JPS6330585A - Silicate phosphor - Google Patents

Silicate phosphor

Info

Publication number
JPS6330585A
JPS6330585A JP61172881A JP17288186A JPS6330585A JP S6330585 A JPS6330585 A JP S6330585A JP 61172881 A JP61172881 A JP 61172881A JP 17288186 A JP17288186 A JP 17288186A JP S6330585 A JPS6330585 A JP S6330585A
Authority
JP
Japan
Prior art keywords
trivalent
indium
phosphor
content
pentavalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61172881A
Other languages
Japanese (ja)
Other versions
JPH0262598B2 (en
Inventor
Tomoki Mikami
三上 知樹
Shinji Yokota
横田 伸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP61172881A priority Critical patent/JPS6330585A/en
Priority to KR1019870006427A priority patent/KR940006072B1/en
Priority to EP87109136A priority patent/EP0254066B1/en
Priority to DE8787109136T priority patent/DE3765200D1/en
Priority to US07/066,495 priority patent/US4795589A/en
Publication of JPS6330585A publication Critical patent/JPS6330585A/en
Publication of JPH0262598B2 publication Critical patent/JPH0262598B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the initial deterioration of the brightness and afterglow, by incorporating a particular trivalent element and a particular pentavalent element in predetermined amounts in a silicate phosphor contg. manganese as an activator. CONSTITUTION:A particular trivalent element and a particular pentavalent element are incorporated in a silicate phosphor contg. manganese as an activa tor. The trivalent element is indium or a combination of indium and boron, while the pentavalent element is at least one member selected from among arsenic, antimony, and bismuth. The trivalent element content is 1X10<-4>-2X10<-2> g-atom/mol, provided that the content is 1X10<-4>-1X10<-2> g-atom/mol when the trivalent element consists of only indium. The pentavalent element content is 3X10<-3> g-atom/mol or less, and the molar ratio of the trivalent element to the pentavalent element is 1.5 or more, thus according the aimed silicate phosphor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマンガンを付活剤として含有する珪酸塩螢光体
に関し、さらに詳しくは特定の3価の元素と5価の元素
全特定の量比の範囲で含有させることによって、輝度や
残光の初期劣化を改善し念珪酸塩螢光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a silicate phosphor containing manganese as an activator, and more particularly, it relates to a silicate phosphor containing manganese as an activator, and more specifically, a specific amount of specific trivalent elements and pentavalent elements. By containing it within a range of the ratio, initial deterioration of brightness and afterglow can be improved, and the phosphor relates to a silicate phosphor.

〔従来の技術〕[Conventional technology]

近年、細密な文字や図形の表示が行なわれるコンビ、−
ターの端末表示装置、航空機管制システムの表示装置等
に高解像度の陰極線管の使用が望まれている。
In recent years, combinations that display detailed characters and figures, -
It is desired to use high-resolution cathode ray tubes in terminal display devices for aircraft, aircraft control system display devices, etc.

このような高解像度陰極線管の螢光膜は長残光性の螢光
体が用いられることが多い。
The phosphor film of such high-resolution cathode ray tubes often uses a phosphor with long afterglow properties.

一般にこのような螢光膜を構成する螢光体は、残光時間
(本明細書では励起停止後発光輝度が励起時の10%ま
で低下するのに要する時間、すなわちrios残光時間
」を意味するものとする)が普通の陰極線管の螢光膜全
構成する短残光性螢光体よりも、約十数倍〜数十倍以上
長いことが必要である。
In general, the phosphor constituting such a phosphor film has an afterglow time (herein, the time required for the luminance to decrease to 10% of the excitation level after excitation is stopped, that is, the rios afterglow time). It is necessary that the length (supposed to be about 10 to 10 times longer) is longer than the short afterglow phosphor that makes up the entire phosphor film of an ordinary cathode ray tube.

しかして、このような長残光性の緑色発光珪酸亜鉛螢光
体としては、マンガンおよび砒素付活珪酸亜鉛螢光体(
P39螢光体)やマンガン付活珪酸亜鉛螢光体(pt螢
光体)が知られておシ、とくにP39螢光体は多量に実
用に供されている。
However, as such long afterglow green-emitting zinc silicate phosphors, manganese and arsenic activated zinc silicate phosphors (
P39 phosphor) and manganese-activated zinc silicate phosphor (PT phosphor) are known, and P39 phosphor in particular is in practical use in large quantities.

しかしながら、このように様々な用途に供されてくるに
つれ、輝度、残光、劣化、塗布特性等に多くの欠点が見
出され、これらの改良が強く望1れるようになっ几。九
とえは特公昭57−48594号、特開昭58−151
322号、特開昭59−184281号等の公報により
様々な組成が提案されている。
However, as it has been used for various purposes, many drawbacks have been discovered in terms of brightness, afterglow, deterioration, coating properties, etc., and improvements in these areas have been strongly desired. Kutoe is Special Publication No. Sho 57-48594, Japanese Patent Publication No. Sho 58-151
Various compositions have been proposed in publications such as No. 322 and JP-A-59-184281.

しかし、一般にマンガンを付活剤として含有する珪酸塩
螢光体を用いて造られ之ディスプレー管は、製造後、管
面上に同一・9ターンを数〜数十時間表示しIJ ニア
リティーの調整等の初期調整が行なわれる。
However, in general, display tubes made using silicate phosphors containing manganese as an activator display the same 9 turns on the tube surface for several to tens of hours after manufacture, and the display tubes display the same 9 turns on the tube surface for several to tens of hours, such as adjusting the IJ nearness, etc. Initial adjustments are made.

従来の珪酸塩螢光体を用いた螢光膜は、上記表示により
電子線照射を受は九部分が受けない部分に比べて残光が
短くなること(初期残光劣化)、および輝度が低下する
こと(初期輝度劣化)などの欠点があった。これが、デ
ィスプレー管の初期調整を複雑なものとし、数多くのブ
ラウン管を長時間ニーソングしなくてはならず、且つそ
の後の劣化も予測し難い。この工うなことから製品の各
回路の設定の困難さや初期調整時のパターンが輝度劣化
により画面に残ること、ま之部分的な残光劣化により核
部分のちらつきが発生することなど、様々な問題があっ
た。
In a conventional phosphor film using a silicate phosphor, as shown above, when exposed to electron beam irradiation, the afterglow is shorter (initial afterglow deterioration) and the brightness is reduced compared to the area that is not exposed to electron beam irradiation. However, there were some disadvantages such as the following (initial brightness deterioration). This makes the initial adjustment of display tubes complicated, requiring many cathode ray tubes to be knee-song for a long time, and subsequent deterioration is difficult to predict. This process causes various problems, such as difficulty in setting up each circuit of the product, the initial adjustment pattern remaining on the screen due to brightness deterioration, and flickering in the core due to partial afterglow deterioration. was there.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、電子線等の励起下で初期残光劣化や初
期輝度劣化全大幅に改善し念、マンガンを付活剤として
含有する珪酸塩螢光体を提供することにある。
An object of the present invention is to provide a silicate phosphor containing manganese as an activator, which can significantly improve initial afterglow deterioration and initial brightness deterioration under excitation with an electron beam or the like.

本発明者らは上記目的を連取するため罠、珪酸塩螢光体
について種々の研究を行なった結果、マンガンを付活剤
として含有する珪酸塩螢光体において、特定の3価の元
素と特定の5価の元素を特定のモル比で含有させると、
上記劣化が大幅に改善されることを見出して本発明に至
った。
The present inventors conducted various studies on traps and silicate phosphors in order to achieve the above objectives, and as a result, they identified a specific trivalent element in silicate phosphors containing manganese as an activator. When the pentavalent element is contained in a specific molar ratio,
The inventors have discovered that the above-mentioned deterioration can be significantly improved, leading to the present invention.

なお、舵記特公昭57−48594号公報には、上記3
価と5価の元素を等モル含有し7’hP39螢光体が開
示されているが、本発明者らはこれと異なる量比の点で
上記問題が解決されることを見出したものである。
In addition, the above-mentioned 3.
Although a 7'hP39 phosphor containing equal moles of valent and pentavalent elements has been disclosed, the present inventors have found that the above problem can be solved by using a different quantitative ratio. .

本発明の珪酸塩螢光体は、マンガンを付活剤として含有
し3価と5価の元素を含有する珪酸塩螢光体において、
該3価の元素がインジウム又は硼素とインソウム該5価
の元素が砒素、アンチモン及びビスマスの少なくとも1
種であり、該3価の元素の含有量が1×10〜2×10
 グラム原子1モル、3価の金属がインジウムだけの場
合は1×10〜l×10 グラム原子1モル、該5価の
元素の含有量が3×10 グラムぶ子1モル以下であり
、且つ上記3価と5価の元素の含有量のモル比(3価の
元素15価の元素)が1.5以上であることを特徴とす
る。
The silicate phosphor of the present invention is a silicate phosphor containing manganese as an activator and containing trivalent and pentavalent elements.
The trivalent element is indium or boron and insium, and the pentavalent element is at least one of arsenic, antimony, and bismuth.
seeds, and the content of the trivalent element is 1 x 10 to 2 x 10
1 mol of gram atom, if the trivalent metal is only indium, 1 x 10 to 1 x 10 gram atom, 1 mol of the pentavalent element, the content of the pentavalent element is 1 mol or less of 3 x 10 gram atoms, and the above It is characterized in that the molar ratio of the content of trivalent and pentavalent elements (trivalent element to 15valent element) is 1.5 or more.

マンガンを付活剤として含有する珪酸塩螢光体としては
、最も代表的なものにマンガン付活珪酸亜鉛系螢光体が
あるが、これ以外にも、九とえはマンガン付活珪酸マグ
ネシウム系螢光体、マンガンおよび鉛付活珪酸カルシウ
ム系螢光体など2価の金属陽イオンの珪酸塩螢光体があ
る。
The most typical silicate phosphor containing manganese as an activator is a manganese-activated zinc silicate-based phosphor, but there are also manganese-activated magnesium silicate-based phosphors. There are divalent metal cation silicate phosphors such as phosphors, manganese and lead activated calcium silicate phosphors.

以下、本発明を最も代表的なマンガン付活珪酸亜鉛系螢
光体の製造方法に基づいて、詳しく説明する。
Hereinafter, the present invention will be explained in detail based on the most typical method for producing a manganese-activated zinc silicate-based phosphor.

まず螢光体原料としては 1)酸化亜鉛(ZnO)もしくは炭酸塩、シーウ酸塩な
ど高温で容易にZooに変わシ得る亜鉛化合物 11)二酸化珪素(SiO□)もしくはエチルシリケー
ト、珪酸など高温で容易に810□に変わ夛得る珪素化
合物 ri)酸化マンガン(Mn02)もしくは金属マンガン
、炭酸塩、ノ・ログン化物、硝酸塩、硫化物など高温で
マンガンの酸化物に変わカ得るマンガン化合物 iv)インジウム及び硼素の酸化物もしくは高温で容易
にインジウム及び硼素の酸化物に変わり得るインジウム
及び硼素化合物 V)砒i、アンチモンおよびビスマスの酸化物もしくは
金属、へロrン化物など高温で容易に砒素、アンチモン
およびビスマスの酸化物に変わり得る砒素、アンチモン
およびビスマスま念はそれらの化合物 が用いられる。
First, the raw materials for the phosphor include 1) Zinc compounds that can be easily converted to Zoo at high temperatures, such as zinc oxide (ZnO), carbonates, and oxalates; 11) Silicon dioxide (SiO□), ethyl silicate, and silicic acid, which can be easily converted to Zoo at high temperatures. Silicon compounds that can be converted into 810□ri) Manganese oxide (Mn02) or manganese compounds that can be converted to manganese oxides at high temperatures, such as metal manganese, carbonates, nitrides, sulfides, etc.iv) Indium and boron oxides or compounds of indium and boron that can be easily converted into oxides of indium and boron at high temperatures V) Oxides or metals of arsenic, antimony and bismuth, heronides etc. Arsenic, antimony and bismuth can be converted into oxides of arsenic, antimony and bismuth, and their compounds are used.

上記螢光体原料を秤取し、ついで充分に混合して螢光体
原料混合物を得る。混合はゲールミル、ミキサーミル、
乳鉢等を用いて乾式で行なってもよいし、水、アルコー
ル、弱酸等を媒体とし被−スト状態として湿式で行なっ
てもよい。得られる螢光体の発光輝度、粉体特性等全向
上させることを目的として、螢光体原料混合物にさらに
融剤を添加混合してもよい。
The above-mentioned phosphor raw materials are weighed out and then thoroughly mixed to obtain a phosphor raw material mixture. Mixing is done using Gale mill, mixer mill,
It may be carried out in a dry manner using a mortar or the like, or it may be carried out in a wet manner using water, alcohol, weak acid, etc. as a medium and in a coated state. A flux may be further added to the phosphor raw material mixture for the purpose of improving the luminance, powder properties, etc. of the obtained phosphor.

なお、上記原料中i■)、■)は高温で焼成すると、そ
の一部は揮発する傾向があるので、焼成温度と時間等に
合わせて若干長目に添加される。
It should be noted that among the above raw materials i.sub.1) and .2), when fired at high temperatures, some of them tend to volatilize, so they are added slightly longer depending on the firing temperature, time, etc.

つぎに、上記螢光体原料混合物をアルミナルツボ、石英
ルツ?等の耐熱性容器に充填して焼成を行なう。焼成は
空気中(酸化性雰囲気中)、窒素ガス雰囲気、アルゴン
ガス雰囲気等の中性雰囲気中あるいは少量の水素ガスを
含有する窒素ガス雰囲気、炭素雰囲気等の還元性雰囲気
中で1000℃〜1350℃、好ましくは1200℃〜
1300℃の温度で1回ないしは数回(3〜4回)行な
われる。
Next, mix the above phosphor material mixture into an alumina crucible or a quartz crucible. Fill it in a heat-resistant container such as , etc., and perform baking. Firing is carried out at 1000°C to 1350°C in air (oxidizing atmosphere), in a neutral atmosphere such as a nitrogen gas atmosphere or argon gas atmosphere, or in a reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon atmosphere. , preferably from 1200°C
This is carried out once or several times (3 to 4 times) at a temperature of 1300°C.

なお、上記螢光体の母体原料を500℃〜1300℃で
仮焼成し、母体原料の粒度成長を行なうと、さらに良好
な結果が得られる。
Further, even better results can be obtained if the base material of the phosphor is pre-sintered at 500 DEG C. to 1300 DEG C. and the grain size of the base material is grown.

焼成時間は耐熱性容器に充填される螢光体原料混合物の
童、採用される焼成温度等によって異なるが、一般に上
記焼成温度範囲では0.5〜6時間が適当であり、1〜
4時間が好ましい。焼成後、得られる焼成物を粉砕、洗
浄(水あるいは弱い鉱酸、弱アルカリまたは弱い有機酸
等で行なってもよい)、乾燥、篩分けなど螢光体製造分
野で一般に採用される各操作によって処理すれば、本発
明の螢光体を得ることができる。
The firing time varies depending on the size of the phosphor raw material mixture filled in the heat-resistant container, the firing temperature employed, etc., but in general, 0.5 to 6 hours is appropriate in the above firing temperature range, and 1 to 6 hours.
4 hours is preferred. After firing, the fired product obtained is subjected to various operations generally employed in the field of phosphor manufacturing, such as crushing, washing (this may be done with water, weak mineral acids, weak alkalis, weak organic acids, etc.), drying, and sieving. After processing, the phosphor of the present invention can be obtained.

このようにして得られ九本発明の螢光体と従来の珪酸亜
鉛螢光体(P39)とを各々沈降塗布法によりガラス板
上に均一に塗布して螢光膜を形成し、管の製造方法に従
ってディスプレー管を製造し、各々のディスプレー管を
用いて螢光面の連続励起による発光強度劣化特性を測定
し几結果を、第1図に示す。
The thus obtained phosphor of the present invention and the conventional zinc silicate phosphor (P39) are each applied uniformly onto a glass plate by a precipitation coating method to form a phosphor film, and a tube is manufactured. Display tubes were manufactured according to the method, and the emission intensity deterioration characteristics due to continuous excitation of the fluorescent surface were measured using each display tube. The results are shown in FIG.

同図によれば本発明の珪酸亜鉛螢光体が従来品に比べて
大巾に発光強度劣化特性にすぐれることが明白である。
According to the figure, it is clear that the zinc silicate phosphor of the present invention has significantly better luminous intensity deterioration characteristics than conventional products.

次に表1は残光劣化特性を測定した結果を示すもので、
本発明の珪酸亜鉛螢光体が従来品に比べ残光劣化特性に
すぐれることが明らかである。
Next, Table 1 shows the results of measuring afterglow deterioration characteristics.
It is clear that the zinc silicate phosphor of the present invention has better afterglow deterioration characteristics than conventional products.

表1 第2図は初期残光劣化特性とインジウムの含有量との関
係を示すものである。第3図はインジウムとアンチモン
の含有量を一定にした場合及びインジウムと硼素とアン
チモンの含有it−一定にし九場合の砒素の含有量と1
710残光時間および残光劣化特性との関係を示すもの
、第4図は3価の元素がインジウムのみの場合、インジ
ウムの含有量と相対輝度との関係を示すもので、これに
明らかなとおシ、インジウムを多量に添加すると、相対
輝度が著しく低下するので好ましくない。このため、イ
ンジウムの含有量は1×lO〜I Xl0−2グラム原
子1モルの範囲が適当であり、好ましくは2×10〜5
X10 グラム原子1モルの範囲が推奨される。
Table 1 Figure 2 shows the relationship between initial afterglow deterioration characteristics and indium content. Figure 3 shows the arsenic content and 1 when the contents of indium and antimony are constant, and when the contents of indium, boron, and antimony are constant.
Figure 4 shows the relationship between the 710 afterglow time and afterglow deterioration characteristics, and shows the relationship between the indium content and relative brightness when the only trivalent element is indium. However, if a large amount of indium is added, the relative brightness will drop significantly, which is not preferable. Therefore, the appropriate content of indium is in the range of 1 x lO to I
A range of X10 gram atom to 1 mole is recommended.

以上のグラフにより、3filfiの元素の含有量は1
×10〜2×10 グラム原子1モル、3価の元素がイ
ンジウムのみの場合は1×10〜1×10 グラム原子
1モル、5価の元素は3×10 グラムぶ子1モル以下
、3価と5価の元素の含有量のモル比(3価の元素15
価の元素)は1.5以上とするのが適当である。なお、
上記モル比の上限は5価の元素が砒素のみの場合500
、また5価の元素がアンチモン、ビスマスのうち少なく
とも1種である場合50とするのが適当である。
According to the above graph, the content of the element 3filfi is 1
×10 to 2 × 10 1 mole of gram atom, if the only trivalent element is indium, 1 × 10 to 1 × 10 1 mol of gram atom, 3 × 10 if the pentavalent element is 1 mole or less of gram atom, trivalent and the molar ratio of the content of pentavalent elements (trivalent element 15
It is appropriate that the valence element) be 1.5 or more. In addition,
The upper limit of the above molar ratio is 500 if the pentavalent element is arsenic only.
, and when the pentavalent element is at least one of antimony and bismuth, it is appropriate to set it to 50.

以下、実施例の説明に入るが、そこで用b7を試験法に
ついて先に述べる。
Examples will be explained below, and the test method for B7 will be described first.

デマウンタブル装置による測定方法: (イ) テストピースの作製 2.5X3cmのテストピースに被検査螢光体を沈降法
で塗布し、螢光膜を作る。
Measuring method using a demountable device: (a) Preparation of test piece A 2.5 x 3 cm test piece is coated with the phosphor to be inspected by a precipitation method to form a fluorescent film.

(ロ)電子線照射 上記テストピースをデマウンタブル電子線刺激装置(当
社製)Kセットし、加速電圧20kV、電流密度1μA
/帰2、ラスターサイズlX1cjnで20分間電子線
照射する。
(b) Electron beam irradiation The above test piece was set in a demountable electron beam stimulator (manufactured by our company) at an acceleration voltage of 20 kV and a current density of 1 μA.
/Return 2, irradiate with electron beam for 20 minutes at raster size 1X1cjn.

(ハ)輝度測定 上記電子線照射の間、1分間隔で輝度計を用いて輝度測
定を行なう。
(c) Luminance measurement During the above electron beam irradiation, the luminance was measured at 1 minute intervals using a luminance meter.

に)残光測定 電子線照射の前後に下記条件で1/10残光時間を測定
する。
b) Afterglow measurement Measure the 1/10 afterglow time under the following conditions before and after electron beam irradiation.

加速電圧15 kV、 z4ルス巾102.4ms、デ
ユーティ50%の無偏向デフォーカスビームで励起する
。電流密度は0.5μA/cIR。
It is excited with an undeflected defocused beam with an accelerating voltage of 15 kV, a z4 pulse width of 102.4 ms, and a duty of 50%. Current density was 0.5 μA/cIR.

実施例1 酸化亜鉛      ZnO370,9二酸化珪素  
   sto2tsog炭酸−rンがンMnCO5・0
.5 B20  2−59三酸化インジウムIn2O3
1,’1 三酸化ヒ素     As 20s       o−
o s E三酸化アンチモン  5b2o、     
  o、s、p上記原料を乾式♂−ルミルで十分粉砕混
合し石英ルツボに充填し、1300℃、4 hr空気中
で焼成したところ、組成式がZn23104: Mu 
0.00 B 、 In0.003・A’O,0OO1
1sbo、ooiの本発明の螢光体を得念。
Example 1 Zinc oxide ZnO370,9 silicon dioxide
sto2tsog carbonic acid-r-ngan MnCO5・0
.. 5 B20 2-59 Indium trioxide In2O3
1,'1 Arsenic trioxide As 20s o-
o s E antimony trioxide 5b2o,
o, s, p The above raw materials were sufficiently pulverized and mixed in a dry ♂-lumil, filled into a quartz crucible, and fired in air at 1300°C for 4 hours. The composition formula was Zn23104: Mu
0.00 B, In0.003・A'O,0OO1
1sbo, ooi's phosphor of the present invention.

この螢光体の発光強度維持率は99%で、残光劣化はな
かつ念。
The luminous intensity maintenance rate of this phosphor is 99%, ensuring no afterglow deterioration.

従来の螢光体(Zn28104: Mno、o o s
 、As O,0001)は発光強度維持率が941で
ありft。
Conventional phosphor (Zn28104: Mno, o o s
, As O, 0001) has an emission intensity maintenance rate of 941 ft.

実施例2 酸化亜鉛      Zn0     390g二酸化
珪素     sio□    150g炭酸マンがン
    MnCO3−05H201,5,9三駿化イン
ジウム  I!1203      o−5Ji’三散
化ホウ素    B20.      0.25.!i
’三酸化E素     A a 20s      O
−059三酸化アンチモン  5b20.     1
g上記原料を乾式ゴールミルで十分粉砕混合し、石英ル
ツボに充填し、1300℃、4 hr空気中で焼成し念
ところ、組成式がZn2SiO4: MnO,Oo5 
Example 2 Zinc oxide Zn0 390g Silicon dioxide sio□ 150g Manganese carbonate MnCO3-05H201,5,9 Indium trisulfide I! 1203 o-5Ji' boron tridisperse B20. 0.25. ! i
'E element trioxide A a 20s O
-059 Antimony trioxide 5b20. 1
g The above raw materials were sufficiently ground and mixed in a dry type gold mill, filled into a quartz crucible, and fired in air at 1300°C for 4 hours.
.

InO,OOl、Bo、003#AIO,0O01l5
bO,002の本発明の螢光体を得之。
InO,OOl,Bo,003#AIO,0O01l5
A phosphor of the present invention of bO,002 was obtained.

発光強度維持率は99%で残光劣化はなかった。The luminescence intensity maintenance rate was 99% and there was no afterglow deterioration.

従来の螢光体は発光強度維持率が94%であった。Conventional phosphors had a luminescence intensity maintenance rate of 94%.

実施例3 酸化亜鉛      ZnO390g 二e化珪素     8102150g炭酸マンガン 
   MIICO3・05H202,5,!il三酸化
インジウム  ”203     1.99三酸化アン
チモy   5b2o30.5.p上記原料を乾式ゾー
ルミルで十分粉砕混合し、石英ルツボに充填し、130
0℃、4hr空気中で焼成し念ところ、組成式がZn 
2 S i 04 : 凪Q、008− I”0.00
3.Sb0.001の本発明の螢光体を得た。
Example 3 Zinc oxide ZnO 390g Silicon dioxide 8102150g Manganese carbonate
MIICO3・05H202,5,! il indium trioxide 203 1.99 antimoy trioxide y 5b2o30.5.p The above raw materials were thoroughly ground and mixed in a dry sol mill, filled into a quartz crucible,
After firing in air at 0℃ for 4 hours, the composition formula was Zn.
2 S i 04: Nagi Q, 008-I”0.00
3. A phosphor of the present invention with Sb of 0.001 was obtained.

その発光強度維持率は99チで、残光劣化もなかった。The luminescence intensity maintenance rate was 99 cm, and there was no afterglow deterioration.

ちなみに従来の螢光体(zn2S104:Mno、o 
o s )は発光強度維持率が93チであっ念。
By the way, the conventional fluorescent material (zn2S104: Mno, o
o s ) has a luminous intensity maintenance rate of 93chi, which is a good thing.

実施例4 酸化亜鉛      ZnO370,ji’二酸化珪素
     51021501!炭酸−rンがンMnCO
3−05H202,5F三酸化インジウム  In2O
,0,69ホウ砂      Na2B4O7’ l0
H202,1ji三酸化E素     A3□030.
099三酸化アンチモン  5b2030.5g上記原
料を乾式ゾールで十分粉砕混合し石英ルツぎに充填し、
1300℃、4br空気中で焼成し念ところ1組成式が
Zh23104:Mn□、00B 、 taO,001
゜Bo、006IAl)、0002雪Sb O,001
の本発明の螢光体を得九。
Example 4 Zinc oxide ZnO370, ji' silicon dioxide 51021501! Carbonic acid MnCO
3-05H202,5F Indium trioxide In2O
,0,69 Borax Na2B4O7' l0
H202,1ji E element trioxide A3□030.
099 Antimony trioxide 5b 2030.5g The above raw materials were sufficiently ground and mixed with a dry sol and filled into a quartz bolt.
After firing at 1300°C in 4br air, the compositional formula was Zh23104:Mn□,00B, taO,001
゜Bo, 006 IAl), 0002 Snow Sb O, 001
The phosphor of the present invention is obtained.

その発光強度維持率は99%で、残光劣化は々かった。The luminescence intensity maintenance rate was 99%, and afterglow deterioration was significant.

従来の螢光体は発光強度維持率が94チであり念。Conventional phosphors have a luminous intensity maintenance rate of 94 cm.

実施例5 醸化亜鉛      ZnO390,p二酸化珪素  
   sto□    150g炭酸マンガン    
当co3・o、5H2o   2.5J三酸化インジウ
ム  ”20s      0.6ji三酸化ヒ素  
   ”203     0.05.9上記原′prt
−乾式?−ルミルで十分粉砕混合し、石英ルツボに充填
し、1300℃、4hr空気中で焼成し念ところ、組成
式がZn25IO4: Mn O,00B 、 InO
,001、As o、o 001の本発明の螢光体を得
た。
Example 5 Brewed zinc ZnO390,p silicon dioxide
sto□ 150g manganese carbonate
This co3・o, 5H2o 2.5J indium trioxide "20s 0.6ji arsenic trioxide
”203 0.05.9 above original'prt
-Dry method? - Thoroughly pulverized and mixed in Lumil, filled in a quartz crucible, and fired in air at 1300°C for 4 hours.
, 001, As o, o 001, the phosphor of the present invention was obtained.

その発光強度維持率は99チで残光劣化はなかった。ち
なみに組成式Zn25IO4: ?V!n O,00B
 、 As0.0001の螢光体は発光強度維持率が9
4チであり之。
The luminescence intensity maintenance rate was 99 cm, and there was no afterglow deterioration. By the way, the composition formula Zn25IO4: ? V! n O,00B
, As0.0001 phosphor has a luminescence intensity maintenance rate of 9
It's 4chi.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によればマンがンを付活剤として含有する
珪酸塩螢光体くおいて、特定の3価の元素と5価の元素
を特定の量比の範囲で含有させたので、輝度や残光の初
期劣化を著しく改善することができる。
As described above, according to the present invention, a silicate phosphor containing manganese as an activator contains a specific trivalent element and a pentavalent element in a specific quantitative ratio. Initial deterioration of brightness and afterglow can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の珪酸塩螢光体と従来のそれとを比較し
て示す発光強度劣化特性のグラフ、第2図は初期残光劣
化特性とインジウムの含有量との関係を示すグラフ、第
3図はインジウムとアンチモンの含有量を一定にし念場
合、およびインジウムと硼素とアンチモンの含有量を一
定にし念場合、砒素の含有量と1/10残光時間および
残光劣化特性との関係を示すグラフ、第4図は3価の元
素がインジウムのみの場合、インジウムの含有量と相対
輝度との関係を示すグラフである。 手続補正書 昭和61年10月15日 特許庁長官  黒 1)明 雄 殿 1、事件の表示 特願昭61−172881号 2、発明の名称 珪酸塩蛍光体 3、補正をする者 事件との関係   特許出願人 名  称  化成オブトニクス株式会社4、代理人 住所 東京都港区虎ノ門五丁目13番1号虎ノ門40森
ビル6、補正の内容 (1)明細書の第1頁〜第3頁に記載された特許請求の
範囲を別紙のよう訂正する。 (2)同書第4頁第4行にNO%残光時間」とあるのを
r 1/10残光時間」に訂正する。 (3)同書第6頁第16行に「インジウム該5価の」と
あるのを「インジウム、該5価の」に訂正する。 (4)同書第6頁第19行に「3価の金属」とあるのを
「3価の元素」に訂正する。 (5)図面の第1図を別紙のように訂正する。 特許請求の範囲 (1)マンガンを付活剤として含有し3価の元素と5価
の元素を含有する珪酸塩蛍光体において。 該3価の元素がインジウム又はインジウムと硼素、該5
価の元素が砒素、アンチモン、およびビスマスの少なく
とも1種であり、該3価の元素の含有量がlXl0−4
〜I X 10−2グラム原子1モル、3価の元素がイ
ンジウムだけの場合はlX10−4〜lXl0−2グラ
ム原子1モル、該5価の元素の含有量が3X10−3グ
ラム原子1モル以下であり、且つ上記3価と5価の元素
の含有量のモル比(3価の元素15価の元素)が1.5
以上であることを特徴とする珪酸塩蛍光体: (2)前記砒素の含有量がlXl0−3グラム原子1モ
ル以下であることを特徴とする特許請求の範囲第1項記
載の珪酸塩蛍光体: (3)前記3価の元素の含有量がインジウムと硼素の場
合lXl0−3〜lXl0−2グラム原子1モルの範囲
、インジウムだけの場合2X10−4〜5XIO−3グ
ラム原子1モルであってモル比(3価の元素15価の元
素)が1.8以上であることを特徴とする特許請求の範
囲第1項又は第2項記載の珪酸塩蛍光体: (4)前記含有量のモル比(3価の元素15価の元素)
が1.8以上であることを特徴とする特許請求の範囲第
1項又は第2項のいづれかに記載の珪酸塩蛍光体: (5)前記5価の元素が砒素のみであって、且つ前記含
有量のモル比(3価の元素15価の元素)が5以上であ
ることを特徴とする特許請求の範囲第1項ないし第4項
のいづれかに記載の珪酸塩蛍光体: (8)前記砒素の含有量がlXl0−4〜8×10−4
グラム原子1モルの範囲であることを特徴とする特許請
求の範囲第2項ないし第5項のいづれかに記載の珪酸塩
蛍光体: (7)前記マンガンの付活量がlXl0−3〜3x10
−2グラム原子1モルの範囲であることを特徴とする特
許請求の範囲第1項ないし第6項のいづれかに記載の珪
酸塩蛍光体: (8)前記マンガンの付活量が2X10−3〜l×10
−2グラム原子1モルの範囲であることを特徴とする特
許請求の範囲第7項記載の珪酸塩蛍光体:
FIG. 1 is a graph showing the luminescence intensity deterioration characteristics comparing the silicate phosphor of the present invention with that of a conventional one. FIG. 2 is a graph showing the relationship between the initial afterglow deterioration characteristics and the indium content. Figure 3 shows the relationship between the arsenic content and the 1/10 afterglow time and afterglow deterioration characteristics when the contents of indium and antimony are kept constant, and when the contents of indium, boron, and antimony are kept constant. The graph shown in FIG. 4 is a graph showing the relationship between the indium content and relative brightness when indium is the only trivalent element. Procedural amendment October 15, 1988 Commissioner of the Japan Patent Office Black 1) Yu Akira 1, Indication of the case Japanese Patent Application No. 172881/1981 2, Name of the invention silicate phosphor 3, Person making the amendment Relationship to the case Patent applicant name: Kasei Obtonics Co., Ltd. 4, agent address: 6, Mori Building, 40 Toranomon, 5-13-1, Toranomon, Minato-ku, Tokyo Contents of amendment (1) Described on pages 1 to 3 of the specification The scope of claims is amended as shown in the attached sheet. (2) In the fourth line of page 4 of the same book, the text "NO% afterglow time" is corrected to "r 1/10 afterglow time". (3) In the same book, page 6, line 16, the phrase "indium, which is pentavalent" is corrected to "indium, which is pentavalent." (4) In the same book, page 6, line 19, "trivalent metal" is corrected to "trivalent element." (5) Figure 1 of the drawings should be corrected as shown in the attached sheet. Claims (1) A silicate phosphor containing manganese as an activator and containing a trivalent element and a pentavalent element. the trivalent element is indium or indium and boron;
The trivalent element is at least one of arsenic, antimony, and bismuth, and the content of the trivalent element is lXl0-4
~ I and the molar ratio of the contents of the trivalent and pentavalent elements (trivalent element and 15valent element) is 1.5.
A silicate phosphor characterized by the above: (2) a silicate phosphor according to claim 1, characterized in that the content of arsenic is 1 mole or less of lXl0-3 gram atoms; (3) When the content of the trivalent element is indium and boron, it is in the range of lXl0-3 to lXl0-2 gram atom 1 mol, and in the case of indium alone, it is in the range of 2X10-4 to 5XIO-3 gram atom 1 mol. The silicate phosphor according to claim 1 or 2, characterized in that the molar ratio (trivalent element to 15-valent element) is 1.8 or more: (4) the molar content of the above content; Ratio (trivalent element to 15valent element)
is 1.8 or more, the silicate phosphor according to claim 1 or 2, wherein: (5) the pentavalent element is only arsenic; (8) The silicate phosphor according to any one of claims 1 to 4, characterized in that the molar ratio of the content (trivalent element and 15-valent element) is 5 or more. Arsenic content is lXl0-4 to 8x10-4
The silicate phosphor according to any one of claims 2 to 5, characterized in that the activation amount of the manganese is in the range of 1 mole of gram atom:
The silicate phosphor according to any one of claims 1 to 6, characterized in that the activation amount of the manganese is in the range of 2×10 −3 to 1 mole. l×10
A silicate phosphor according to claim 7, characterized in that the silicate phosphor is in the range of -2 gram atoms per mole:

Claims (8)

【特許請求の範囲】[Claims]  (1)マンガンを付活剤として含有し3価の元素と5
価の元素を含有する珪酸塩螢光体において、該3価の元
素がインジウム又はインジウムと硼素、該5価の元素が
砒素、アンチモン、およびビスマスの少なくとも1種で
あり、該3価の元素の含有量が1×10^−^4〜2×
10^−^2グラム原子/モル、3価の金属がインジウ
ムだけの場合は1×10^−^4〜1×10^−^2グ
ラム原子/モル、該5価の元素の含有量が3×10^−
^3グラム原子/モル以下であり、且つ上記3価と5価
の元素の含有量のモル比(3価の元素/5価の元素)が
1.5以上であることを特徴とする珪酸塩螢光体:
(1) Contains manganese as an activator and contains trivalent elements and 5
In the silicate phosphor containing a valent element, the trivalent element is indium or indium and boron, the pentavalent element is at least one of arsenic, antimony, and bismuth, and the trivalent element is at least one of arsenic, antimony, and bismuth. Content is 1x10^-^4~2x
10^-^2 gram atoms/mol, if the trivalent metal is indium only, 1 x 10^-^4 to 1 x 10^-^2 gram atoms/mol, the content of the pentavalent element is 3 ×10^−
^3 gram atom/mol or less, and a silicate characterized in that the molar ratio of the content of the trivalent and pentavalent elements (trivalent element/pentavalent element) is 1.5 or more. Fluorescent material:
 (2)前記砒素の含有量が1×10^−^3グラム原
子/モル以下であることを特徴とする特許請求の範囲第
1項記載の珪酸塩螢光体:
(2) The silicate phosphor according to claim 1, wherein the content of arsenic is 1×10^-^3 gram atoms/mol or less:
 (3)前記3価の元素の含有量がインジウムと硼素の
場合1×10^−^3〜1×10^−^2グラム原子/
モルの範囲インジウムだけの場合2×10^−^4〜5
×10^−^3グラム原子/モルであってモル比(3価
の元素/5価の元素)が1.8以上であることを特徴と
する特許請求の範囲第1項又は第2項記載の珪酸塩螢光
体:
(3) When the content of the trivalent elements is indium and boron, it is 1 x 10^-^3 to 1 x 10^-^2 gram atom/
Mole range: 2×10^-^4 to 5 for indium only
×10^-^3 gram atom/mole, and the molar ratio (trivalent element/pentavalent element) is 1.8 or more, according to claim 1 or 2. Silicate phosphor:
 (4)前記含有量のモル比(3価の元素/5価の元素
)が1.8以上であることを特徴とする特許請求の範囲
第1項又は第2項のいづれかに記載の珪酸塩螢光体:
(4) The silicate according to claim 1 or 2, wherein the molar ratio of the content (trivalent element/pentavalent element) is 1.8 or more. Fluorescent material:
 (5)前記5価の元素が砒素のみであって、且つ前記
含有量のモル比(3価の元素/5価の元素)が5以上で
あることを特徴とする特許請求の範囲第1項ないし第4
項のいづれかに記載の珪酸塩螢光体:
(5) Claim 1, wherein the pentavalent element is only arsenic, and the molar ratio of the content (trivalent element/pentavalent element) is 5 or more. or fourth
The silicate phosphor according to any of the paragraphs:
 (6)前記砒素の含有量が1×10^−^4〜8×1
0^−^4グラム原子/モルの範囲であることを特徴と
する特許請求の範囲第2項ないし第5項のいづれかに記
載の珪酸塩螢光体:
(6) The arsenic content is 1 x 10^-^4 to 8 x 1
A silicate phosphor according to any one of claims 2 to 5, characterized in that the silicate phosphor is in the range of 0^-^4 gram atoms/mole:
 (7)前記マンガンの付活量が1×10^−^3〜3
×10^−^2グラム原子/モルの範囲であることを特
徴とする特許請求の範囲第1項ないし第6項のいづれか
に記載の珪酸塩螢光体:
(7) The activation amount of the manganese is 1×10^-^3~3
A silicate phosphor according to any one of claims 1 to 6, characterized in that the phosphor is in the range of x10^-^2 gram atoms/mole:
 (8)前記マンガンの付活量が2×10^−^3〜1
×10^−^2グラム原子/モルの範囲であることを特
徴とする特許請求の範囲第7項記載の珪酸塩螢光体:
(8) The activation amount of the manganese is 2×10^-^3~1
A silicate phosphor according to claim 7, characterized in that it is in the range of x10^-^2 gram atoms/mole:
JP61172881A 1986-06-26 1986-07-24 Silicate phosphor Granted JPS6330585A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61172881A JPS6330585A (en) 1986-07-24 1986-07-24 Silicate phosphor
KR1019870006427A KR940006072B1 (en) 1986-06-26 1987-06-24 Fluorescent substance
EP87109136A EP0254066B1 (en) 1986-06-26 1987-06-25 Silicate phosphor
DE8787109136T DE3765200D1 (en) 1986-06-26 1987-06-25 SILICATE PHOSPHOR.
US07/066,495 US4795589A (en) 1986-06-26 1987-06-26 Silicate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172881A JPS6330585A (en) 1986-07-24 1986-07-24 Silicate phosphor

Publications (2)

Publication Number Publication Date
JPS6330585A true JPS6330585A (en) 1988-02-09
JPH0262598B2 JPH0262598B2 (en) 1990-12-26

Family

ID=15950044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172881A Granted JPS6330585A (en) 1986-06-26 1986-07-24 Silicate phosphor

Country Status (1)

Country Link
JP (1) JPS6330585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828993B2 (en) 2002-12-20 2010-11-09 Tovoda Gosei Co.. Ltd. Phosphor and optical device using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748594A (en) * 1980-08-30 1982-03-19 Keisuke Shimizu Mechanism for gradually increasing winding speed of wire rope
JPS58151322A (en) * 1982-03-05 1983-09-08 Kasei Optonix Co Ltd Zinc silicate phosphor
JPS59184281A (en) * 1983-04-04 1984-10-19 Kasei Optonix Co Ltd Zinc silicate phosphor
JPS6121582A (en) * 1985-06-24 1986-01-30 Hitachi Ltd Optical character reader
JPS6250384A (en) * 1985-08-29 1987-03-05 Toshiba Corp Zinc silicate phosphor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748594A (en) * 1980-08-30 1982-03-19 Keisuke Shimizu Mechanism for gradually increasing winding speed of wire rope
JPS58151322A (en) * 1982-03-05 1983-09-08 Kasei Optonix Co Ltd Zinc silicate phosphor
JPS59184281A (en) * 1983-04-04 1984-10-19 Kasei Optonix Co Ltd Zinc silicate phosphor
JPS6121582A (en) * 1985-06-24 1986-01-30 Hitachi Ltd Optical character reader
JPS6250384A (en) * 1985-08-29 1987-03-05 Toshiba Corp Zinc silicate phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828993B2 (en) 2002-12-20 2010-11-09 Tovoda Gosei Co.. Ltd. Phosphor and optical device using same

Also Published As

Publication number Publication date
JPH0262598B2 (en) 1990-12-26

Similar Documents

Publication Publication Date Title
Butler Alkaline earth orthophosphate phosphors
JP3686159B2 (en) Phosphor for low-energy electron beam excitation
JPS6330585A (en) Silicate phosphor
EP0254066B1 (en) Silicate phosphor
KR900000349B1 (en) Fluorescent material for crt
JPS6253554B2 (en)
KR860001896B1 (en) Zinc silicate phosphor
JPS5822494B2 (en) Method for producing europium-activated tin oxide phosphor
JP2000063825A (en) Heat resistant, weather resistant, highly luninous and long term afterglowing aluminate light stored body
JPS636081A (en) Silicate phosphor
JPS58151322A (en) Zinc silicate phosphor
KR100278175B1 (en) Green light-emitting fluorescent composition and its manufacturing method
KR910007091B1 (en) Phosphate fluorescent substance
JPS6244035B2 (en)
JPH0417996B2 (en)
KR100358811B1 (en) green phosphors for low voltage electron excitation
JPH0518879B2 (en)
JPH072945B2 (en) Afterglow zinc sulfide phosphor
JPS6223032B2 (en)
US3549550A (en) Fluorescent calcium halophosphate phosphor containing at least one of magnesium beryllium,and lead
JPH0826312B2 (en) Manganese-activated silica gel zinc borate phosphor
Brownlow et al. Novel synthesis technique for zinc-silicate phosphors
JPS6361082A (en) Fluorescent substance and slow electron ray excitation fluorescent display tube using said substance
JPH0662949B2 (en) Phosphor
JP2001181622A (en) Europium activated compound oxide fluorescent substance