patent/JPH0675822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To well polish a surface of plane and curved shape by providing a control system which is to control the position of a polishing tool, so that a pressure of abrasive grain fluid in the polishing tool determined corresponding to a size of clearance between the polishing tool and its polishing surface is generated to a fixed value, further the tilt of a workpiece. CONSTITUTION:A polishing device, switching an abrasive fluid supply selector valve 20 to a contactless polishing side, contactlessly polishes a surface of a metal mold 4 by allowing abrasive grain fluid 13 to pass through a hole 12 in a polishing tool 6 via a pump 14 and a pipe 15 and in a clearance 24 between the polishing tool 6 and the metal mold (workpiece) 4 in a high speed. In the time of this contactless polishing, a pressure, determined corresponding to a size of this clearance 24, of the abrasive grain fluid 13 in the polishing tool 6 is detected by a pressure detector 16. Inputting this detected value to a clearance control unit 17 to be compared with the preset value in its comparator circuit, in accordance with that compared result, the polishing device, which drives a servomotor 19 vertically moving the polishing tool 6, sets the pressure, that is, the clearance 24 to the preset value while the polished surface horizontal for the polishing tool 6 by controlling a tilt angle of the metal mold 4 with a control unit 21.

Description

【発明の詳細な説明】 〔注東上の利用分野〕 本発明は凹形状または凹形状を有する三次元自由曲面を
郁を労する研磨装置にかかわり、特に、三次元自由曲面
を高精度に研磨するのに好適な研磨装置に関する。
[Detailed Description of the Invention] [Field of Application] The present invention relates to a polishing device for polishing a concave shape or a three-dimensional free-form surface having a concave shape, and particularly for polishing a three-dimensional free-form surface with high precision. The present invention relates to a polishing device suitable for.

〔従来の技術〕[Conventional technology]

従来の凹形状または凹形状を有する三次元自由曲面を研
磨方法としては、特開昭61−33857号公報に記載
のように、上下可動自由なスピンドルの軸先端に設けら
れたポリラシャを被加工物に押し当て、ポリラシャと被
加工物とを相対的に移動させながら、該ポリシャと被加
工物との間に砥粒を介在させて、研磨することが行われ
ている。しかし、このような方法では、砥粒をポリラシ
ャに保持させて研磨が進行するため、被加工面に引っか
きによる微小な凹凸が生じ、表面を0,01μrILl
(mαXとすることは困難である。一方、表面あらさの
向上方法としては、特開昭61−71950号公報に記
載のように、定盤を回転させ、定盤に設けた溝によって
動圧を発生させ、ワークを浮上させながら研磨するもの
がある。しかし、このような構成の非接触研磨は、平面
形状のワークの研磨には適するが、曲面の研磨には不適
であり、かつ非接触研磨は加工能率が非常に悪かった。
As a conventional method for polishing a concave shape or a three-dimensional free-form surface having a concave shape, as described in Japanese Patent Application Laid-Open No. 61-33857, a polisher provided at the tip of a spindle that can freely move up and down is used to polish a workpiece. Polishing is performed by interposing abrasive grains between the polisher and the workpiece while moving the polisher and the workpiece relative to each other. However, in this method, polishing proceeds while the abrasive grains are held in the polisher, so minute irregularities occur on the processed surface due to scratches, and the surface becomes 0.01 μr ILl.
(It is difficult to set mαX to There is a method that polishes the workpiece while floating it.However, although this type of non-contact polishing is suitable for polishing flat workpieces, it is not suitable for polishing curved surfaces. The processing efficiency was very poor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、接触研際においては、加工能率は良好
であるが、砥粒をボリッシャに保持して加工するために
、ある程度の鏡面は得られるものの、さらに凹凸の少な
い鏡面を得るには不適当であり、また非接触研磨におい
ては、前加工で粗面をある程度の鏡面を得るまで加工す
るに時間を要し、研磨時間が長いという欠点があり、ま
た従来の非接触研磨方法では、曲面形状を有する被加工
物の表面を非接触状ル1で研磨することはできなかった
O 本発明の目的は、平面のみならず曲面形状の表面を加工
能率良く研磨でき、しかも研磨面あらさの良好な面が得
られる研W袈童を提供することにある。
The above-mentioned conventional technology has good processing efficiency in contact polishing, but because the abrasive grains are held in a bolisher during processing, although a certain degree of mirror surface can be obtained, it is difficult to obtain a mirror surface with even fewer irregularities. In addition, in non-contact polishing, it takes time to process a rough surface to a certain degree of mirror surface in the pre-processing, and the polishing time is long. It has not been possible to polish the surface of a workpiece with a non-contact type 1. An object of the present invention is to be able to polish not only flat surfaces but also curved surfaces with high processing efficiency, and to achieve good polishing surface roughness. Our goal is to provide a Ken W Kedō that provides a variety of aspects.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、接触研磨(前段)と非接触研磨(後段)と
を組み合わせて研磨を行うことにより、達成される。
The above object is achieved by performing polishing by combining contact polishing (first stage) and non-contact polishing (second stage).

本発明では、中心部に砥粒液噴出用の穴を有する研磨工
具を用い、まず工具とワークとの間に研磨剤を介在させ
て、接触加工により研磨を行い、研磨工程の進行に伴っ
て、工具をワークの研磨面に対向させ、前記穴から砥粒
液を噴出させて、非接触でワークを研磨する。また、こ
の非接触研磨のときに、研磨工具と研磨面との間隙の大
きさに対応して決まる研磨工具内の砥粒液の圧力を検出
し、その圧力が一定になるように研磨工具の位置を制御
しかつワークの傾きを制御する制御系を設けている。
In the present invention, a polishing tool having a hole for ejecting abrasive liquid in the center is used. First, an abrasive is interposed between the tool and the workpiece, and polishing is performed by contact processing. As the polishing process progresses, , the tool is placed opposite to the polishing surface of the workpiece, and the abrasive liquid is ejected from the hole to polish the workpiece without contact. Also, during this non-contact polishing, the pressure of the abrasive liquid inside the polishing tool, which is determined by the size of the gap between the polishing tool and the polishing surface, is detected, and the polishing tool is adjusted so that the pressure remains constant. A control system is provided to control the position and tilt of the workpiece.

〔作用〕[Effect]

上記の構成により、三次元自白曲面の被研磨面を仕上げ
る場合、ポリラシャを被加工面に当接させ、研磨剤を介
在させて研磨する接触加工と、研磨工具内の砥粒液の圧
力を検出し、その圧力が一定になるように研磨工具の位
置を制御することによって研磨工具の曲面に対する微小
な間隙を一定に保ち、一定の流速で砥粒液を曲面に供給
して加工する非接触研磨とを組み合わせることができる
With the above configuration, when finishing a surface to be polished that is a three-dimensional self-curving surface, contact processing is performed in which the polisher is brought into contact with the surface to be polished and polishing is performed with an abrasive agent interposed, and the pressure of the abrasive liquid in the polishing tool is detected. Non-contact polishing involves controlling the position of the polishing tool so that the pressure remains constant, thereby maintaining a constant minute gap between the polishing tool and the curved surface, and supplying abrasive liquid to the curved surface at a constant flow rate. can be combined with.

そして・この方法により、接触加工により加工能率の向
上ができるとともに、非接触加工によりスクラッチのな
い高?IW度の鏡面を得ることができる・〔実施例〕 以下、本発明の一実施例を図に基づいて説明する。第1
図は該実施例の装置の外観図、第2図は全体構成図であ
る。
And, with this method, machining efficiency can be improved through contact machining, and non-contact machining eliminates scratches. A mirror surface of IW degree can be obtained. [Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is an external view of the apparatus of this embodiment, and FIG. 2 is an overall configuration diagram.

第1図において、研磨ヘッド1は、油圧シリンダ2によ
り上下方向(Z軸方向)K移動しうるとともに、定圧倣
い制御装置3により、被加工物である金型4に常に一定
の荷重を付加するようになされている。変位検出器5は
、研磨ヘッド1に設置され壬、研磨ヘッド1のZ軸方向
の位置を検出する。研磨ヘッド1には研磨工具6が配設
され、研磨工具6は、金型4の1つの直径に沿って(第
1図では矢示X方向の金型4の直径方向)移勢する位置
に位置決めされている・金型4は金型載置テーブル7に
1&!mされ、@概モータ8により回転される魯金型載
首テーブル7は、サポート9に支持されて、サポート9
に配貢されるモータ10により傾きが調整される傾き角
制御装置21(第2図参照)に設置されている。変位検
出器5は、研磨工具6と金型4との位置関係を検出する
もので、その検出信号は金型回転数およびテーブル送り
速度制御装着11に送られ、これらの制御を行つ、傾き
角制御装置21(第2図参照)はモータ10に係合され
、金型4の傾き角を制御する。
In FIG. 1, a polishing head 1 can be moved in the vertical direction (Z-axis direction) K by a hydraulic cylinder 2, and a constant pressure profiling control device 3 always applies a constant load to a mold 4, which is a workpiece. It is done like this. The displacement detector 5 is installed on the polishing head 1 and detects the position of the polishing head 1 in the Z-axis direction. A polishing tool 6 is disposed in the polishing head 1, and the polishing tool 6 is at a position where it moves along one diameter of the mold 4 (in the diametrical direction of the mold 4 in the direction of arrow X in FIG. 1). The positioned mold 4 is placed on the mold mounting table 7 by 1&! The mold mounting table 7, which is rotated by a motor 8, is supported by a support 9.
The tilt angle control device 21 (see FIG. 2) is installed in which the tilt is adjusted by the motor 10 that is distributed to the tilt angle control device 21 (see FIG. 2). The displacement detector 5 detects the positional relationship between the polishing tool 6 and the mold 4, and its detection signal is sent to the mold rotation speed and table feed speed control mounting 11, which controls the inclination. An angle control device 21 (see FIG. 2) is engaged with the motor 10 and controls the tilt angle of the mold 4.

一方、第2図に示すように、研磨工具6には中心部に穴
12が開けてあり、この研磨工具6と、この穴12を通
して砥粒液13を工具に供給するためのポンプ14、配
管15、砥粒液管内の圧力を検出する圧力検出器16、
間隙制御装置17、研磨工具6の支持台18を上下に移
動させるためのモータ19、接触加工、非接触加工の一
方を行56合の研磨液供給切換弁20、および接触加工
時にZ@をクランプするクランパ(図示せず)とにより
、研磨工具部が構成されている。
On the other hand, as shown in FIG. 2, the polishing tool 6 has a hole 12 in its center, and the polishing tool 6, a pump 14, and piping for supplying abrasive liquid 13 to the tool through the hole 12. 15, a pressure detector 16 that detects the pressure inside the abrasive liquid pipe;
A gap control device 17, a motor 19 for moving the support stand 18 of the polishing tool 6 up and down, a polishing liquid supply switching valve 20 at row 56 for either contact processing or non-contact processing, and clamping Z@ during contact processing. A polishing tool section is constituted by a clamper (not shown).

次に、動作を説明する拳被加工物である金型4乞、傾き
角制御装[21上に載置された金型@置テーブル駈に械
買し、これらを直流モータ8により回転させる。次に、
油圧制御装置(図示せず)が作動して、研磨ヘッド1が
降下し、研磨工具6は金型4の曲面に接触し、研磨が開
始される。このときの研磨圧力は、油圧制御回路(図示
せず)により一定に作用するようになっている0次に、
研磨面が工具に対して水平になるように傾き角制御し、
かつ研磨速度が一定となるように内周忙いくにしたがい
金型4の回転数を増加させ、周速を一定として接触加工
を行う、研磨工程の進行とともに、研磨液供給切換弁2
oを非接触研磨側に切り換えることにより、砥粒液13
は、ポンプ14、配管15を経て、研磨工具6に設けた
穴12を通り、研磨量A6と金型4との間隙24を通っ
て排出される。
Next, a mold 4, which is a workpiece whose operation will be explained, is mechanically placed on a mold placed on a tilt angle control device [21], and these are rotated by a DC motor 8. next,
A hydraulic control device (not shown) is activated, the polishing head 1 is lowered, the polishing tool 6 comes into contact with the curved surface of the mold 4, and polishing is started. The polishing pressure at this time is maintained at a constant level by a hydraulic control circuit (not shown).
The tilt angle is controlled so that the polishing surface is horizontal to the tool,
In addition, as the polishing process progresses, the rotation speed of the mold 4 is increased as the inner circumference gets busier, and contact processing is performed with the peripheral speed constant.As the polishing process progresses, the polishing liquid supply switching valve 2 is activated.
By switching o to the non-contact polishing side, the abrasive liquid 13
is discharged through the pump 14, piping 15, through the hole 12 provided in the polishing tool 6, and through the gap 24 between the polishing amount A6 and the mold 4.

間隙24は配管15の内径の大きさや研磨工具60穴1
2の断面積に比べて十分小さいから、砥粒液が間隙24
内を毎分数10〜数100mの高速で通過するときに被
加工物表面を削りとり、非接触研磨が行われる。ところ
で、非接触状態における研磨では、砥粒液の流速の大小
釦よって研磨量が変って(る。そこで、本実施例では、
砥粒液の流速を一定圧するため、第3図に示す間限りと
圧力Pとの関係を用い、砥粒液の供給圧を圧力検出器1
6により検出し、研磨中の間隙24が一定となるように
工具値をインプロセス的に制御している。すなわち、間
隙なhlに設定したいときには、これに対応する圧力P
1の信号を電圧値として間隙制御装置17に入力し、こ
の制御装置内の比較回路により、もし実際の間隙がhl
より大きい場合には、サーボモータ19を駆動させて、
研磨工具6の支持台18を降下させ、htより小さい場
合には逆に支持台18を上昇させ、間隙をhlに一致さ
せる。この状態で、被加工物を、接触加工のときと同様
に、研磨面が工具に対して水平になるように傾き角制御
し、かつ研磨面の加工速度が一定となるように金型4の
回転数を内周にいくにしたがって増加させ、周速一定と
して非接触研磨を行う・以上のように構成と動作により
、被加工物の平面および曲面を、能率良く、高精度に研
磨できる。
The gap 24 is determined by the size of the inner diameter of the pipe 15 and the polishing tool 60 hole 1.
Since the cross-sectional area of 2 is sufficiently small compared to the cross-sectional area of 2, the abrasive liquid is
Non-contact polishing is performed by scraping the surface of the workpiece as it passes through the interior at a high speed of several tens to several hundreds of meters per minute. By the way, in non-contact polishing, the amount of polishing changes depending on the flow rate of the abrasive liquid.Therefore, in this example,
In order to maintain the flow rate of the abrasive liquid at a constant pressure, the supply pressure of the abrasive liquid is determined by the pressure detector 1 using the relationship between the gap and the pressure P shown in FIG.
6, and the tool value is controlled in-process so that the gap 24 during polishing is constant. In other words, when you want to set a gap hl, the corresponding pressure P
1 signal is input as a voltage value to the gap control device 17, and a comparison circuit within this control device determines if the actual gap is hl.
If it is larger, drive the servo motor 19,
The support stand 18 of the polishing tool 6 is lowered, and if the gap is smaller than ht, the support stand 18 is raised to make the gap match hl. In this state, as in contact machining, the inclination angle of the workpiece is controlled so that the polished surface is parallel to the tool, and the mold 4 is controlled so that the machining speed of the polished surface is constant. Non-contact polishing is performed by increasing the number of rotations toward the inner circumference and keeping the circumferential speed constant. With the configuration and operation described above, flat and curved surfaces of the workpiece can be polished efficiently and with high precision.

本実施例の装置によれば、非球面レンズや成型用金型や
X線用ミラーなどの表面を、スクラッチのない高精度な
面に迅速に研磨して、良負の鏡面を得ることができる拳
金属や石英などの材料の研磨の場合、従来の接触式の研
磨法だけの研磨では表面あらさが0.01μm l’1
pax程度であったのに比べ、本実施例のFefを用い
れば、0.003 μmTifiαX程度まで可能であ
る・特に、従来の接触研磨方法だけでは1スクラツチが
入る確率が大きかったが、接触加工を行ってから非接触
妖磨を行うことKより、スクラッチが入る恐れがなくな
るという利点がある。
According to the apparatus of this embodiment, the surfaces of aspherical lenses, molding molds, X-ray mirrors, etc. can be quickly polished to high-precision scratch-free surfaces to obtain good-quality mirror surfaces. When polishing materials such as fist metal or quartz, the surface roughness can be reduced to 0.01 μm l'1 using only the conventional contact polishing method.
pax, but using the FEF of this example, it is possible to achieve a thickness of about 0.003 μm Tifi It has the advantage that there is no risk of scratches compared to performing non-contact magic after you have done it.

〔発明の効果〕 本発明によれば、平面および曲面形状の表面を。〔Effect of the invention〕 According to the invention, surfaces of planar and curved shapes.

加工能率p(、しかも研磨面あらさの良好な面に研磨す
ることができる。
Machining efficiency p (, and it is possible to polish a surface with good polishing surface roughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の研磨装置の外観図、第2図
はその全体構成図、第3南は間隙と圧力との関係を示す
図である。 符号の説明 1・・・研磨ヘッド、2・・・油圧シリンダ、3川定圧
倣い制御装置、4・・・金型、5・・・変位検出器、6
・・・研磨工具、7・・・金型載置テーブル、8・・・
@尤モータ、11・・・金型回転数およびテーブル送り
速度制御装置、12・・・穴、13・・・砥粒液、16
・・・圧力検出器。 17・・・間隙制御装置、19・・・サーボモータ、2
1・・・傾き角制御装量、24・・・間隙。
FIG. 1 is an external view of a polishing apparatus according to an embodiment of the present invention, FIG. 2 is an overall configuration diagram thereof, and the third south diagram is a diagram showing the relationship between the gap and pressure. Description of symbols 1... Polishing head, 2... Hydraulic cylinder, 3-way constant pressure copying control device, 4... Mold, 5... Displacement detector, 6
... Polishing tool, 7... Mold placement table, 8...
@Yu motor, 11... Mold rotation speed and table feed speed control device, 12... Hole, 13... Abrasive liquid, 16
...Pressure detector. 17... Gap control device, 19... Servo motor, 2
1... Tilt angle control amount, 24... Gap.

Claims (1)

【特許請求の範囲】[Claims] 1、中心部に砥粒液噴出用の穴を有し、まず工具と被研
磨物との間に研磨剤を介在させて、接触加工により研磨
を行うとともに、研磨工程の進行に伴って、工具を被研
磨物の研磨面に対向させ、前記穴から砥粒液を噴出させ
て、非接触で被研磨物を研磨するための研磨工具を具備
し、非接触研磨のときに該研磨工具と研磨面との間隙の
大きさに対応して決まる研磨工具内の砥粒液の圧力を検
出する手段と、該圧力が一定になるように該研磨工具の
位置を制御しかつ被研磨物の傾きを制御する制御系を設
けたことを特徴とする研磨装置。
1. It has a hole in the center for ejecting abrasive liquid. First, an abrasive is interposed between the tool and the object to be polished, and polishing is performed by contact processing. As the polishing process progresses, the tool is provided with a polishing tool for polishing the workpiece in a non-contact manner by facing the polishing surface of the workpiece and ejecting an abrasive liquid from the hole, and the polishing tool and the polishing tool are used during non-contact polishing. A means for detecting the pressure of the abrasive liquid in the polishing tool, which is determined according to the size of the gap between the polishing surface and the surface, and controlling the position of the polishing tool so that the pressure is constant, and controlling the inclination of the object to be polished. A polishing device characterized by being equipped with a control system.
JP62143076A 1987-06-10 1987-06-10 Polishing method and apparatus Expired - Lifetime JPH0675822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143076A JPH0675822B2 (en) 1987-06-10 1987-06-10 Polishing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143076A JPH0675822B2 (en) 1987-06-10 1987-06-10 Polishing method and apparatus

Publications (2)

Publication Number Publication Date
JPS63306870A true JPS63306870A (en) 1988-12-14
JPH0675822B2 JPH0675822B2 (en) 1994-09-28

Family

ID=15330355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143076A Expired - Lifetime JPH0675822B2 (en) 1987-06-10 1987-06-10 Polishing method and apparatus

Country Status (1)

Country Link
JP (1) JPH0675822B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217444A (en) * 2014-05-14 2015-12-07 株式会社ディスコ Grinding device
JP2016030322A (en) * 2014-07-30 2016-03-07 スリーエム イノベイティブ プロパティズ カンパニー Polishing kit for polishing concavity of metallic article, polishing jig, and manufacturing method and polishing method of metallic article
JP2016083736A (en) * 2014-10-28 2016-05-19 日立建機株式会社 Spherical surface grinding apparatus and spherical surface grinding method using the same
CN105841864A (en) * 2016-03-28 2016-08-10 北京交通大学 Pressure measuring apparatus for steel rail grinding head
CN106475868B (en) * 2016-12-08 2018-08-03 东北大学 A kind of optical surface processing five axis two-dimensional ultrasound burnishing machines and its application method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217444A (en) * 2014-05-14 2015-12-07 株式会社ディスコ Grinding device
JP2016030322A (en) * 2014-07-30 2016-03-07 スリーエム イノベイティブ プロパティズ カンパニー Polishing kit for polishing concavity of metallic article, polishing jig, and manufacturing method and polishing method of metallic article
JP2016083736A (en) * 2014-10-28 2016-05-19 日立建機株式会社 Spherical surface grinding apparatus and spherical surface grinding method using the same
CN105841864A (en) * 2016-03-28 2016-08-10 北京交通大学 Pressure measuring apparatus for steel rail grinding head
CN106475868B (en) * 2016-12-08 2018-08-03 东北大学 A kind of optical surface processing five axis two-dimensional ultrasound burnishing machines and its application method

Also Published As

Publication number Publication date
JPH0675822B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US8965555B2 (en) Dressing method, method of determining dressing conditions, program for determining dressing conditions, and polishing apparatus
US6913522B2 (en) Method and device for grinding central bearing positions on crankshafts
US6461228B2 (en) Grinding and polishing machines
US9156130B2 (en) Method of adjusting profile of a polishing member used in a polishing apparatus, and polishing apparatus
US4928435A (en) Apparatus for working curved surfaces on a workpiece
TW434116B (en) Method and apparatus for grinding a workpiece
JP2009038267A (en) Substrate backside grinding apparatus and backside grinding method
JPS63306870A (en) Polishing device
JPH10109261A (en) Method and device for buffing
JP2000158306A (en) Both-surface grinding device
JP4162567B2 (en) Wafer notch mirror finishing machine
JP5329877B2 (en) Composite grinding method for workpieces
JPS63232957A (en) Profile polisher
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JPH04201178A (en) Polishing device and polishing method
JP2002059335A (en) Working fluid feeder, and working device
JPH10328995A (en) Curved surface grinding method
JPH0819948A (en) Curved face machining device and cross sectional shape evaluating method
JP2021185005A (en) Chamfering device
JP2003260646A (en) Grinding method of nonaxisymmetric and aspheric surface, and its device
JPH03170265A (en) Constant-size polishing method and device and work fixing plate
JP2022072047A (en) Grinding method of wafer
JPH11114817A (en) Grinding work method and grinder and grinding system
JPS63191572A (en) Polishing device
CN117177840A (en) Processing system