JPS63306657A - Solid-state image sensing device - Google Patents
Solid-state image sensing deviceInfo
- Publication number
- JPS63306657A JPS63306657A JP62142550A JP14255087A JPS63306657A JP S63306657 A JPS63306657 A JP S63306657A JP 62142550 A JP62142550 A JP 62142550A JP 14255087 A JP14255087 A JP 14255087A JP S63306657 A JPS63306657 A JP S63306657A
- Authority
- JP
- Japan
- Prior art keywords
- lens array
- image sensor
- light
- image sensing
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a solid-state imaging device.
近年、半導体集積技術の進歩に伴ない、撮像管に代わっ
て固体撮像素子が多く使われるよう罠なってきている。In recent years, with advances in semiconductor integration technology, solid-state image sensors are increasingly being used in place of image pickup tubes.
しかしながら撮像素子面上でトランジスタ、電極、配線
の占める割合が高く、従って光電変換部の面積の占める
割合が通常30%程度と低い。However, the ratio of transistors, electrodes, and wiring on the surface of the image sensor is high, and therefore the ratio of the area of the photoelectric conversion section is usually as low as about 30%.
即ち入射光利用効率が悪いという欠点があった。That is, there was a drawback that the efficiency of utilizing incident light was poor.
一方、固体撮像素子の空間周波数応答性は、素子の配列
ピッチで規定されているため、撮像面上にこれより高い
空間層波数を持つ像が形成されると、撮像素子で光電変
換された後の画伸に不要なモワレが生じてしまうという
欠点があった。On the other hand, the spatial frequency response of a solid-state image sensor is determined by the array pitch of the elements, so if an image with a higher spatial layer wavenumber is formed on the imaging surface, after photoelectric conversion by the image sensor, The drawback was that unnecessary moiré appeared in the image enhancement.
従来、このモワレを抑えるために水晶板の複屈折を用い
て、撮像面上で位置がわずかにずれた二重像を形成する
ことによって、像自体の空間周波数の高域成分を抑える
方法がとられていた。Conventionally, in order to suppress this moire, the birefringence of the crystal plate is used to form double images whose positions are slightly shifted on the imaging plane, thereby suppressing the high-frequency components of the spatial frequency of the image itself. It was getting worse.
前述したように、従来の固体撮像装置では撮仲素子の入
射光利用効率が低く、またモワレ発生防止に使用する水
晶板が高価であり、このため装置全体が高価なものとな
るという問題があった。As mentioned above, conventional solid-state imaging devices have a problem in that the efficiency of using incident light in the sensor element is low, and the crystal plate used to prevent moiré is expensive, making the entire device expensive. Ta.
光検出素子を平面的゛に配列した撮像素子の受光面側に
、上記光検出素子のそれぞれに被写体光を集光する微小
レンズの群から成るレンズアレイを配置し、さらにレン
ズアレイと被写体との間に位相格子体を配置し、撮像素
子、レンズアレイ、位相格子体のうち少なくとも隙接す
るλつを一体イピした。A lens array consisting of a group of microlenses that converges subject light onto each of the photodetecting elements is arranged on the light-receiving surface side of an image sensor in which photodetecting elements are arranged in a planar manner. A phase grating body was placed between them, and at least λ of the image pickup element, lens array, and phase grating body that were in contact with each other with a gap were integrated.
上記構成によれば、従来は撮像素子の光検出素子間を照
射して画像光として利用されていなかった光が、レンズ
アレイの各微小レンズによって光検出素子に集光入射す
るようになり、入射光利用効率が約30%向上する。ま
たレンズアレイの前方に配ηtされた位相格子によって
、被写体から光検出素子に向う光束がその進行方向にわ
ずかに異なる複数の光束に分けられ、これにより撮像面
での像の空間周波数の高域成分が低減し、不要なモワレ
を抑えることができる。According to the above configuration, light that was conventionally irradiated between the photodetecting elements of an image sensor and not used as image light is now condensed and incident on the photodetecting element by each microlens of the lens array. Light usage efficiency improves by approximately 30%. In addition, the phase grating arranged in front of the lens array divides the light beam from the subject toward the photodetector element into a plurality of light beams that differ slightly in the direction of travel, thereby increasing the spatial frequency of the image on the imaging surface. The ingredients are reduced and unnecessary moiré can be suppressed.
さらに、撮像素子、レンズアレイ、位相格子のうち少な
くともλつを一体化作製しているので、部品点数を削減
し、位首精度を向上することができる。Furthermore, since at least λ of the image sensor, lens array, and phase grating are integrally manufactured, the number of parts can be reduced and the positioning accuracy can be improved.
以下本発明を図面に示した実施例に基づいて詳細に説明
する。The present invention will be described in detail below based on embodiments shown in the drawings.
第1図は撮像装置の要部断面を示し、/は撮像素子、コ
はレンズアレイ、3は位相格子である。FIG. 1 shows a cross section of the main parts of an imaging device, where / is an image sensor, C is a lens array, and 3 is a phase grating.
撮像素子/は、半導体基板≠上に、光検出素子jの多数
を間隔をおいてライン廿又はマトリックス状に平面的に
配列して構成されている。レンズアレイ2及び位相格子
3は、撮像素子/の面から若干の空m+をおいて配置し
た平行平面のガラス、合成樹脂等から成る透明基板7の
肉厚内に、以下のようにして一体的に設けられている。The image sensor is constructed by arranging a large number of photodetecting elements j at intervals on a plane in a line or matrix on a semiconductor substrate. The lens array 2 and the phase grating 3 are integrally formed within the thickness of a parallel plane transparent substrate 7 made of glass, synthetic resin, etc., which is placed at a distance m+ from the surface of the image sensor, as described below. It is set in.
すなわちレンズアレイ2は、多数の微小レンズ2Aを光
検出素子よと同一のピッチで平面的に配列して構成され
、第2図に示すように各レンズ2人は半球状を成してお
り、平担な一方のレンズ面が基板7の光検出素子と対向
する面7Aと一致しているとともに、球面レンズ面が基
析内に向いている。そして外周から中心に向けて半径方
向に屈折率が次第に増大する屈折率分布領域で形成され
、同図中に破線で示す如く断面内で各等屈折率線は同心
円状を成している。That is, the lens array 2 is constructed by arranging a large number of microlenses 2A in a plane at the same pitch as the photodetecting elements, and as shown in FIG. 2, each lens has a hemispherical shape. One flat lens surface coincides with the surface 7A of the substrate 7 facing the photodetecting element, and the spherical lens surface faces into the matrix. It is formed of a refractive index distribution region in which the refractive index gradually increases in the radial direction from the outer periphery toward the center, and each equirefractive index line forms a concentric circle in the cross section, as shown by the broken line in the figure.
上記のような独立した多数の屈折率分布領域から成るレ
ンズアレイλは、例えばガラス平板の片mlをイオン透
過防止マスク材で被覆するとともにこのマスク材に所定
のレンズピッチで禁小開口を設け、この開口を通して基
板ガラスの屈折率増大効果の大きいT1等の一価陽イオ
ンをガラス中のイオンとの交換で拡散させることにより
作製することができる。The lens array λ consisting of a large number of independent refractive index distribution regions as described above is obtained by, for example, covering one milliliter of a flat glass plate with an ion permeation prevention mask material, and providing a narrow aperture on this mask material at a predetermined lens pitch. It can be produced by diffusing monovalent cations such as T1, which have a large effect of increasing the refractive index of the substrate glass, through this opening by exchanging with ions in the glass.
位相格子3は、透明基板7の、被写体側表面7B近くに
設けられており、前記レンズ2Aと同様に屈折率分布領
域から成り、その厚みが基板面平行方向に周期的に変化
している。The phase grating 3 is provided near the object-side surface 7B of the transparent substrate 7, and is made up of a refractive index distribution region like the lens 2A, and its thickness changes periodically in a direction parallel to the substrate surface.
上記構成の撮像装置の作用について以下説明する。The operation of the imaging device having the above configuration will be explained below.
第3図は、位相格子3の各位置での光路長の変化の様子
を示しており、入射光束の光路長変動、すなわち位相格
子3の位相深さの分布は、周期P。FIG. 3 shows how the optical path length changes at each position of the phase grating 3, and the optical path length fluctuation of the incident light beam, that is, the distribution of the phase depth of the phase grating 3 has a period P.
振幅△lで表わされる正弦的変動になるようにする。こ
の位相格子3によって入射光束は、位相格子3のピッチ
に応じた回折角を持つ律数の回折光に分けられる。A sinusoidal variation expressed by amplitude Δl is obtained. The phase grating 3 divides the incident light beam into diffracted lights having a diffraction angle corresponding to the pitch of the phase grating 3.
前述の光路長変化が正弦的になるようにし、振幅△lを
適当に設定することによって、回折光のパワーの大部分
を0次と十/次回折光に有効に集中させることができる
。By making the optical path length change sinusoidal and appropriately setting the amplitude Δl, most of the power of the diffracted light can be effectively concentrated in the 0th and 10th order diffracted lights.
第≠図は位相格子3による回折の様子を示した図であり
、位相格子30周周期1基板7の厚みも1及び屈折率n
を適当に選び、レンズアレイλの面上で被写体の像がレ
ンズ2Aの配列ピッチよりも小さい距離△だけずれるよ
うにする。Figure ≠ is a diagram showing the state of diffraction by the phase grating 3, in which the phase grating 30 cycles 1 the thickness of the substrate 7 are 1 and the refractive index n
is appropriately selected so that the image of the subject is shifted by a distance Δ smaller than the arrangement pitch of the lenses 2A on the surface of the lens array λ.
結像レンズ系の点像分布関数(PSF)をf (、rl
としたとき、位相格子3により距離Δだけずれた±/次
回折像に分れたとすれば、このときのPSFは、・・・
・・・(1)
式中、*はコンボリューションを表わすと表わされる。The point spread function (PSF) of the imaging lens system is f (, rl
If the phase grating 3 separates the diffraction images into ±/order diffraction images shifted by a distance Δ, then the PSF at this time is...
...(1) In the formula, * represents convolution.
従って位相格子3を含めた結像レンズ系の空間周波数応
答性(MTF)は、(1)式の7−リエ変換で与えられ
、以下のように表わされる。Therefore, the spatial frequency response (MTF) of the imaging lens system including the phase grating 3 is given by the 7-Lier transform of equation (1), and is expressed as follows.
F(ν) cos (△ν) ・・
・・・・(2)F(ν)はf(に)の7−リエ変換
すなわち、元来の結像レンズ系のMTF F(ν)が位
相格子3による2重像の形成により、C05(△ν)だ
けMTFが低下している事がわかる。この頃すなわち位
置ずれ量Δを適当に選ぶことにより1像の高周波成分を
低減させ不要なモワレな抑えることができる(2次元の
場合も同様)。F(ν) cos (△ν)...
(2) F(ν) is the 7-lier transform of f(to), that is, the MTF of the original imaging lens system. It can be seen that the MTF is reduced by Δν). At this point, by appropriately selecting the positional shift amount Δ, it is possible to reduce the high frequency components of one image and suppress unnecessary moiré (the same applies to the two-dimensional case).
位相格子3を通過した被写体光は第 図に示すようにレ
ンズアレイを成す各レンズ2人に入射し、入射光tはレ
ンズ2人中の屈折率分布によって屈折率のより大きいレ
ンズ中心軸寄りに曲げられ、撮像素子上の光検出素子!
受光面に集光される。The object light that has passed through the phase grating 3 is incident on each of the two lenses forming the lens array as shown in Figure 3, and the incident light t is directed closer to the center axis of the lens with the larger refractive index due to the refractive index distribution of the two lenses. The photodetector element on the image sensor is bent!
The light is focused on the light receiving surface.
したがってレンズJA・・・・・・を互いに密接配列し
ておけば、従来は光検出素子よ・間の非検出領域な照射
していた光も光検出素子jに受光されることになり、受
光量増加によって検出感度が従来よりも向上する。Therefore, by closely arranging the lenses JA..., the light that conventionally irradiated the non-detection area between the photodetector and the photodetector j will be received by the photodetector j. The increased amount improves detection sensitivity compared to conventional methods.
以上本発明を図面に示した実施例に基づいて説明したが
、図示側以外に押々の変形が可能であることは言うまで
もない。Although the present invention has been described above based on the embodiments shown in the drawings, it goes without saying that the invention can be modified in ways other than those shown in the drawings.
例えば、レンズアレイ2あるいは位相格子3は、平板基
材内に屈折率分布領域として形成する以外に、突出する
徽小球面あるいは正弦波状の凹凸で形成してもよい。ま
た、撮像索子lの受光面とレンズアレイ2との間は、空
mAとするかわりに透明板材を介在させ、撮像素子lと
レンズアレイ基板7とを上記透明板を介して一体に接合
することもできる。また、位相格子3の方向及び周期は
低減させたい周波数成分の値(2次元的な空間周波数成
分)に応じて適当に決められ、複数の位相格子が複合さ
れる場合もある。For example, instead of forming the lens array 2 or the phase grating 3 as a refractive index distribution region in a flat base material, it may be formed as a protruding small spherical surface or as a sinusoidal uneven surface. In addition, a transparent plate material is interposed between the light receiving surface of the image pickup element l and the lens array 2 instead of an empty space mA, and the image pickup element l and the lens array substrate 7 are integrally bonded via the transparent plate. You can also do that. Further, the direction and period of the phase grating 3 are appropriately determined according to the value of the frequency component (two-dimensional spatial frequency component) to be reduced, and a plurality of phase gratings may be combined.
さらに、説明の簡略化のため回折次数は士/次のみを記
述したが、高次の回折光が重なり合った状態でもその周
期と各回折光強度を適当に設定してやることにより、同
様の効果を得ることができる。Furthermore, to simplify the explanation, only the diffraction order is described as 2/2, but even when high-order diffracted lights overlap, the same effect can be obtained by appropriately setting the period and the intensity of each diffracted light. be able to.
本発明によれば、固体撮像装置の空間周波数成分の有害
な高域成分を低減することができ、さらに、レンズアレ
イにより入射光束が各光検出素子上に有効に集光され、
入射光利用効率を向上させることができる。According to the present invention, it is possible to reduce harmful high-frequency components of the spatial frequency components of a solid-state imaging device, and furthermore, the incident light beam is effectively focused on each photodetecting element by the lens array,
The efficiency of using incident light can be improved.
そして本発明によれば、上記空間周波数高域成分低減の
ための位相格子をレンズアレイとともに同一基板中に周
知技術を用いて簡単に形成することができ、感度及び画
像品質の優れた固体撮像装置を安価に製作することがで
きる。According to the present invention, the phase grating for reducing high spatial frequency components can be easily formed together with the lens array on the same substrate using well-known technology, and the solid-state imaging device has excellent sensitivity and image quality. can be manufactured at low cost.
図面は本発明の実施例を示し、第7図は固体撮像装置の
要部断面図、第2図は第1図の装置のレンズ部分を拡大
して示す断面図、第3図は同装置の位相格子部の光路長
変化の様子を示した図、第ψ図は上記位相格子の動作を
示した模式図である。The drawings show embodiments of the present invention; FIG. 7 is a cross-sectional view of a main part of a solid-state imaging device, FIG. 2 is a cross-sectional view showing an enlarged lens portion of the device shown in FIG. 1, and FIG. A diagram showing how the optical path length changes in the phase grating section, and Fig. ψ is a schematic diagram showing the operation of the phase grating.
Claims (2)
側に、前記光検出素子のそれぞれに被写体光を集光する
微小レンズの群から成るレンズアレイを配置し、さらに
該レンズアレイと被写体との間に位相格子体を配置し、
前記撮像素子、レンズアレイ、位相格子体のうち少なく
とも隣接する2つを一体化したことを特徴とする固体撮
像装置。(1) A lens array consisting of a group of microlenses that converges subject light on each of the photodetecting elements is arranged on the light-receiving surface side of an image sensor in which photodetecting elements are arranged in a planar manner, and the lens array and Place a phase grating between the subject and
A solid-state imaging device characterized in that at least two adjacent ones of the imaging element, lens array, and phase grating are integrated.
イ及び位相格子体を、共通の透明基板内に屈折率分布領
域によって形成した固体撮像装置。(2) A solid-state imaging device according to claim 1, wherein the lens array and the phase grating are formed by a refractive index distribution region within a common transparent substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62142550A JPS63306657A (en) | 1987-06-08 | 1987-06-08 | Solid-state image sensing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62142550A JPS63306657A (en) | 1987-06-08 | 1987-06-08 | Solid-state image sensing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63306657A true JPS63306657A (en) | 1988-12-14 |
Family
ID=15317954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62142550A Pending JPS63306657A (en) | 1987-06-08 | 1987-06-08 | Solid-state image sensing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63306657A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0470802A (en) * | 1990-07-12 | 1992-03-05 | Fuji Photo Film Co Ltd | Optical filter |
-
1987
- 1987-06-08 JP JP62142550A patent/JPS63306657A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0470802A (en) * | 1990-07-12 | 1992-03-05 | Fuji Photo Film Co Ltd | Optical filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920010921B1 (en) | Image sensor | |
JP5331107B2 (en) | Imaging device | |
JP3404607B2 (en) | Confocal optics | |
US20070181923A1 (en) | Solid-state image sensor comprising plural lenses | |
KR20100047862A (en) | Light detecting device for imaging | |
US9673241B2 (en) | Light-condensing unit, solid-state image sensor, and image capture device | |
JPS6215854A (en) | Optical imager | |
US12087783B2 (en) | Spectral element array, image sensor and image apparatus | |
US6738171B1 (en) | Color filter array and microlens array having holographic optical elements | |
JPH04103663U (en) | solid state imaging device | |
JP3992713B2 (en) | CMOS image sensor and manufacturing method thereof | |
US3728009A (en) | Phase filter combination with lens optics | |
TW202119094A (en) | Image sensor and image apparatus | |
JPS63306657A (en) | Solid-state image sensing device | |
JP6254775B2 (en) | Encoder | |
JP5975229B2 (en) | Color imaging device | |
JPS63291466A (en) | Solid-state image sensing device | |
JP2018201061A (en) | Solid state image sensor | |
JP2007079325A (en) | Microlens array | |
US20240063240A1 (en) | Light state imaging pixel | |
US11107851B2 (en) | Lens layers for semiconductor devices | |
US20230238414A1 (en) | Photodetector and camera system | |
JPS59182561A (en) | Semiconductor image sensor | |
JPH0548980A (en) | Solid-state image pickup element | |
JP2004028667A (en) | Photoelectric encoder and method of manufacturing scale |