JPS63306729A - Clock crossover circuit - Google Patents

Clock crossover circuit

Info

Publication number
JPS63306729A
JPS63306729A JP62143744A JP14374487A JPS63306729A JP S63306729 A JPS63306729 A JP S63306729A JP 62143744 A JP62143744 A JP 62143744A JP 14374487 A JP14374487 A JP 14374487A JP S63306729 A JPS63306729 A JP S63306729A
Authority
JP
Japan
Prior art keywords
data
address counter
write
readout
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62143744A
Other languages
Japanese (ja)
Inventor
Shigeru Hamada
茂 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62143744A priority Critical patent/JPS63306729A/en
Publication of JPS63306729A publication Critical patent/JPS63306729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To preclude the possibility of an error in a readout data even if a write clock has a fluctuation by devising the circuit such that a difference between the count of a write address counter and a readout address counter is always not less than the setting value. CONSTITUTION:A data write means 10 writes a write data in parallel by using a write clock according to the address designation of a built-in write address counter and a multiplex means 11 uses a readout clock so as to multiplex the signal and to output the result according to the address designation of a built-in readout address counter. Moreover, a phase difference detection means 9 restarts the readout address counter from the initial value when a difference between the counts of the write address counter and the readout address counter, that is, a phase difference between a load shift pulse and a strobe pulse reaches a setting value or below thereby making the value not less than the setting value at all times. Thus, the possibility of the readout data in error is reduced even with the presence of fluctuation in the write clock.

Description

【発明の詳細な説明】 〔概要〕 クロック乗り換え回路において、書き込みアドレスカウ
ンタの出力を利用して書き込みデータを並列に書き込ん
で後、読み出しアドレスカウンタの出力を利用して多重
化して出力する。
[Detailed Description of the Invention] [Summary] In a clock switching circuit, write data is written in parallel using the output of a write address counter, and then multiplexed and output using the output of a read address counter.

この時、位相差検出手段で書き込みアドレスカウンタと
読み出しアドレスカウンタのカウント値の差が設定値以
下にならない様にすることにより、書き込みクロックに
揺らぎがあっても読み出しデータの誤りの可能性を減少
させる様にしたものである。
At this time, by using the phase difference detection means to prevent the difference between the count values of the write address counter and the read address counter from becoming less than a set value, the possibility of errors in the read data is reduced even if there is fluctuation in the write clock. It was made in a similar manner.

〔産業上の利用分野〕[Industrial application field]

本発明はクロック乗り換え回路2例えばパンクチャド符
号を用いた衛星通信用端局装置に使用するクロック乗り
換え回路の改良に関するものである。
The present invention relates to an improvement in a clock switching circuit 2 used in, for example, a satellite communication terminal equipment using punctured codes.

−IIQに、通信路を用いてデータを伝送する際に生ず
る誤りを自動的に検出・訂正する為の符号化は、このデ
ータに一定の規則に従って冗長ビットを付加する形で行
われる。
-IIQ, coding for automatically detecting and correcting errors that occur when transmitting data using a communication channel is performed by adding redundant bits to this data according to a certain rule.

この時、伝送路の帯域制限がなければそのまま送出でき
るが、例えば衛星通信回線の様に帯域制限の厳しい伝送
路ではできるだけ多数のデータを伝送したいので、付加
した冗長ビットを適当に消去し、そこにデータを挿入す
ることにより、例えば符号化率が1/2のデータを77
8と、より高い符号化率のデータ(パンクチャド符号と
云う)にして送出することがある。
At this time, if there is no bandwidth limit on the transmission path, the data can be transmitted as is, but on a transmission path with strict bandwidth restrictions, such as a satellite communication line, it is desirable to transmit as much data as possible, so the added redundant bits are appropriately erased. For example, by inserting data into 77
8, and may be sent as data with a higher coding rate (called punctured code).

ここで、符号化率1/2はデータビット1に対して冗長
ピントlを、778はデータビット7に対して冗長ビッ
ト1を付加したことを示す。
Here, the coding rate 1/2 indicates that redundant focus l is added to data bit 1, and 778 indicates that redundant bit 1 is added to data bit 7.

一方、受信側では冗長ビットの除去や、ドツプラーシフ
ト等によって生じたジッタを含んだ衛星回線側のクロッ
クから、ジッタを含まない地上回線側のクロックに同期
したデータに変換するクロック乗り換えを行って上記の
データを取り出すが、このクロック乗り換えの際にデー
タ欠落等の可能性が少ないことが必要である。
On the other hand, on the receiving side, redundant bits are removed and clock switching is performed to convert data from the satellite line clock, which contains jitter caused by Doppler shift, etc., to data that is synchronized with the terrestrial line clock, which does not include jitter. The above data is extracted, but it is necessary that there is little possibility of data loss during this clock change.

〔従来の技術〕[Conventional technology]

第4図は衛星通信端局装置説明図である。 FIG. 4 is an explanatory diagram of the satellite communication terminal equipment.

図において、アンテナ(図示せず)で受信された信号は
低雑音増幅器3周波数変換器及び復調部(図示せず)を
通って、例えば符号化率が7/8のlch及びQchの
データが取り出される。
In the figure, a signal received by an antenna (not shown) passes through a low-noise amplifier, 3 frequency converters, and a demodulator (not shown), and Lch and Qch data with a coding rate of 7/8, for example, are extracted. It will be done.

このデータは位相確定部1で位相が確定された後、速度
変換部2で冗長ビットの除去、クロック乗り換え、除去
されたビットにダミービットが挿入されて符号化率が1
72のデータに変換され、FEC(forward e
rror correction)復号化部3で元のデ
ータが取り出される。
After the phase of this data is determined by the phase determining section 1, the speed converting section 2 removes redundant bits, switches the clock, and inserts dummy bits into the removed bits to increase the coding rate to 1.
72 data and FEC (forward e.g.
(error correction) The decoding unit 3 extracts the original data.

次に、第5図は従来例のブロック図、第6図は第5図の
動作説明図を示す。ここで、第6図中の左側の符号は第
5図中の同じ符号の部分の波形を示す。以下、符号化率
は778.入力データはIch及びQchの2系列とし
て第6図を参照しながら第5図の動作を説明する。
Next, FIG. 5 is a block diagram of a conventional example, and FIG. 6 is an explanatory diagram of the operation of FIG. 5. Here, the symbols on the left side of FIG. 6 indicate the waveforms of the portions with the same symbols in FIG. Below, the encoding rate is 778. The operation of FIG. 5 will be explained with reference to FIG. 6 assuming that the input data is two series of Ich and Qch.

第5図において、電源投入時、又は通信開始時に書き込
みカウンタ4及び読み出しカウンタ7に外部より初期化
パルスを加えて初期化した後(例えば、カウント値を0
にくする)、自走的に第6図−〇及び第6図−■に示す
書き込みクロック(以下、W−CKと省略する)及び読
み出しクロック(以下、R−(Jと省略する)のカウン
トを行う。
In FIG. 5, after the write counter 4 and the read counter 7 are initialized by externally applying an initialization pulse when the power is turned on or communication is started (for example, the count value is set to 0).
count of the write clock (hereinafter abbreviated as W-CK) and read clock (hereinafter abbreviated as R-(abbreviated as J)) shown in Figure 6-○ and Figure 6-■. I do.

又、入力した符号化率が7/8のIch及びQchの書
き込みデータ(以下、 W−DTと省略する)はIch
及びQch用シリアルシフトレジスタ5に逐次、−GK
で書き込まれる(第6図〜■参照)。
In addition, the input Ich and Qch write data (hereinafter abbreviated as W-DT) with a coding rate of 7/8 are Ich
and sequentially to the Qch serial shift register 5, -GK
(See Figure 6~■).

一方、パラレルレジスタ6には書き込みカウンタ4から
4カウント毎に第6図−〇に示すストローブパルス(以
下、 STBと省略する)が加えられている。そこで、
シリアルシフトレジスタ5に書き込まれたIch4ビッ
ト及びQch4ビット、合計8ビツトの−DTがSTB
の立上り点で一括してパラレルレジスタ6にロードされ
る(第6図−■参照)。 次に、パラレルレジスタ6に
書き込まれた8ビツトのデータのうちの1ビツトの冗長
ビットを除く7ビツトが、読み出しカウンタ7より送出
されるロードシフトパルス(以下、 LSと省略する)
の立上り点でパラレルシリアルコンバータ8に並列にロ
ードされた後、R−CKでシリアルに読み出されて読み
出しデータが得られる(第6図−■、■参照)。
On the other hand, a strobe pulse (hereinafter abbreviated as STB) shown in FIG. 6-0 is applied to the parallel register 6 from the write counter 4 every four counts. Therefore,
The Ich 4 bits and Qch 4 bits written in the serial shift register 5, a total of 8 bits -DT, is the STB.
The signals are loaded all at once into the parallel register 6 at the rising point of (see FIG. 6--). Next, 7 bits of the 8-bit data written in the parallel register 6, excluding 1 redundant bit, are used as a load shift pulse (hereinafter abbreviated as LS) sent from the read counter 7.
After being loaded in parallel to the parallel-to-serial converter 8 at the rising point of , the data is serially read out by R-CK to obtain read data (see Fig. 6 - 2 and 2).

[発明が解決しようとする問題点〕 しかし、第5図及び第7図の問題点説明図に示す様に回
線雑音やドツプラー等によりW−CKにジ・7りが重畳
されるとデータの欠落等が生ずる可能性がある。
[Problems to be Solved by the Invention] However, as shown in the problem explanation diagrams in FIGS. 5 and 7, data is lost when J-7 is superimposed on W-CK due to line noise, Doppler, etc. etc. may occur.

即ち、シリアルシフトレジスタ5に書き込まれた、例え
ばIch用4ビットのW−DTを第7図−aに示す様に
STBでパラレルレジスタ6にロードし、更に、 LS
でパラレルシリアルコンバータ8に第7図−bに示す様
にロードする(第7図では4ビツトのW−DTをまとめ
てDT−1などで示している)。
That is, for example, the 4-bit W-DT for Ich written in the serial shift register 5 is loaded into the parallel register 6 by the STB as shown in FIG. 7-a, and then the LS
Then, the data is loaded into the parallel-serial converter 8 as shown in FIG. 7-b (in FIG. 7, 4-bit W-DTs are collectively indicated as DT-1, etc.).

今、第7図−3TBに示す様、ドツプラー等によりST
Bの立上り点■がLSの立上り点に接近し、揺らいでL
Sの立上り点よりも前に出る(第7図=STBの■の状
態)と、パラレルシリアルコンバータ8に書き込まれた
データに誤りが生ずる(第7図−bの■−1.−〇−2
参照)。
Now, as shown in Figure 7-3TB, ST is detected by Doppler etc.
The rising point of B approaches the rising point of LS, and as it fluctuates, L
If it appears before the rising point of S (Fig. 7 = state of STB ■), an error will occur in the data written to the parallel-serial converter 8 (■-1. -〇-2 of Fig. 7-b)
reference).

即ち、W−CKにジッタが重畳するとデータの欠落や二
重読み出し等の誤りが発生する可能性があると云う問題
点がある。
That is, there is a problem in that if jitter is superimposed on W-CK, errors such as data loss or double reading may occur.

〔問題点を解決する為の手段〕[Means for solving problems]

上記の問題点は第1図に示すクロック乗り換え回路によ
り解決される。
The above problem is solved by the clock switching circuit shown in FIG.

ここで、10は内蔵の書き込みアドレスカウンタのアド
レス指定に従って書き込みデータを逐次。
Here, 10 sequentially writes write data according to the address specification of the built-in write address counter.

書き込むデータ書き込み手段で、11は内蔵の読み出し
アドレスカウンタの指定に従って該データ書き込み手段
に書き込まれたデータを読み出して時間軸上に多重化し
て出力する多重化手段である。
In the data writing means, reference numeral 11 denotes a multiplexing means for reading the data written in the data writing means according to the designation of a built-in read address counter, multiplexing the read data on the time axis, and outputting the multiplexed data.

又、9は該書き込みアドレスカウンタと読み出しアドレ
スカウンタのカウント値の差が設定値以下になった時、
該読み出しアレスカウンタをリセットして、初期値から
カウント動作をさせる位相差検出手段である。
Further, 9 is when the difference between the count values of the write address counter and the read address counter becomes less than the set value,
This is a phase difference detection means that resets the readout counter and starts counting from an initial value.

〔作用〕[Effect]

本発明はデータ書き込み手段10で内蔵の書き込みアド
レスカウンタのアドレス指定に従って書き込みクロック
を用いて書き込みデータを並列に書き込んだ後、多重化
手段11で内蔵の読み出しアドレスカウンタのアドレス
指定に従って読み出しクロックを用いて多重化して出力
する。
In the present invention, the data writing means 10 writes write data in parallel using a write clock according to the address specification of a built-in write address counter, and then the multiplexing means 11 uses a read clock according to the address specification of a built-in read address counter. Multiplex and output.

又、位相差検出手段9で該書き込みアドレスカウンタと
該読み出しアドレスカウンタのカウント値の差、即ちL
SとSTBとの位相差が設定値以下になった時、読み出
しアドレスカウンタを初期値から再スタートさせて、常
に設定値以下にならない様にした。
Further, the phase difference detection means 9 detects the difference between the count values of the write address counter and the read address counter, that is, L
When the phase difference between S and STB becomes less than the set value, the read address counter is restarted from the initial value so that it does not always become less than the set value.

即ち、読み出しクロックが書き込みクロックより設定さ
れた位相差以内には近ずかず、又、並列書き込みデータ
を読み出しクロックで多重化して出力するので、書き込
みクロックに揺らぎがあっても読み出しデータが誤る可
能性は少なくなる。
In other words, the read clock does not come close to within the set phase difference from the write clock, and since the parallel write data is multiplexed with the read clock and output, there is a possibility that the read data will be erroneous even if there is fluctuation in the write clock. becomes less.

〔実施例〕〔Example〕

第2図は本発明の実施例のブロック図、第3図は第2図
の動作説明図を示す。尚、第3図中の左側の符号は第2
図中の同じ符号の部分の波形を示す。又、書き込みアド
レスカウンタlO1とバッファメモ1月02はデータ書
き込み手段10の構成部分を、読み出しアドレスカウン
タ111.マルチプレクサ112は多重化手段111の
構成部分を示す。
FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the operation of FIG. 2. In addition, the symbol on the left side in Fig. 3 is the second
The waveforms of the portions with the same symbols in the figure are shown. Further, the write address counter lO1 and the buffer memo January 02 are the constituent parts of the data writing means 10, and the read address counter 111. Multiplexer 112 represents a component of multiplexing means 111.

以下、符号化率は7/8として、第3図を参照しながら
第2図の動作を説明する。
Hereinafter, the operation of FIG. 2 will be explained with reference to FIG. 3, assuming that the coding rate is 7/8.

先ず、4進の書き込みアドレスカウンタ101は入力す
る一GKをカウントして、第3図−〇に示す様に0〜3
のカウント値を繰り返し出力している。
First, the quaternary write address counter 101 counts one GK that is input, and counts it from 0 to 3 as shown in Figure 3-0.
The count value is repeatedly output.

そこで、W−DTはバッファメモリ102内の上記カウ
ント値に対応するアドレスの部分にW−CKで逐次。
Therefore, W-DT is sequentially sent to the part of the address corresponding to the above count value in the buffer memory 102 using W-CK.

書き込まれるが、第3図−■に示す様に各ビットが4倍
に引き伸ばされる。尚、QAがOの立上りの時にIch
のW−DTが、1の立上りの時にQchのLDTがそれ
ぞれ書き込まれる(第3図−■、■参照)。
However, each bit is stretched by a factor of 4 as shown in FIG. In addition, when QA rises to O, Ich
The W-DT of the Qch is written at the rising edge of 1, and the LDT of the Qch is written respectively (see FIG. 3 - ■, ■).

そして、バッファメモリ102に書き込まれたlch及
びQchの4ビツト×2=8ビツトのデータはマルチプ
レクサ112に加えられるが、R−CKをカウントして
いる7進の読み出しアドレスカウンタ111の出力を利
用してQAがOの時はIchの−DTのデータが、lの
時はQchのW−DTのデータが逐次。
Then, the 4 bits x 2 = 8 bits of data of Lch and Qch written in the buffer memory 102 is applied to the multiplexer 112, but the output of the hexadecimal read address counter 111 that counts R-CK is used. When QA is O, Ich -DT data is sequential, and when it is I, Qch W-DT data is sequential.

カウント値に対応して選択されて第3図−■に示す様な
7ビツトの多重化された読み出しデータが得られる(第
3図−〇、■参照)。尚、1ビツトは冗長ビットだから
読み出さない。
7-bit multiplexed read data as shown in FIG. 3-■ is obtained by selection corresponding to the count value (see FIG. 3--). Note that 1 bit is a redundant bit, so it is not read out.

ここで、位相検出器91は書き込みアドレスカウンタ1
01と読み出しアドレスカウンタ111のカウント値を
比較してその差、即ち書き込みアドレスと読み出しアド
レスの位相差が設定値以下になった時、読み出しアドレ
スカウンタ111をリセットして初期値からカウント動
作させて設定値以上にする。
Here, the phase detector 91 is the write address counter 1
01 and the count value of the read address counter 111, and when the difference, that is, the phase difference between the write address and the read address, becomes less than the set value, reset the read address counter 111 and start counting from the initial value. Make it greater than or equal to the value.

又、読み出しアドレスカウンタのQaの出力01 (第
3図−■の斜線の部分)が第3図−■のす。
Also, the output 01 of Qa of the read address counter (the shaded part in FIG. 3--) is shown in FIG. 3--.

のほぼ中央になる様に位相を設定しておけば、1ビット
が4ビット分に引き伸ばされているので。
If you set the phase so that it is approximately in the center of , 1 bit will be expanded to 4 bits.

W−CXがシフタで揺らいでも読み出しデータが欠落す
る可能性は少なくなる。
Even if the W-CX fluctuates due to the shifter, the possibility of read data being lost is reduced.

即ち、書き込みアドレスと読み出しアドレスの位相差が
設定値以下にならない様にすると共に、W−CKの揺ら
ぎ幅に対応してパンツアメモリ102の段数を多くして
より長く引き伸ばすことになり、読み出しデータの誤り
の可能性を少な(することができる。
That is, in addition to preventing the phase difference between the write address and the read address from becoming less than the set value, the number of stages of the panzer memory 102 is increased in response to the fluctuation width of W-CK, and the read data is stretched longer. The possibility of error can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によれば、異速度クロッ
ク乗り換えの際に誤り°発生の可能性が少なくなると云
う効果がある。
As described in detail above, according to the present invention, there is an effect that the possibility of occurrence of an error is reduced when switching between different speed clocks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、 第2図は本発明の実施例のブロック図、第3図は第2図
の動作説明図、 第4図は衛星端局装置説明図、 第5図は従来例のブロック図、 第6図は第5図の動作説明図、 第7図は問題点説明図を示す。 図において、 9は位相差検出手段、 10はデータ書き込み手段、 11は多重化手段を示す。 ■LQ  θθ θl θ θ3 10  //  /
2  /  2θ 2/22クプ星が、ffi 才し1
1η バリ $4m ≠L明(v1°Iムス I を1衷汐tryプクヅ7図 矛5図 ■1.Q        θρ〜θ      lθ〜
/−5弔1/fJ
Fig. 1 is a block diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the invention, Fig. 3 is an explanatory diagram of the operation of Fig. 2, Fig. 4 is an explanatory diagram of the satellite terminal equipment, Fig. 5 6 is a block diagram of a conventional example, FIG. 6 is an explanatory diagram of the operation of FIG. 5, and FIG. 7 is an explanatory diagram of problems. In the figure, 9 is a phase difference detection means, 10 is a data writing means, and 11 is a multiplexing means. ■LQ θθ θl θ θ3 10 // /
2/2θ 2/22 Kupu star is ffi old 1
1η Bali $4m ≠Lming (v1° Imus I 1 try Pukudu 7 Zuko 5 figures■1.Q θρ〜θ lθ〜
/-5 condolence 1/fJ

Claims (1)

【特許請求の範囲】 内蔵の書き込みアドレスカウンタのアドレス指定に従っ
て書き込みデータを、並列に書き込むデータ書き込み手
段(10)と、 内蔵の読み出しアドレスカウンタの指定に従って該デー
タ書き込み手段に書き込まれたデータを読み出し、時間
軸上に多重化して出力する多重化手段(11)と、 該書き込みアドレスカウンタと読み出しアドレスカウン
タのカウント値の差が設定値以下になった時、該読み出
しアドレスカウンタをリセットして、初期値からカウン
ト動作をさせる位相差検出手段(9)とを有することを
特徴とするクロック乗り換え回路。
[Scope of Claims] Data writing means (10) for writing write data in parallel according to the address designation of a built-in write address counter; and reading the data written to the data writing means according to the designation of a built-in read address counter; When the difference between the count values of the write address counter and the read address counter becomes equal to or less than a set value, the multiplexing means (11) multiplexes and outputs the multiplexed data on the time axis, and resets the read address counter to an initial value. 1. A clock switching circuit comprising: phase difference detection means (9) for performing a counting operation.
JP62143744A 1987-06-09 1987-06-09 Clock crossover circuit Pending JPS63306729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143744A JPS63306729A (en) 1987-06-09 1987-06-09 Clock crossover circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143744A JPS63306729A (en) 1987-06-09 1987-06-09 Clock crossover circuit

Publications (1)

Publication Number Publication Date
JPS63306729A true JPS63306729A (en) 1988-12-14

Family

ID=15346005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143744A Pending JPS63306729A (en) 1987-06-09 1987-06-09 Clock crossover circuit

Country Status (1)

Country Link
JP (1) JPS63306729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400785B1 (en) 1998-07-13 2002-06-04 Fujitsu Limited Signal resynchronization apparatus having capability to avoid data corruption
EP1337056A2 (en) * 2002-02-19 2003-08-20 Fujitsu Limited Phase difference delay control system in distance measuring system
JP2013157856A (en) * 2012-01-31 2013-08-15 Nec Commun Syst Ltd Uninterruptible switching device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400785B1 (en) 1998-07-13 2002-06-04 Fujitsu Limited Signal resynchronization apparatus having capability to avoid data corruption
EP1337056A2 (en) * 2002-02-19 2003-08-20 Fujitsu Limited Phase difference delay control system in distance measuring system
EP1337056A3 (en) * 2002-02-19 2006-01-11 Fujitsu Limited Phase difference delay control system in distance measuring system
US7117383B2 (en) 2002-02-19 2006-10-03 Fujitsu Limited Phase difference delay control system for accommodating fluctuation in phase difference in distance measuring system
CN1327644C (en) * 2002-02-19 2007-07-18 富士通株式会社 Phase difference delay control system in ranging system
JP2013157856A (en) * 2012-01-31 2013-08-15 Nec Commun Syst Ltd Uninterruptible switching device and method

Similar Documents

Publication Publication Date Title
US4506372A (en) Method and apparatus for recognizing in a receiver the start of a telegram signal consisting of a bit impulse sequence
JP2655547B2 (en) CRC calculation method and HEC synchronizer in ATM switching system
JPS5816669B2 (en) Digital coding method for duration when transmitting image information
US4939734A (en) Method and a system for coding and decoding data for transmission
US7889763B2 (en) Data transmission apparatus and data transmission method
US4476458A (en) Dual threshold decoder for convolutional self-orthogonal codes
US6829315B1 (en) Alignment of parallel data channels using header detection signaling
US4320511A (en) Method and device for conversion between a cyclic and a general code sequence by the use of dummy zero bit series
US5852639A (en) Resynchronization apparatus for error correction code decoder
US7102553B2 (en) Signal transmission method and signal transmission device
JPS63306729A (en) Clock crossover circuit
US5408476A (en) One bit error correction method having actual data reproduction function
US5285458A (en) System for suppressing spread of error generated in differential coding
KR100194849B1 (en) Method and apparatus for forming error detection code
KR100336290B1 (en) High Speed Deinterleaving Apparatus for Bit synchronization and Method for the process thereof
DK163089B (en) PROCEDURE FOR TRANSMISSION AND RECEIVING DIGITAL INFORMATION SIGNALS
JP2656345B2 (en) Digital signal transmission equipment
JP3268337B2 (en) Line switching method
JPS63209336A (en) Time division multiplex packet communication system
JP3811498B2 (en) Synchronization detection method and synchronization detection circuit
JP3267581B2 (en) Frame synchronization method and apparatus
JP3422012B2 (en) Information decoding apparatus and method
SU1202057A1 (en) Device for correcting errors in code combination
EP3691131A1 (en) Encoder device, transmitter, decoder device, and receiver
KR100220387B1 (en) Traceback device for viterbi decoder