JPS6330368A - Novel composite carbide - Google Patents

Novel composite carbide

Info

Publication number
JPS6330368A
JPS6330368A JP61253557A JP25355786A JPS6330368A JP S6330368 A JPS6330368 A JP S6330368A JP 61253557 A JP61253557 A JP 61253557A JP 25355786 A JP25355786 A JP 25355786A JP S6330368 A JPS6330368 A JP S6330368A
Authority
JP
Japan
Prior art keywords
carbon
boron
silicon
carbide
decomposable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61253557A
Other languages
Japanese (ja)
Other versions
JPH0450272B2 (en
Inventor
紀博 村川
磯谷 計嘉
丸山 謙作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61253557A priority Critical patent/JPS6330368A/en
Publication of JPS6330368A publication Critical patent/JPS6330368A/en
Publication of JPH0450272B2 publication Critical patent/JPH0450272B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はケイ素酸化物、単体炭素及びホウ素酸化物を含
む新規含炭素混合物を強熱して得られる新規な複合炭化
物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel composite carbide obtained by igniting a novel carbon-containing mixture containing silicon oxide, elemental carbon, and boron oxide.

更に詳しくは、これを焼結することにより好適に新規複
合炭化物焼結体を製造することが出来る新規な複合炭化
物に関する。
More specifically, the present invention relates to a novel composite carbide that can be sintered to suitably produce a novel composite carbide sintered body.

〔背景技術〕[Background technology]

炭化ケイ素粉を焼結して得られる炭化ケイ素焼結体は、
従来の金属材料に比較して高温における機械的強度が格
段に勝れているので、エンジン、ガスタービンなどの用
途が期待されている。
The silicon carbide sintered body obtained by sintering silicon carbide powder is
Because it has significantly superior mechanical strength at high temperatures compared to conventional metal materials, it is expected to be used in engines, gas turbines, and other applications.

しかしながら、従来の製造法では、炭化ケイ素粉及びそ
の原料であるケイ砂などのケイ素酸化物やコークスなど
の単体炭素の物性や純度などに由来して、得られる炭化
ケイ素焼結体の機械的強度のバラツキが大き過ぎること
が工業的実用化の障害となっている。
However, in conventional manufacturing methods, the mechanical strength of the resulting silicon carbide sintered body is due to the physical properties and purity of silicon carbide powder and its raw materials, silicon oxide such as silica sand, and elemental carbon such as coke. Excessive variation in the results is an obstacle to industrial application.

上記焼結体は、その原料である炭化ケイ素粉が可能な限
り微細である程強度が大きいものが得られ易く、また焼
結速度が速い性質がある。更に原料炭化ケイ素粉が高純
度である程、焼結体の強度のバラツキが小さい性質があ
る。
The above-mentioned sintered body has the property that the finer the silicon carbide powder that is its raw material, the easier it is to obtain a higher strength and the faster the sintering speed. Furthermore, the higher the purity of the raw material silicon carbide powder, the smaller the variation in the strength of the sintered body.

また炭化ケイ素粉を焼結する過程において、単体ホウ素
、炭化ホウ素などホウ素酸化物以外のホウ素系物質及び
単体炭素を添加すると、焼結体の密度を上げる効果をも
たらすことは、特公昭57−32035号公報、特開昭
51−148712号公報などに開示されている如゛く
公知であり、該添加に用いるホウ素系物質は高純度かつ
微細なもの程その効果が大きいとされている。
Furthermore, in the process of sintering silicon carbide powder, it was reported in Japanese Patent Publication No. 57-32035 that adding boron-based substances other than boron oxide, such as elemental boron and boron carbide, and elemental carbon have the effect of increasing the density of the sintered body. It is well known as disclosed in Japanese Patent Application Laid-Open No. 51-148712, etc., and it is said that the higher the purity and the finer the boron-based substance used for the addition, the greater the effect.

かかるホウ素系物質が添加された炭化ケイ素焼結体を得
るには、従来は、炭化ケイ素と単体ホウ素またはホウ素
系IFI質をボールミルなどを用いて機械的に粉砕混合
した後、これに炭素質物質を加えて一旦加熱することに
より、炭素質物質の熱分解によって単体炭素を生成せし
めて、炭化ケイ素粉、ホウ素系物質粉及び単体炭素粉の
混合物とし、これを焼結加工する方法が一般的な製造法
であった。
In order to obtain a silicon carbide sintered body to which such a boron-based substance is added, conventionally, silicon carbide and elemental boron or boron-based IFI materials are mechanically pulverized and mixed using a ball mill or the like, and then a carbonaceous substance is added thereto. A common method is to generate elemental carbon by thermal decomposition of the carbonaceous material by adding and heating it to form a mixture of silicon carbide powder, boron-based material powder, and elemental carbon powder, and then sintering this. It was a manufacturing method.

この方法において、炭化ケイ素を製造するにはケイ砂な
どの様な二酸化ケイ素とコークスなどの様な炭素系物質
とを粉砕混合し、例えばアチソン型の直接通電抵抗炉な
どにより高温下で固相反応によって得る方法が一般的で
ある。
In this method, to produce silicon carbide, silicon dioxide, such as silica sand, and a carbonaceous material, such as coke, are pulverized and mixed, and the mixture is subjected to a solid-phase reaction at high temperatures in, for example, an Acheson-type direct current resistance furnace. A common method is to obtain

しかしながら、この方法は、バッチ方式(回分方式)で
あり、原料の混合装入時における作業工程の煩雑さ、不
純物の混入といった問題がある。
However, this method is a batch method, and there are problems such as a complicated work process when mixing and charging raw materials and contamination of impurities.

また生成した炭化ケイ素はインゴットとして取り出され
るので、焼結体原料として必要な微細な粉体を得るには
、このインゴットをボールミルなどの粉砕機で長時間粉
砕した後、微細な粒子のみを分級して取り出す必要があ
り、従って経費の増加、作業工程の煩雑さ、作業工程中
の不純物の混入などの問題がある。
In addition, the generated silicon carbide is taken out as an ingot, so in order to obtain the fine powder required as a raw material for a sintered body, this ingot is crushed for a long time with a crusher such as a ball mill, and then only the fine particles are classified. Therefore, there are problems such as increased costs, complexity of the work process, and contamination of impurities during the work process.

さらに、炭化ケイ素焼結体を得る際に添加するホウ素系
物質については、ホウ素酸化物は焼結体中に酸素の混入
をもたらし焼結体の密度を上げる効果が得られず、逆に
低下せしめるので不都合である。従うて、ホウ素源とし
ては、酸素を含有しないホウ素酸化物以外のホウ素系物
質が選ばれるが、中でも炭化ホウ素は耐酸化性に秀れて
いるので特に好ましく、次に単体ホウ素が好ましい。
Furthermore, regarding the boron-based substances added when obtaining a silicon carbide sintered body, boron oxide causes oxygen to be mixed into the sintered body, and is not effective in increasing the density of the sintered body, but on the contrary, it decreases the density. Therefore, it is inconvenient. Therefore, as the boron source, a boron-based substance other than boron oxide that does not contain oxygen is selected, but boron carbide is particularly preferred because it has excellent oxidation resistance, and elemental boron is next preferred.

しかしながら、炭化ホウ素粉は、通常炭化ケイ素粉と同
様に、酸化ホウ素あるいは単体ホウ素と炭素質物質より
高温下で固相反応によって炭化ホウ素のインゴットを得
た後、これを粉砕、分散して製造されているの、従って
従来の方法では炭化ケイ素粉と同様に高純度かつ微細な
ものが得られにくいと云う問題がある。
However, boron carbide powder, like silicon carbide powder, is usually produced by obtaining an ingot of boron carbide through a solid-phase reaction between boron oxide or elemental boron and a carbonaceous material at a higher temperature, and then pulverizing and dispersing the ingot. Therefore, there is a problem in that it is difficult to obtain highly pure and fine particles similar to silicon carbide powder using conventional methods.

一方、ホウ素源として単体ホウ素を使用する場合も微粉
末である程好ましいが、微粉末になる程空気中に放置し
ておくだけでも容易に酸化が進行すると云う大きな欠点
が生ずる。しかして、−11fiに知られているように
、炭化ケイ素の焼結過程において含有する酸化物の量が
増加するに従って、得られる焼結体の密度が低下し、成
型体の強度が低下するので、添加するホウ素系物質は、
上記したごとく炭化ホウ素のほうが酸化物の混入を防ぐ
点で基本的には好ましいが、高純度かつ微細なものが得
られにくいため、酸化され易いという問題はあるがやむ
を得ず主として単体ホウ素が用いられているのが実情で
ある。
On the other hand, when elemental boron is used as a boron source, the finer the powder, the better, but the finer the powder, the greater the drawback that oxidation easily progresses even if it is left in the air. However, as is known from -11fi, as the amount of oxides contained in the sintering process of silicon carbide increases, the density of the obtained sintered body decreases and the strength of the molded body decreases. , the boron-based substance to be added is
As mentioned above, boron carbide is basically preferable in terms of preventing the contamination of oxides, but since it is difficult to obtain highly pure and fine particles, it has the problem of being easily oxidized, but it is unavoidable that elemental boron is mainly used. The reality is that there are.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ボールミルの如き騒音、摩耗、不純物
混入、粉塵発生等の多くの問題を有する機械的な粉砕、
混合操作を、全く行うことなしに得られるところの、ケ
イ素酸化物、単体炭素及びホウ素酸化物の微粒子がきわ
めて均一に混合してなる新規含炭素混合物を経由する新
規な複合炭化物を提供することである。
The purpose of the present invention is to eliminate mechanical grinding methods such as ball mills, which have many problems such as noise, wear, contamination of impurities, and generation of dust.
By providing a new composite carbide obtained through a new carbon-containing mixture in which fine particles of silicon oxide, elemental carbon, and boron oxide are extremely uniformly mixed, which can be obtained without performing any mixing operation. be.

本発明の他の目的は、上記のごとき新規含炭素混合物を
そのままで、あるいはアルゴンヘリウムなどの非酸化性
雰囲気下で加熱することにより、得られる、炭化ケイ素
と炭化ホウ素の極めて微細な粒子から主としてなる新規
な複合炭化物を提供することである。
Another object of the present invention is to obtain a carbon-containing mixture consisting primarily of extremely fine particles of silicon carbide and boron carbide, which can be obtained by heating the novel carbon-containing mixture as described above or in a non-oxidizing atmosphere such as argon-helium. The object of the present invention is to provide a new composite carbide.

本発明のさらに次の目的は、この炭化ケイ素と炭化ホウ
素からなる複合炭化物を焼結することにより、新しい複
合炭化物焼結体を与えることが出来るような新規な複合
炭化物を提供することである。
A further object of the present invention is to provide a new composite carbide that can be obtained by sintering this composite carbide made of silicon carbide and boron carbide to produce a new composite carbide sintered body.

本発明のその他の目的は以下の説明から明らかになるで
あろう。
Other objects of the invention will become apparent from the description below.

〔発明の開示〕[Disclosure of the invention]

本発明者等は、前記従来の得失を充分に検討した結果、
物性のすぐれた炭化ケイ素焼結体を得る方法として、ケ
イ素化合物などから直接炭化ケイ素粉などを得る従来の
方法とは異なる方法、即ち充分に均一性が高く、かつ構
成粒子の粒度の細かいケイ素酸化物、単体炭素及びホウ
酸化物を含む新規含炭素混合物を先ず製造し、この現金
炭素混合物を加熱して得た本発明の新規な複合炭化物を
原料として焼結すれば焼結速度が速く、しかも強度のバ
ラツキの小さい複合炭化物焼結体が得られることを見出
し、本発明を完成するに至ったものである。
As a result of thorough consideration of the advantages and disadvantages of the above-mentioned conventional methods, the present inventors have found that
As a method for obtaining a silicon carbide sintered body with excellent physical properties, we use a method different from the conventional method of obtaining silicon carbide powder directly from silicon compounds, etc., that is, silicon oxidation with sufficiently high uniformity and fine constituent particles. If a new carbon-containing mixture containing solid carbon, elemental carbon, and boric oxide is first produced, and the novel composite carbide of the present invention obtained by heating this cash carbon mixture is sintered as a raw material, the sintering speed is high. It was discovered that a composite carbide sintered body with small variations in strength can be obtained, and the present invention was completed.

即ち本発明は、水蒸気を含む熱ガス中に、分解性ケイ素
化合物、分解性炭素化合物及び分解性ホウ素化合物を装
入し・分解して、ケイ素酸化物、単体炭素及びホウ素酸
化物のそれぞれのエーロゾルを含む混合エーロゾル分散
質を生成せしめ、該生成した分散質を捕集して得た含炭
素混合物であって、式量比C/(Si+B) (g−a
tms/g−atms)が3.5以上の含炭素混合物(
以下r本発明における含炭素混合物」と略記する。)を
強熱して得たことを特徴とする新規な複合炭化物を要旨
とするものである。
That is, in the present invention, a decomposable silicon compound, a decomposable carbon compound, and a decomposable boron compound are charged into a hot gas containing water vapor and decomposed to form aerosols of silicon oxide, elemental carbon, and boron oxide, respectively. A carbon-containing mixture obtained by generating a mixed aerosol dispersoid containing and collecting the generated dispersoid, the carbon-containing mixture having a formula weight ratio C/(Si+B) (g-a
carbon-containing mixture (tms/g-atms) of 3.5 or more (
Hereinafter, it will be abbreviated as "carbon-containing mixture in the present invention". ) is characterized by a novel composite carbide obtained by igniting it.

〔発明の開示〕[Disclosure of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明における含炭素混合物とは、水蒸気含存ガス中に
、分解性ケイ素化合物、分解性炭素化合物及び分解性ホ
ウ素化合物を装入・分解して、ケイ素酸化物、単体炭素
及びホウ素酸化物のそれぞれのエーロゾルを含む混合エ
ーロゾルを生成させて、このエーロゾル分散質を捕集し
て得たものであって、式量比C/(SL+8) (g−
atms/g−atms)が3.5以上であることに1
つて特徴ずけられる。
The carbon-containing mixture in the present invention refers to a mixture of silicon oxide, elemental carbon, and boron oxide obtained by charging and decomposing a decomposable silicon compound, a decomposable carbon compound, and a decomposable boron compound into a water vapor-containing gas. It is obtained by generating a mixed aerosol containing an aerosol of
atms/g-atms) is 3.5 or more.
It is characterized by

しかして本発明における含炭素混合物はケイ素酸化物、
単体炭素およびホウ素酸化物のそれぞれの微粒子がミク
ロのオーダーで均一に混合していて、見かけ上は「混合
粉」となっているものである、なお、−言付は加えれば
、ここにいう「混合物」とは、「二種以上の物質が全体
として均質に存在し、−物質として把握されるもの」で
あるから、まさに産業別審査基準にいう「組成物」の要
件を充足するものであり、本来は「含炭素組成物」と称
すべきものであるが、ここでは、習慣上−応「含炭素混
合物」という呼び名に従った。
However, the carbon-containing mixture in the present invention is silicon oxide,
Fine particles of elemental carbon and boron oxide are mixed uniformly on the microscopic order, giving the appearance of a "mixed powder". A "mixture" is "a mixture of two or more substances that exist homogeneously as a whole and can be understood as a substance," so it truly satisfies the requirements for a "composition" as defined in the Industrial Examination Standards. should originally be called a "carbon-containing composition," but here, out of custom, the term "carbon-containing mixture" was used.

本発明で云う混合エーロゾルとは、気体中にケイ素酸化
物、単体炭素及びホウ素酸化物が微細な固形物の分散質
として混在しているものを意味する0本発明における含
炭素混合物とは、該混合エーロゾル中の分散質である上
記の固形物を捕集して得たケイ素酸化物、単体炭素及び
ホウ素酸化物を含む混合物である。
The mixed aerosol referred to in the present invention refers to a gas in which silicon oxide, elemental carbon, and boron oxide are mixed as fine solid dispersoids.The carbon-containing mixture in the present invention refers to This is a mixture containing silicon oxide, elemental carbon, and boron oxide obtained by collecting the above-mentioned solid matter that is a dispersoid in a mixed aerosol.

本発明においては、まず単体炭素のエーロゾルは、分解
性炭素化合物を熱ガス中に装入・分解して容易に得るこ
とができる。他方、酸化ケイ素あるいは酸化ホウ素のエ
ーロゾルは、例えば四塩化ケイ素の如き分解性ケイ素化
合物あるいは三塩化ホウ素の如き分解性ホウ素化合物を
水蒸気を含む熱ガス中に装入すると、熱分解、酸化ある
いは加水分解等を伴う分解をおこし容易に得ることがで
きる。容易に理解できるように、水蒸気を含む熱ガス中
に分解性炭素化合物、分解性ケイ素化合物及び分解性ホ
ウ素化合物を同時に装入すれば、直ちにケイ素酸化物と
単体炭素及び酸化ホウ素を含む混合エーロゾル分散質が
得られるのである。
In the present invention, an aerosol of simple carbon can be easily obtained by charging a decomposable carbon compound into hot gas and decomposing it. On the other hand, silicon oxide or boron oxide aerosols can be thermally decomposed, oxidized, or hydrolyzed when a decomposable silicon compound such as silicon tetrachloride or a decomposable boron compound such as boron trichloride is introduced into a hot gas containing water vapor. It can be easily obtained by decomposition with etc. As can be easily understood, if a decomposable carbon compound, a decomposable silicon compound, and a decomposable boron compound are simultaneously charged into a hot gas containing water vapor, a mixed aerosol dispersion containing silicon oxide, elemental carbon, and boron oxide is immediately formed. You get quality.

本発明で使用しうる分解性ケイ素化合物としては、一般
式5inXza*t(nは1から4の整数)で表される
もので、Xは水素、ハロゲン原子、アルキル基もしくは
アルコキシル基であり、具体的なケイ素化合物を挙げれ
ば、5iC14、H5iC1t、5iHa、5fJi 
、(CH2)n5i、 (CHi)zsiclz 、C
HzSiCli、SiF4.5i(OCJs)a  な
どであり、またこれらの混合物であっても本発明には何
等の支障もない。
The decomposable silicon compound that can be used in the present invention is represented by the general formula 5inXza*t (n is an integer from 1 to 4), where X is hydrogen, a halogen atom, an alkyl group, or an alkoxyl group, and the specific Typical silicon compounds include 5iC14, H5iC1t, 5iHa, 5fJi
, (CH2)n5i, (CHi)zsiclz, C
HzSiCli, SiF4.5i(OCJs)a, etc., and mixtures thereof do not cause any problem in the present invention.

本発明の実施例に用いられる分解性炭素化合物は、熱ガ
ス中に装入された場合、容易に分解して単体炭素(スス
)を生成しつるようなもので、そのままで気相もしくは
液相状態か昇温により容易に液相状態になり得るものが
好適に使用可能である。
The decomposable carbon compound used in the embodiments of the present invention is a vine-like compound that easily decomposes to produce elemental carbon (soot) when charged into hot gas, and it remains in the gas or liquid phase as it is. Those that can be easily turned into a liquid phase by raising the temperature can be suitably used.

例えば、LPG 、ナフサ、ガソリン、燃料油、灯油、
軽油、重油、潤滑油、流動パラフィンなどの゛石油製品
類;メタン、エタン、プロパン、ブタン、ペンタンなど
の炭化水素:メタノール、エタノール、プロパツール、
エチレン、アセチレン、n−パラフィン、ブタジェン、
イソプレン、イソブチレン、ベンゼン、トルエン、キシ
レン、シクロヘキサン、シクロヘキセン、ジシクロペン
タジェン、エチルベンゼン、スチレン、キュメン、プソ
イドクメン、メシチレン、アルキルベンゼン、α−メチ
ルスチレン、ジシクロドデカトリエン、ジイソブチレン
、塩化ビニル、クロルベンゼン、C9溜分混合物、エチ
レンボトムなどの石油化学製品類;タール、ヒツチ、タ
レオソート油、ナフタリン、アントラセン、カルバゾー
ル、タール酸、フェノール、クレゾール、キシレゾール
、ピリジン、ピコリン、キノリンなどのタール製品類;
大豆油、ヤシ油、アマニ油、綿実油、ナタネ油、キリ油
、ヒマシ油、鯨油、牛脂、スクワラン、オレイン酸、ス
テアリン酸などの油脂類などが好ましいものとしてあげ
られるがもちろんこれらに限られるものではない。
For example, LPG, naphtha, gasoline, fuel oil, kerosene,
Petroleum products such as light oil, heavy oil, lubricating oil, and liquid paraffin; hydrocarbons such as methane, ethane, propane, butane, and pentane; methanol, ethanol, propatool,
Ethylene, acetylene, n-paraffin, butadiene,
Isoprene, isobutylene, benzene, toluene, xylene, cyclohexane, cyclohexene, dicyclopentadiene, ethylbenzene, styrene, cumene, pseudocumene, mesitylene, alkylbenzene, α-methylstyrene, dicyclododecatriene, diisobutylene, vinyl chloride, chlorobenzene, Petrochemical products such as C9 distillate mixture and ethylene bottom; tar products such as tar, hitch, taleosote oil, naphthalene, anthracene, carbazole, tar acid, phenol, cresol, xyresol, pyridine, picoline, and quinoline;
Preferable examples include oils and fats such as soybean oil, coconut oil, linseed oil, cottonseed oil, rapeseed oil, tung oil, castor oil, whale oil, beef tallow, squalane, oleic acid, and stearic acid, but of course they are not limited to these. do not have.

本発明の実施に使用する分解性炭素化合物は炭素の供給
が目的であるから、この目的からは例えば上記の如く、
広範囲に選択可能である。しかしながら取扱いの簡便さ
、炭素収率の面からトルエン、キシレン、ベンゼン、灯
油、軽油、重油、C9留分混合物、エチレンボトムなど
が好ましい。
Since the purpose of the decomposable carbon compound used in the practice of the present invention is to supply carbon, for example, as described above,
A wide range of options are available. However, from the viewpoint of ease of handling and carbon yield, toluene, xylene, benzene, kerosene, light oil, heavy oil, C9 fraction mixture, ethylene bottom, etc. are preferred.

本発明の実施に使用可能な分解性ホウ素化合物としては
、BF2 、acts、BBrz、BHz 、BJi、
BJJh などが挙げられ、またこれらの混合物であっ
ても差支えない。
Decomposable boron compounds that can be used in the practice of the present invention include BF2, acts, BBrz, BHz, BJi,
Examples include BJJh, and mixtures thereof may also be used.

なお、分解性ホウ素化合物として、安価なホウ酸も使用
可能である。この場合ホウ酸を水あるいはメタノール、
エタノールなどの溶媒に溶解した後、二流体噴霧方式に
よって空気、蒸気などと共に熱ガス中に溶液を装入する
方法が便利である。
Note that inexpensive boric acid can also be used as the decomposable boron compound. In this case, you can replace boric acid with water or methanol,
It is convenient to dissolve the solution in a solvent such as ethanol and then introduce the solution into hot gas together with air, steam, etc. using a two-fluid atomization method.

ホウ素化合物としてホウ酸を用いる場合は、BCIs、
8113などの上記した分解性ホウ素化合物と比較して
酸化されにくいため、容易に微細なエーロゾルが得られ
にくいと云う問題があるが、本発明者らの検討によれば
、ホウ酸を上記の如き溶媒に溶解した後、熱ガス中に装
入する手段を採用することにより本発明の目的を達する
に充分な程度にホウ酸が微細なエーロゾルとなり易(な
り、またこのホウ酸溶液の装入を二流体噴霧方式によっ
て行えば更に好ましいエーロゾルが得られるのである。
When using boric acid as the boron compound, BCIs,
There is a problem that it is difficult to easily obtain a fine aerosol because it is difficult to oxidize compared to the above-mentioned decomposable boron compounds such as 8113, but according to the study of the present inventors, boric acid By adopting a method in which boric acid is dissolved in a solvent and then charged into a hot gas, boric acid becomes easily formed into a fine aerosol to a sufficient extent to achieve the object of the present invention. A more preferable aerosol can be obtained by using a two-fluid atomization method.

本発明で使用可能な分解性ケイ素化合物、分解性炭素化
合物あるいは分解性ホウ素化合物は、普通はそのままで
または加熱により容易に気相もしくは液相状態とにしえ
るものであるので、特定不純物の排除を必要とする場合
は蒸留、吸着、洗浄などの簡便な操作で高純度の混合物
を容易に得ることができる。
The decomposable silicon compound, decomposable carbon compound, or decomposable boron compound that can be used in the present invention can be easily converted into a gas phase or liquid phase as is or by heating, so it is necessary to eliminate specific impurities. If necessary, a highly pure mixture can be easily obtained by simple operations such as distillation, adsorption, and washing.

なお、本発明における含炭素混合物中のケイ素酸化物、
単体炭素及びホウ素酸化物の割合の!l1節は、ノズル
から熱ガス中に注入する原料である分解性ケイ素化合物
、分解性炭素及び分解性ホウ素化合物の量を変え、相互
の割合をtA節するだけで容易に成しうるのである。
In addition, silicon oxide in the carbon-containing mixture in the present invention,
Of the proportion of elemental carbon and boron oxide! The l1 clause can be easily achieved by simply changing the amounts of the decomposable silicon compound, decomposable carbon, and decomposable boron compound, which are the raw materials injected into the hot gas from the nozzle, and adjusting their mutual ratios to the tA clause.

本発明における含炭素混合物を得るための具体的な装置
としては、炉を用いるのが好適である。
As a specific device for obtaining the carbon-containing mixture in the present invention, it is preferable to use a furnace.

この炉には加熱装置及び分解性ケイ素化合物、分解性炭
素化合物及び分解性ホウ素化合物のそれぞれの装入用ノ
ズルと熱ガス装入ダクト、混合エーロゾル排出ダクトと
が具備されているようなものである。また加熱装置とし
ては燃焼バーナー、通電発熱体などがあるが燃焼バーナ
ーが簡便であり、また熱効率の面でも好ましい。
The furnace is equipped with a heating device, charging nozzles for decomposable silicon compounds, decomposable carbon compounds, and decomposable boron compounds, a hot gas charging duct, and a mixed aerosol discharge duct. . Further, as a heating device, there are combustion burners, energized heating elements, and the like, but combustion burners are preferable because they are simple and have high thermal efficiency.

第1図はこれに用いられる炉の1例を示すものである。FIG. 1 shows an example of a furnace used for this purpose.

本発明では炉内に少なくとも600℃以上、好ましくは
700’C以上、より好ましくは800℃以上の空間領
域がなければならない、この温度以上であれば分解性炭
素化合物からは単体炭素が、更に水蒸気を含む雰囲気下
で分解性ケイ素化合物からはケイ素酸化物が、分解性ホ
ウ素化合物からはホウ素酸化物がそれぞれ極めて微細な
粒子として得られ、気体とこれら固形物との混合体であ
る混合エーロゾル状態を発生する。
In the present invention, there must be a space in the furnace at least 600°C or higher, preferably 700°C or higher, and more preferably 800°C or higher.At this temperature or higher, elemental carbon is released from the decomposable carbon compound, and water vapor is removed. Silicon oxide is obtained from decomposable silicon compounds and boron oxide is obtained from decomposable boron compounds as extremely fine particles in an atmosphere containing . Occur.

なお、2000°C以上の温度は通常熱ロス、を偕<だ
けであるのでこの様な高温は不必要である。また、ケイ
素酸化物あるいはホウ素酸化物に加えて、単体ケイ素あ
るいは単体ホウ素、更にはケイ素ハロゲン化物ある°い
はホウ素ハロゲン化物が挟在していても、本発明での最
終目的である複合炭化物焼結体を得るに格別の妨げには
ならない。
Note that such a high temperature is unnecessary because a temperature of 2000° C. or higher usually causes only heat loss. In addition, in addition to silicon oxide or boron oxide, even if elemental silicon or elemental boron, or even silicon halide or boron halide is interposed, the composite carbide sintering which is the final objective of the present invention can be achieved. There is no particular hindrance to obtaining a body.

本発明で使用する水蒸気を含む熱ガスを得る方法として
は、通電発熱方式、高周波加熱方式、放電方式によって
得た熱ガス中に水蒸気を注入することによっても得るこ
とが出来るが、水素、メタン、エタン、プロパンなど、
あるいは原料とする炭化水素のように燃焼して水蒸気を
生成する可燃物を空気で燃焼させる方法が、−工程で水
蒸気を含む熱ガスを得ることができるので装置上簡便で
あり、熱効率の面からも経済的である。
The hot gas containing water vapor used in the present invention can also be obtained by injecting water vapor into hot gas obtained by an electric heating method, a high frequency heating method, or a discharge method. ethane, propane, etc.
Another method is to use air to combust a combustible material that generates water vapor by burning, such as hydrocarbons, which are raw materials, because hot gas containing water vapor can be obtained in the -step, which is simple in terms of equipment, and from the standpoint of thermal efficiency. It is also economical.

本発明の実施に用いられる分解性ケイ素化合物あるいは
分解性ホウ素化合物は、熱ガス中で熱分解反応によって
容易に単体ケイ素あるいは単体ホウ素の固形物に変化す
ると共に、水蒸気との加水分解反応によってケイ素酸化
物あるいはホウ素酸化物に変化する。かつ、上記反応は
その速度がきわめて太きく 0.01〜0.1秒で反応
は実質的に完結するので、反応時間(反応域での滞留時
間)は1秒も取れば充分である。
The decomposable silicon compound or decomposable boron compound used in the practice of the present invention is easily converted into a solid substance of elemental silicon or elemental boron through a thermal decomposition reaction in hot gas, and also undergoes oxidation of silicon through a hydrolysis reaction with water vapor. It changes to boron oxides or boron oxides. In addition, since the above reaction is extremely fast and is substantially completed in 0.01 to 0.1 seconds, a reaction time (residence time in the reaction zone) of 1 second is sufficient.

従って本発明のような熱と水蒸気が共存する雰囲気下で
は、分解性ケイ素化合物あるいは分解性ホウ素化合物が
ガス状態のままで反応の系外に揮散することは実質上無
視することが出来る。
Therefore, under an atmosphere in which heat and water vapor coexist as in the present invention, it can be substantially ignored that the decomposable silicon compound or the decomposable boron compound evaporates out of the reaction system while remaining in a gaseous state.

この様にして生成したケイ素化合物と単体炭素及びホウ
素酸化物を含む混合エーロゾル分散質は、炉の外に誘導
した後、含まれる固形物をバグフィルタ−、サイクロン
、電機集塵機等の公知の捕集装置を使用する固液分離操
作により捕集するが、捕集装置での熱負荷を軽減するた
めには予冷することが望ましい、予冷の方法としては、
反応後の帯域を冷却するとか、または水を注入する等の
手段を採用出来る。
The mixed aerosol dispersoid containing the silicon compound, elemental carbon, and boron oxide produced in this way is guided out of the furnace, and then the solids contained therein are collected using known methods such as bag filters, cyclones, and electric dust collectors. Although it is collected by a solid-liquid separation operation using a device, it is desirable to pre-cool it in order to reduce the heat load on the collection device.The pre-cooling method is as follows:
It is possible to employ means such as cooling the zone after the reaction or injecting water.

以上の如くして捕集された本発明における含炭素混合物
は高周波加熱炉、通電抵抗炉、直火式管状加熱炉などを
用い、好ましくはアルゴン、ヘリウム、窒素、水素、−
酸化炭素などの非酸化性雰囲気下で、1000〜250
0°C好ましくは1200〜2000°C程度に強熱す
ることによって、焼結体原料として好適な炭化ケイ素と
炭化ホウ素の均一な混合物からなる、本発明の複合炭化
物とすることができる。
The carbon-containing mixture according to the present invention collected as described above can be collected using a high-frequency heating furnace, an energizing resistance furnace, a direct-fired tubular heating furnace, etc., and preferably argon, helium, nitrogen, hydrogen, -
1000-250 in a non-oxidizing atmosphere such as carbon oxide
By igniting to 0°C, preferably about 1200 to 2000°C, the composite carbide of the present invention, which is a homogeneous mixture of silicon carbide and boron carbide suitable as a raw material for a sintered body, can be obtained.

本発明においては、該含炭素混合物は主として前述の通
り本発明の複合炭化物を得るのが目的であるので、該含
炭素混合物微粉末中の炭素、ケイ素及びホウ素の割合は
、式量比(g−atmの比を云う、以下同じ、 ) C
/(Si+8)として3.5  より大であることが要
請される。その理由は、混合物中に炭素を過剰に含む方
が、これを加熱して得られる複合炭化物の平均粒子径が
小さくなるという本発明者らの実験的知見に基づくもの
である。
In the present invention, the purpose of the carbon-containing mixture is mainly to obtain the composite carbide of the present invention as described above. Therefore, the proportions of carbon, silicon, and boron in the fine powder of the carbon-containing mixture are -atm ratio, hereinafter the same)
/(Si+8) is required to be greater than 3.5. The reason for this is based on the inventors' experimental findings that the more carbon is contained in the mixture, the smaller the average particle diameter of the composite carbide obtained by heating the mixture becomes.

その正確な理由は現在は勿論詳らかにし得ないが、該含
炭素混合物を加熱することによって本発明の複合炭化物
が生成するところ、この反応過程において複合炭化物微
粒子が生成しその粒子が成長する段階で過剰の炭素の存
在が粒子同士の結合をさまたげる効果をもたらし、粒子
径の小さい微細な複合炭化物が得られるものと推測され
る。
Although the exact reason cannot be made clear at present, the composite carbide of the present invention is produced by heating the carbon-containing mixture, and in this reaction process, composite carbide fine particles are produced and the particles grow. It is presumed that the presence of excess carbon has the effect of hindering the bonding between particles, resulting in a fine composite carbide with a small particle size.

しかしながら、この式量比が余りに大きいことは炭素化
合物の単なる損失にしかならない、従って上記式量比と
しては3.5〜20  程度の値が適当である。なお、
咳式量比の!I1節は、既に述べた如く、炉のノズルよ
り注入する原料の量を変更するだけで容易に成される。
However, if this formula weight ratio is too large, the carbon compound will simply be lost; therefore, a value of about 3.5 to 20 is appropriate for the above formula weight ratio. In addition,
Cough formula volume ratio! As already mentioned, Section I1 can be easily accomplished by simply changing the amount of raw material injected from the nozzle of the furnace.

本発明における含炭素混合物を強熱して本発明の複合炭
化物を得る工程において、該加熱雰囲気中に酸素が存在
すると単体炭素が燃焼して除去されて仕舞うので、上記
した如(アルゴン、ヘリウム、窒素、水素などの非酸化
性雰囲気下で加熱することが好ましい、しかしながら、
通常、熱処理段階で、酸化ケイ素あるいは酸化ホウ素と
炭素が反応し、複合炭化物が生成すると同時に一酸化炭
素が生成して、系内はおのずと非酸化性雰囲気になるた
め、本発明においては、特にアルゴン等の不活性ガスを
系内に供給することは不要である。
In the step of igniting the carbon-containing mixture of the present invention to obtain the composite carbide of the present invention, if oxygen exists in the heating atmosphere, the elemental carbon will burn and be removed. , heating under a non-oxidizing atmosphere such as hydrogen is preferred, however,
Normally, during the heat treatment step, silicon oxide or boron oxide and carbon react to form a composite carbide and at the same time carbon monoxide is formed, and the system naturally becomes a non-oxidizing atmosphere. It is not necessary to supply an inert gas such as into the system.

なお、この加熱処理する工程において、η含炭素混合物
を一旦緊縮、すなわち嵩比重を増加させる操作をおこな
った後加熱するのが微細な複合炭化物の粉末を得る上で
好ましい、けだし、嵩比重の小さい状態で含炭素混合物
を加熱すると、粒子が一方向に成長した棒状の複合炭化
物が生成し易いが、−旦緊縮して嵩比重を大きくした後
加熱すれば粒子径が均等にそろった球形の形態のものが
得られるという本発明者らの実験的知見に基づくもので
ある。この場合、嵩比重は少なくとも0.15g/ec
以上になるように緊縮するのが好ましい、かかる緊縮操
作は圧縮、撹拌式等の造粒などにより容易に行うことが
出来る。
In this heat treatment step, it is preferable to heat the η carbon-containing mixture once after performing an operation of tightening, that is, increasing the bulk specific gravity, in order to obtain a fine composite carbide powder. If a carbon-containing mixture is heated in this state, a rod-shaped composite carbide with particles growing in one direction is likely to be produced, but if heated after tightening and increasing the bulk specific gravity, a spherical shape with uniform particle diameters can be produced. This is based on the experimental findings of the present inventors that the following can be obtained. In this case, the bulk specific gravity is at least 0.15 g/ec
It is preferable to perform tightening as described above, and such tightening operation can be easily carried out by compression, stirring type granulation, or the like.

該含炭素混合物を強熱処理して得られた本発明の複合炭
化物は、炭化ケイ素と炭化ホウ素とおよび単体炭素の極
めて微細な粒子からなるものである。
The composite carbide of the present invention obtained by igniting the carbon-containing mixture is composed of extremely fine particles of silicon carbide, boron carbide, and elemental carbon.

しかして、本発明の複合炭化物を焼結することにより複
合炭化物の焼結体を得ることが出来るが、その場合、ケ
イ素100に対しホウ素が重量比で0.15〜4.5の
範囲にあることが好ましい、ホウ素量がこれより少ない
と焼結しないし、これを越えると異常粒成長が起こり、
緻密な焼結体が得られないからである。
Thus, a sintered composite carbide can be obtained by sintering the composite carbide of the present invention, but in that case, the weight ratio of boron to 100 silicon is in the range of 0.15 to 4.5. If the amount of boron is less than this, sintering will not occur, and if it exceeds this, abnormal grain growth will occur.
This is because a dense sintered body cannot be obtained.

また、本発明の複合炭化物を焼結することにより、複合
炭化物焼結体を得るためには、ある程度(複合炭化物1
00重量部当たり0.2〜2.0重量物程度)の炭素の
存在が必要である。しかるに本発明における含炭素混合
物を強熱して得られる本発明の複合炭化物中の炭素の含
有量は、上記割合より通常は過剰となっているので、前
記の如き所望の割合になるように、過剰の炭素を、一部
除くことが好ましい、炭素を除去するには、基本的に本
発明の複合炭化物を酸素の存在下で500〜1000°
C程度に加熱することにより容易になされる。具体的に
は、本発明の複合炭化物を空気中で加熱するか、または
、燃料を過剰空気で燃焼させた酸素を含む熱ガス雰囲気
下に置くことにより、簡便に行うことが出来る。なお、
かかる手段で残存炭素の燃焼除去を行ったり、炭素含有
量を調節した複合炭化物をも本発明の複合炭化物と称す
ることにする。
In addition, in order to obtain a composite carbide sintered body by sintering the composite carbide of the present invention, it is necessary to sinter the composite carbide to a certain extent (composite carbide 1
The presence of carbon (on the order of 0.2 to 2.0 parts by weight per 00 parts by weight) is required. However, since the carbon content in the composite carbide of the present invention obtained by igniting the carbon-containing mixture of the present invention is usually in excess of the above ratio, it is necessary to It is preferable to partially remove the carbon of
This can be easily done by heating to about C. Specifically, this can be easily carried out by heating the composite carbide of the present invention in air or by placing it in a hot gas atmosphere containing oxygen, which is obtained by burning fuel with excess air. In addition,
A composite carbide whose residual carbon is removed by combustion or whose carbon content is adjusted by such means is also referred to as the composite carbide of the present invention.

また、上記のごとき方法によって、炭素の割合を調節し
た複合炭化物を燃焼して、焼結体を得ることはもちろん
可能であるが、さらに望ましい方法は、上に述べたよう
な操作により、−旦複合炭化物から単体炭素を実質的に
完全に燃焼除去し、これに新たに単体炭素を添加した後
、焼結することである。
Although it is of course possible to obtain a sintered body by burning a composite carbide with an adjusted carbon ratio by the method described above, a more desirable method is to obtain a sintered body by burning the composite carbide with an adjusted carbon ratio. The process involves substantially completely burning off the elemental carbon from the composite carbide, adding new elemental carbon to the composite carbide, and then sintering it.

この理由は7、含炭素混合物を加熱して得た単体炭素を
含む本発明の複合炭化物を酸素含有熱ガス雰囲気下に置
くと、粉体をミクロにみた場合、見掛は上熱ガスに接し
ている部分の単体炭素のみがより速く燃焼除去されてし
まい、単体炭素の残存形態が必ずしも所望の焼結体を得
るのに好ましい均一なものには成りにくいからであろう
と推察される。
The reason for this is 7. When the composite carbide of the present invention containing elemental carbon obtained by heating a carbon-containing mixture is placed in an oxygen-containing hot gas atmosphere, when viewed microscopically, the powder appears to be in contact with the hot gas. It is presumed that this is because only the elemental carbon in the portion where the sintered body is removed is burnt away more quickly, and the residual form of the elemental carbon is not necessarily uniform enough to obtain the desired sintered body.

単体炭素を新たに添加する場合の方法としては、比較的
炭素含有率の高い液状炭化水素と、上記の如くして単体
炭素を燃焼除去して得られた複合炭化物の粉末とを混合
し、これを非酸化性雰囲気中で加熱することによって、
単体炭素を複合炭化物中に生成せしめる方法が好適に採
用される。
When newly adding elemental carbon, a liquid hydrocarbon with a relatively high carbon content is mixed with the composite carbide powder obtained by burning off the elemental carbon as described above. By heating in a non-oxidizing atmosphere,
A method in which elemental carbon is produced in a composite carbide is preferably employed.

かかる目的で使用される液状炭化水素としては、例えば
、フェノール・ホルムアルデヒド縮合物のアセトン溶液
、レゾルシノール・ホルムアルデヒド縮合物のアセトン
溶液、グリセリン、コールタールピッチのベンゼン溶液
などが好適なものとして挙げられるがもちろんこれに限
られるものではない。
Suitable liquid hydrocarbons used for this purpose include, for example, an acetone solution of a phenol/formaldehyde condensate, an acetone solution of a resorcinol/formaldehyde condensate, glycerin, a benzene solution of coal tar pitch, etc. It is not limited to this.

なお、かくして本発明の複合炭化物に単体炭素を添加し
て得られた混合物中には、複合炭化物100重量部に対
して1重量部を越える酸素がケイ素酸化物、ホウ素酸化
物の形態で含まれる場合がある。かかる場合は、フッ酸
水溶液などで酸化物を洗浄除去し、酸素含有量を少な(
とも0.5重量部以下とすることが、これを焼結、加工
して得られる炭化物焼結体もしくは炭化物成形体の強度
的物性の面から望ましい。
In addition, in the mixture obtained by adding elemental carbon to the composite carbide of the present invention, more than 1 part by weight of oxygen is contained in the form of silicon oxide and boron oxide based on 100 parts by weight of the composite carbide. There are cases. In such cases, remove the oxide by washing with a hydrofluoric acid solution to reduce the oxygen content (
It is desirable that both amounts be 0.5 parts by weight or less in terms of strength and physical properties of the carbide sintered body or carbide molded body obtained by sintering and processing this.

このフッ酸水溶液による洗浄工程は、複合炭化物に単体
炭素を添加する前段階、即ち複含炭“化物より単体炭素
を燃焼除去した後の工程で実施することも可能である。
This cleaning step with an aqueous hydrofluoric acid solution can also be carried out before adding elemental carbon to the composite carbide, ie, in a step after burning and removing elemental carbon from the composite carbide.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明においては、原料の含炭素混合物を
得るのに、分解性ケイ素化合物、分解性炭素化合物及び
分解性ホウ素化合物を水蒸気を含む熱ガス中で化学反応
、即ち熱分解、酸化、加水分解などを行わせ、それぞれ
の分子が生成した段階から分子のオーダーで混合された
ままで粒子成長せしめたものであることに特徴を有する
。従って、生成するケイ素酸化物、単体炭素及びホウ素
酸化物の微細粒子の混合状態は、従来の機械的な混合法
によるものに比して本質的に均一かつ格段に微細なもの
が得られやすく従ってこの点で極めて勝れた品質を有す
るものとなるのである。またその実施においても粉塵、
騒音などの問題はなく、バッチ方式とは異なり連続的に
混合物を得ることができるため、従来のインゴットをバ
ッチ方式で機械的に粉砕する方法で間理とされてきた作
業工程の煩雑さ及び粉砕機自身の摩耗等による不純物の
混入と云った問題もない。
As described above, in the present invention, in order to obtain a carbon-containing mixture of raw materials, a decomposable silicon compound, a decomposable carbon compound, and a decomposable boron compound are subjected to a chemical reaction in a hot gas containing water vapor, that is, thermal decomposition, oxidation, It is characterized by the fact that it is made to undergo hydrolysis, etc., and from the stage where each molecule is generated, particles are allowed to grow while remaining mixed on the order of molecules. Therefore, it is easier to obtain a mixture of fine particles of silicon oxide, elemental carbon, and boron oxide that are essentially uniform and much finer than those obtained by conventional mechanical mixing methods. In this respect, it has extremely superior quality. Also, in its implementation, dust,
There are no problems such as noise, and unlike the batch method, the mixture can be obtained continuously, which eliminates the complexity and pulverization of the work process, which was considered a hindrance in the conventional method of mechanically crushing ingots in the batch method. There is no problem of contamination with impurities due to wear of the machine itself.

本発明の複合炭化物は、上記のごとき優れた物性の含炭
素混合物を出発原料とし、これを強熱して得られるもの
であるから、比表面積が極めて広く、しかも極めて微小
な粒子からなる粉体なのである。従うて、該複合炭化物
を焼結することにより、焼結速度が早くかつ焼結は容易
であり、しかも緻密な焼結体が得られる特徴があるので
ある。
The composite carbide of the present invention uses a carbon-containing mixture with excellent physical properties as described above as a starting material and is obtained by igniting it, so it has an extremely wide specific surface area and is a powder consisting of extremely small particles. be. Therefore, by sintering the composite carbide, the sintering speed is high, the sintering is easy, and a dense sintered body can be obtained.

また、含炭素混合物中のケイ素及びホウ素に対する炭素
の量比を炭素過剰にしておけば、得られる本発明の複合
炭化物の粉は更に微小となり比表面積が広いものが容易
に得られるのである。
Furthermore, if the ratio of carbon to silicon and boron in the carbon-containing mixture is made excessive, the powder of the composite carbide of the present invention becomes even finer and has a larger specific surface area.

さらに、本発明の複合炭化物は炭化ケイ素と炭化ホウ素
から主としてなるものであるから、焼結段階において、
ホウ素系物質特に炭化ケイ素を別に合成して添加混合す
る工程が不要となりまた酸化されやすい単体ホウ素を使
用する必要もないのである。
Furthermore, since the composite carbide of the present invention mainly consists of silicon carbide and boron carbide, in the sintering step,
There is no need to separately synthesize and add and mix a boron-based material, especially silicon carbide, and there is no need to use elemental boron, which is easily oxidized.

〔発明を実施するための好ましい形態〕以下に実施例を
示して本発明を具体的に説明する。尚%は重量%を示す
[Preferred Mode for Carrying Out the Invention] The present invention will be specifically explained below with reference to Examples. Note that % indicates weight %.

実施例1 第1図に示す炉(直径300mm、長さ311)を用い
、ダクト2より空気を、燃焼バーナー3より熱風用燃料
として水素を夫々8ONm’/h、12μm’/hの流
量で装入し、また分解性ケイ素化合物として5iC1a
を、分解性炭素化合物としてC9留分混合物を、分解性
ホウ素化合物としてBCl3を予め重量比で1 : 1
.9 : 0.0077  に混合したものをノズル4
より14Kg/hの流量で炉内に装入した。炉内は第1
図のAの位置で1000〜1100°Cの温度に保った
。炉内に生成したエーロゾルはダクト6より抜き出し、
冷却後バグフィルタ−で捕集して本発明の含炭素混合物
5.0Kg/h(乾燥重量)を得た。
Example 1 Using the furnace shown in Fig. 1 (diameter 300 mm, length 311), air was supplied from duct 2 and hydrogen was supplied as hot air fuel from combustion burner 3 at flow rates of 8 ON m'/h and 12 μm'/h, respectively. and 5iC1a as a decomposable silicon compound.
, a C9 fraction mixture as a decomposable carbon compound, and BCl3 as a degradable boron compound in a weight ratio of 1:1.
.. 9: Nozzle 4 mixed with 0.0077
It was then charged into the furnace at a flow rate of 14 kg/h. Inside the furnace is the first
The temperature was maintained at 1000-1100°C at position A in the figure. The aerosol generated in the furnace is extracted from duct 6,
After cooling, the mixture was collected using a bag filter to obtain 5.0 kg/h (dry weight) of the carbon-containing mixture of the present invention.

この混合物には単体重量換算でケイ素15.8%、炭素
65.6%、ホウ素 0.07%が含まれ(残りは結合
性の酸素18.4%、炭素付着の水素0.1%、その他
0.1%以下)、重量比C/(Si+B)は9.6  
であった、ESCAスペクトル解析の結果、ケイ素ある
いはホウ素と他元素との結合形態には5t−0結合、B
−0結合のみが観察された。また嵩比重は0.0961
/ccであった。
This mixture contains 15.8% silicon, 65.6% carbon, and 0.07% boron (the remainder is 18.4% bound oxygen, 0.1% carbon-attached hydrogen, and other 0.1% or less), weight ratio C/(Si+B) is 9.6
As a result of ESCA spectrum analysis, the bonding forms between silicon or boron and other elements include 5t-0 bond, B
Only -0 binding was observed. Also, the bulk specific gravity is 0.0961
/cc.

この含炭素混合物の500gを円筒容器に入れ、1軸圧
縮し、0.351/ccの嵩比重とした後、黒鉛坩堝に
挿入し、高周波加熱炉を用いてアルゴン雲囲気中で17
00°Cで2時間強熱し、−旦冷却後、空気中で750
°Cに加熱して残存した単体炭素を燃焼除去して本発明
の複合炭化物115gを得た。
500 g of this carbon-containing mixture was placed in a cylindrical container, uniaxially compressed to a bulk specific gravity of 0.351/cc, then inserted into a graphite crucible, and heated in a high-frequency heating furnace in an argon cloud atmosphere for 170 g.
Ignite at 00°C for 2 hours, cool down to 750°C in air.
The mixture was heated to .degree. C. and the remaining elemental carbon was burned off to obtain 115 g of the composite carbide of the present invention.

このもののESCAスペクトル解析の結果、5i−C結
合及びB−C結合の存在が確認され炭化ケイ素と炭化ホ
ウ素からなることが判明した。
As a result of ESCA spectrum analysis of this product, the presence of 5i-C bonds and B-C bonds was confirmed, and it was found that it was composed of silicon carbide and boron carbide.

また、粉末X線回折スペクトル解析の結果、結晶形状が
立方晶系の炭化ケイ素と、針刃晶系の炭化ホウ素の存在
が確認され、電子顕微鏡映像解析によるその平均粒子径
は0.27μで、粒子形状は均等に揃った球形であるこ
とが認められた。
In addition, as a result of powder X-ray diffraction spectrum analysis, the presence of silicon carbide with a cubic crystal structure and boron carbide with a needle-edge crystal structure was confirmed, and the average particle diameter was 0.27μ according to electron microscope image analysis. It was observed that the particle shape was uniformly spherical.

このものの酸素の含有量は化学分析の結果1.6%であ
りだ。
Chemical analysis showed that the oxygen content of this product was 1.6%.

実施例2〜5 熱風用燃料には水素の他にメタン、プ1、ロッセンも用
い、ケイ素化合物、炭素化合物、ホウ素化合物としては
表1に示すものを夫々用いて、実施例1と同様な方法で
本発明の含炭素混合物を得た。得られた夫々の本灸明の
含炭素混合物の組成を表2に示す。
Examples 2 to 5 The same method as in Example 1 was carried out using methane, P1, and Rossene in addition to hydrogen as the hot air fuel, and using the silicon compounds, carbon compounds, and boron compounds shown in Table 1, respectively. A carbon-containing mixture of the present invention was obtained. Table 2 shows the composition of each of the obtained carbon-containing mixtures.

含炭素混合物のESCAスペクトル解析の結果、ケイ素
あるいはホウ素と他の元素との結合形態には5i−0結
合、B−0結合のみが観察された。
As a result of ESCA spectrum analysis of the carbon-containing mixture, only 5i-0 bonds and B-0 bonds were observed as bond forms between silicon or boron and other elements.

なお、表1において、装入ノズルの位置を示す数字が同
一なものは予め混合して装入したことを意味する0例え
ば実施例2においては予め5iCI4とA重油を混合し
たものをノズル4より炉内に装入し、同時にBF、はノ
ズル5より炉内に装入したことを意味する。
In Table 1, the same number indicating the position of the charging nozzle means that the charging nozzle was mixed in advance. For example, in Example 2, 5iCI4 and A heavy oil were mixed in advance and charged from nozzle 4. BF means that the material was charged into the furnace through the nozzle 5 at the same time.

表2 また実施例5においては、予めホウ酸とエタノールを重
量比で0.08 : 1に混合して得た溶液をノズル4
より炉内に装入した。装入方法としては空気を用い二流
体噴霧方式とし、空気量は0.25Nmff/hとした
Table 2 In addition, in Example 5, a solution obtained by mixing boric acid and ethanol in a weight ratio of 0.08:1 was injected into the nozzle 4.
It was then charged into the furnace. The charging method was a two-fluid spraying method using air, and the amount of air was 0.25 Nmff/h.

得られた夫々の含炭素混合物を、夫々表3に示す条件で
参考例1と同様に圧縮、強熱、−旦冷却及び残存した炭
素の燃焼除去を行って夫々本発明の複合炭化物を得た。
Each of the obtained carbon-containing mixtures was compressed, ignited, cooled and the remaining carbon was burned off in the same manner as in Reference Example 1 under the conditions shown in Table 3 to obtain the composite carbide of the present invention. .

表3 得られた複合炭化物のESCAスペクトル解析の結果、
5i−C1訃C結合の存在が確認された。また電子顕微
鏡影像解析によるその平均粒子径は夫々表3に示す通り
であった。
Table 3 Results of ESCA spectrum analysis of the obtained composite carbide,
The existence of 5i-C1-C bond was confirmed. Furthermore, the average particle diameters determined by electron microscope image analysis were as shown in Table 3.

粉末X線回折スペクトル解析の結果、いずれの本発明の
複合炭化物粉末にも立方晶形の炭化ケイ素と針刃晶形の
炭化ホウ素の存在が確認された。
As a result of powder X-ray diffraction spectrum analysis, the presence of cubic silicon carbide and needle-edge boron carbide was confirmed in all of the composite carbide powders of the present invention.

また実施例3においては、六方晶形の炭化ケイ素の存在
もTl1taされ、その存在割合は立方晶形100重量
部に対して約10重量部と推算された。
Further, in Example 3, the presence of hexagonal silicon carbide was also determined, and the proportion thereof was estimated to be about 10 parts by weight per 100 parts by weight of cubic silicon carbide.

参考例1(焼結体の製造例) 実施例1で得た本発明の複合炭化物を、5重量倍のI(
F水溶液(濃度10%)に5時間浸した後、乾燥して得
た110.を11の容器に入れ、これに2.7gのレゾ
ルシノールホルムアルデヒド縮合物を溶解させた300
cc  のアセトン溶液を加え、室温で10時間混合し
、さらに容器を70°Cに調節された恒温水槽に浸し、
混煉りを行いながらアセトンを蒸発除去した後、これを
N2ガス雰囲気中で600’C1時間加熱し、複合炭化
物と付加的炭素の混合物を得た。その組成は元素割合で
ケイ素 69.1%、炭素30.5%、ホウ素0.30
%、酸素 0.06%(その他0.1%以下)であり、
単体炭素は 0.89%であった。
Reference Example 1 (Manufacturing Example of Sintered Body) The composite carbide of the present invention obtained in Example 1 was mixed with 5 times the weight of I(
110. obtained by soaking in F aqueous solution (concentration 10%) for 5 hours and then drying. 300 in which 2.7 g of resorcinol formaldehyde condensate was dissolved.
cc of acetone solution was added, mixed at room temperature for 10 hours, and the container was further immersed in a constant temperature water bath adjusted to 70 °C.
After acetone was removed by evaporation while kneading, this was heated at 600'C for 1 hour in a N2 gas atmosphere to obtain a mixture of composite carbide and additional carbon. Its composition is 69.1% silicon, 30.5% carbon, and 0.30 boron.
%, oxygen 0.06% (others 0.1% or less),
Elemental carbon was 0.89%.

次にこの温容物100gを円筒容器に入れ、0.5T/
 cdの荷重でl軸圧縮した後、2T/cfflの静水
圧でラバープレスし、さらに10〜1〜l mmHHの
窒素雰囲気中で2100°C115分間一体に焼結して
複合炭化物焼結体を得た。この焼結体の密度を測定した
ところ、3.11g/ccであり、これは炭化ケイ素の
理論密度3.21g7ccの97χに相当する良好な値
であった。
Next, put 100g of this hot container into a cylindrical container and
After l-axis compression with a load of CD, rubber pressing was performed with a hydrostatic pressure of 2 T/cffl, and the composite carbide sintered body was further sintered at 2100°C for 115 minutes in a nitrogen atmosphere of 10 to 1 mmHH to obtain a composite carbide sintered body. Ta. The density of this sintered body was measured and found to be 3.11 g/cc, which was a good value corresponding to 97χ of the theoretical density of silicon carbide, 3.21 g/cc.

次にこの焼結体をダイヤモンドカッターで切断し、30
片の試験片を作製し、JIS R−1601(’81)
に従って曲げ強度を測定した0曲げ強度測定の雰囲気は
室温と1400°Cの窒素雰囲気中の2種とし、それぞ
れ15片の試験片で3点曲げにより測定した。
Next, this sintered body was cut with a diamond cutter, and
A test piece was prepared and tested according to JIS R-1601 ('81).
The 0-bending strength was measured in two different atmospheres: room temperature and nitrogen atmosphere at 1400°C, and each was measured by three-point bending using 15 test pieces.

この結果、室温での曲げ強度平均値は46にg7mm”
で標準偏差は2.6にg/■−g、 1400“Cでの
曲げ強度平均値は45Kg/am”で標準偏差は2.5
Kg/mm”であっ参考例2〜5(焼結体の製造例) 実施例2〜5で得られた本発明の複合炭化物粉末をそれ
ぞれ参考例1と同様にしてHF水溶液で洗浄濾過して得
た各110gに、夫々表4に示す量のレゾルシノール・
ホルムアルデヒド縮合物を溶解させた300ccのアセ
トン溶液を加え、参考例1と全く同様にして付加的炭素
を添加し、複合炭化物と炭素との混合物を得た。夫々の
組成は表4に示す通りであった。
As a result, the average bending strength at room temperature was 46g7mm.
The standard deviation is 2.6 g/■-g, the average bending strength at 1400 "C is 45 Kg/am" and the standard deviation is 2.5.
Kg/mm"Reference Examples 2 to 5 (Example of Production of Sintered Body) The composite carbide powders of the present invention obtained in Examples 2 to 5 were washed and filtered with an HF aqueous solution in the same manner as in Reference Example 1, respectively. To each of the obtained 110g, resorcinol in the amount shown in Table 4 was added.
300 cc of an acetone solution in which a formaldehyde condensate was dissolved was added, and additional carbon was added in exactly the same manner as in Reference Example 1 to obtain a mixture of composite carbide and carbon. The respective compositions were as shown in Table 4.

これらの複合炭化物と炭素との混合物を参考例1と全く
同様にして成型後、2100°Cで15分間一体に焼結
し、夫々の複合炭化物焼結体を得た。夫々の焼結体の密
度は炭化ケイ素の理論密度に対し、表4に示す通りの値
であった。
A mixture of these composite carbides and carbon was molded in exactly the same manner as in Reference Example 1, and then sintered together at 2100°C for 15 minutes to obtain each composite carbide sintered body. The density of each sintered body was as shown in Table 4 with respect to the theoretical density of silicon carbide.

次にこれらの焼結体より参考例1と全く同様にして30
片の試験片を切り出し、3点曲げ強度試験を行った結果
も表4に示した通りであった。
Next, from these sintered bodies, 30
The test pieces were cut out and subjected to a three-point bending strength test, and the results are shown in Table 4.

比較参考例1 実施例1におけるBChの使用の点を除く以外表4 は、実施例1と全(同様にしてケイ素酸化物と炭素を含
む含炭素混合物を製造した。
Comparative Reference Example 1 A carbon-containing mixture containing silicon oxide and carbon was produced in the same manner as in Example 1 except for the use of BCh in Table 4.

この含炭素混合物を用いて実施例1と同様に圧縮した後
高周波加熱炉を用いて加熱し、更に単体炭素を燃焼除去
して炭化ケイ素粉末115gを得た、この粉末のX線回
折スペクトル解析の結果、結晶形状は立方晶形で、電子
顕微鏡影像解析によるその平均粒子径は0.25μであ
った。
Using this carbon-containing mixture, it was compressed in the same manner as in Example 1, heated using a high-frequency heating furnace, and further burnt off the elemental carbon to obtain 115 g of silicon carbide powder. As a result, the crystal shape was cubic, and the average particle diameter was 0.25 μm as determined by image analysis using an electron microscope.

この炭化ケイ素粉末を参考例1と同様にしてHF水溶液
で洗浄、乾燥して得た110gに、平均粒子径が4.0
μの単体ホウ素粉末を、ケイ素に対するホウ素の割合が
参考例1と一致するように0.33g加え、更に参考例
1と全く同様にして付加的炭素を添加して炭化ケイ素と
単体ホウ素及び炭素の混合物112gを得た。その組成
は元゛素割合でケイ素69.1%、炭素30.4%、ホ
ウ素0.30%、酸素0.17%(その他0.1%以下
)であり、単体炭素は0.90χであった。
110 g of this silicon carbide powder was washed with an HF aqueous solution and dried in the same manner as in Reference Example 1, and the average particle size was 4.0.
Add 0.33g of elemental boron powder of μ so that the ratio of boron to silicon matches Reference Example 1, and add additional carbon in exactly the same manner as Reference Example 1 to combine silicon carbide, elemental boron, and carbon. 112 g of mixture was obtained. Its composition is 69.1% silicon, 30.4% carbon, 0.30% boron, 0.17% oxygen (others less than 0.1%), and elemental carbon is 0.90χ. Ta.

この混合物100gを参考例1と全く同様にして、成型
後加熱し、焼結体を得た。
100 g of this mixture was molded and heated in exactly the same manner as in Reference Example 1 to obtain a sintered body.

この焼結体の密度を測定したところ3.OOg/ccで
あり、これは炭化ケイ素の理論密度の93%に相当する
The density of this sintered body was measured.3. OOg/cc, which corresponds to 93% of the theoretical density of silicon carbide.

次にこの焼結体を使用し参考例1と全(同様にして30
片の試験片を切り出し、3点曲げ強度試験を行った結果
、室温での曲げ強度平均値は40Kg/ff1I11!
で標準偏差は3.5Kg/IIIm”、1400°Cで
の曲げ強度平均値は38Kg/mm”で標準偏差は3.
1Kg/鋼■2であった。
Next, using this sintered body, reference example 1 and all (30
A test piece was cut out and a three-point bending strength test was performed, and the average bending strength at room temperature was 40Kg/ff1I11!
The standard deviation is 3.5Kg/IIIm", and the average bending strength at 1400°C is 38Kg/mm" with a standard deviation of 3.
It was 1Kg/steel 2.

実施例1及び参考例1と比較参考例1との比較より、ケ
イ素酸化物、単体炭素及びホウ素酸化物を含む本発明に
おける含炭素混合物を出発原料として得た複合炭化物焼
結体は、ホウ素酸化物を含まない含炭素混合物を出発原
料として得られた焼結体と比較して、焼結体の密度が高
く、かつ強度は大きくバラツキも小さいことが判る。
From a comparison between Example 1 and Reference Example 1 and Comparative Reference Example 1, it was found that the composite carbide sintered body obtained using the carbon-containing mixture of the present invention containing silicon oxide, elemental carbon, and boron oxide as a starting material was It can be seen that the sintered body has a higher density, greater strength, and less variation than a sintered body obtained using a carbon-containing mixture as a starting material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する炉の1例を示す断面図
である。 図において、 1:炉材 2 : ダクト 3 : 燃焼バーナー 4 : ノズル 5 : ノズル 6 : ダクト を示す。 特許出廓人 三井東圧化学株式会社 第1図
FIG. 1 is a sectional view showing one example of a furnace used in carrying out the present invention. In the figure, 1: furnace material 2: duct 3: combustion burner 4: nozzle 5: nozzle 6: duct is shown. Patent distributor Mitsui Toatsu Chemical Co., Ltd. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)水蒸気を含む熱ガス中に、分解性ケイ素化合物、
分解性炭素化合物及び分解性ホウ素化合物を装入し・分
解して、ケイ素酸化物、単体炭素及びホウ素酸化物のそ
れぞれのエーロゾルを含む混合エーロゾル分散質を生成
せしめ、該生成した分散質を捕集して得た含炭素混合物
であって、式量比C/(Si+B)(g−atms/g
−atms)が3.5以上の含炭素混合物を強熱して得
たことを特徴とする新規な複合炭化物。
(1) A decomposable silicon compound in hot gas containing water vapor,
A decomposable carbon compound and a decomposable boron compound are charged and decomposed to generate a mixed aerosol dispersoid containing aerosols of silicon oxide, elemental carbon, and boron oxide, and the generated dispersoid is collected. A carbon-containing mixture obtained by
A novel composite carbide obtained by igniting a carbon-containing mixture having -atms) of 3.5 or more.
(2)ケイ素100に対しホウ素が0.15〜4.5重
量比である特許請求の範囲第1項記載の複合炭化物。
(2) The composite carbide according to claim 1, wherein the weight ratio of boron to 100 parts of silicon is 0.15 to 4.5.
JP61253557A 1986-10-27 1986-10-27 Novel composite carbide Granted JPS6330368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253557A JPS6330368A (en) 1986-10-27 1986-10-27 Novel composite carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253557A JPS6330368A (en) 1986-10-27 1986-10-27 Novel composite carbide

Publications (2)

Publication Number Publication Date
JPS6330368A true JPS6330368A (en) 1988-02-09
JPH0450272B2 JPH0450272B2 (en) 1992-08-13

Family

ID=17253021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253557A Granted JPS6330368A (en) 1986-10-27 1986-10-27 Novel composite carbide

Country Status (1)

Country Link
JP (1) JPS6330368A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335590A (en) * 1986-07-31 1988-02-16 Kurooda Japan Kk Production of sugar ether

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335590A (en) * 1986-07-31 1988-02-16 Kurooda Japan Kk Production of sugar ether

Also Published As

Publication number Publication date
JPH0450272B2 (en) 1992-08-13

Similar Documents

Publication Publication Date Title
Frenklach et al. Homogeneous nucleation of diamond powder in the gas phase
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
JPH02289497A (en) Manufacturing process for silicon carbide whisker and nucleating agent
Jiang et al. An efficient way of recycling silicon kerf waste for synthesis of high‐quality SiC
JPS6332724B2 (en)
JPS6130613B2 (en)
JPS6330368A (en) Novel composite carbide
JPS6311573A (en) Manufacture of novel composite carbide sintered body
JPH0640711A (en) Production of carbon containing composition
JPS6335590B2 (en)
JPS62278166A (en) Manufacture of composite metal carbide sintered body
JPH034484B2 (en)
JPH06115919A (en) Production of silicon carbide powder
JPS5926909A (en) Preparation of powder
WO2023167268A1 (en) Method for producing silicon monoxide
JPS63225508A (en) Production of sialon powder
JPS5983922A (en) Preparation of silicon carbide powder
JPH01103958A (en) Production of silicon carbide sintered compact
JP2916303B2 (en) Carbon containing composition
JPS61111909A (en) Novel method for producing metal carbide
JPS58213621A (en) Preparation of slicon carbide powder having large specific surface area
JPS62162696A (en) Production of silicon nitride whisker
JPS60221310A (en) Production of silicon nitride powder
JPS62162697A (en) Production of silicon carbide whisker
JPS6010081B2 (en) Powder manufacturing method