JPS63302946A - Carrier for catalyst - Google Patents

Carrier for catalyst

Info

Publication number
JPS63302946A
JPS63302946A JP62138516A JP13851687A JPS63302946A JP S63302946 A JPS63302946 A JP S63302946A JP 62138516 A JP62138516 A JP 62138516A JP 13851687 A JP13851687 A JP 13851687A JP S63302946 A JPS63302946 A JP S63302946A
Authority
JP
Japan
Prior art keywords
carrier
alumina
catalyst
specific surface
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62138516A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yanagihara
伸行 柳原
Kunio Ito
伊藤 邦夫
Mieko Tanabe
田辺 美恵子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62138516A priority Critical patent/JPS63302946A/en
Publication of JPS63302946A publication Critical patent/JPS63302946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the specific surface area of a carrier for a catalyst and to improve the strength by using specified amts. of calcium aluminate, molten silica, hydraulic alumina and LiO2.Al2O3.XSiO2 each having a specified particle size to form the carrier. CONSTITUTION:20-40wt.% calcium aluminate is mixed with 40-70wt.% molten silica, 5-20wt.% hydraulic alumina or activated alumina and 1-10wt.% Li2 O.Al2O3.XSiO2 (X=2 or 4). The mixture is kneaded with a prescribed amt. of water, molded, dried and heat treated to form a heat resistant carrier for a catalyst. The pref. average particle size of the calcium aluminate is 5-30mum, that of the molten silica is 5-50mum, that of the hydraulic alumina or activated alumina is 1-10mum and that of the Li2O.Al2O3.XSiO2 is 1-10mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、天然ガス、プロパン等の気体燃料および石油
等の液体燃料を用いる燃焼装置の排ガス浄化用触媒に用
いる担体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a carrier used in a catalyst for purifying exhaust gas of a combustion device using gaseous fuel such as natural gas and propane, and liquid fuel such as petroleum.

従来の技術 従来、アルミン酸石灰を主成分とし、骨材として溶融シ
リカ、チタニアを成分とする無機酸化物に成形助剤など
を加えて混合し、水を加えて混練したものを多孔体に加
圧・成型する。その後、固化、養生、乾燥を施して触媒
用の担体を得ていた。
Conventional technology Conventionally, an inorganic oxide containing lime aluminate as the main component, fused silica as an aggregate, and titania as a component is mixed with a forming aid, etc., and the mixture is kneaded with water and then added to a porous body. Press and mold. Thereafter, it was solidified, cured, and dried to obtain a catalyst carrier.

その後、排ガス浄化用としてはさらにパラジウム塩溶液
中に浸漬して触媒を担持した後、空気中で900°Cで
1時間熱処理することにより構成していた。
Thereafter, for exhaust gas purification, the catalyst was further immersed in a palladium salt solution to support a catalyst, and then heat treated in air at 900°C for 1 hour.

発明が解決しようとする問題点 このような従来の構成から得られた触媒用担体では比較
的比表面積が小さく、さらに高温で、長時間、空気中に
曝露しておくと、比表面積が徐々に低下して来る。従っ
て燃焼機器の排ガス浄化用触媒に用いた場合、初期性能
は優れているが、時間の経過と共に触媒活性が劣化して
来ることから。
Problems to be Solved by the Invention Catalyst carriers obtained from such conventional structures have a relatively small specific surface area, and when exposed to air at high temperatures for long periods of time, the specific surface area gradually decreases. It's coming down. Therefore, when used as a catalyst for purifying exhaust gas in combustion equipment, the initial performance is excellent, but the catalyst activity deteriorates over time.

−酸化炭素などの浄化能力が低下して来るという問題が
あった。そこで900°C以上で耐熱性の低いチタニア
を除き、比表面積の大きいアルミナを添加する事を提案
し、比表面積の向上を図る事は出来たが、圧縮強度が少
し減少する傾向にあり、実用面からはさらに強い圧縮強
度が要望されている。本発明はこのような問題点を解決
する事を目的とするものである。
- There was a problem in that the ability to purify carbon oxide etc. decreased. Therefore, we proposed removing titania, which has low heat resistance above 900°C, and adding alumina, which has a large specific surface area. Although we were able to improve the specific surface area, the compressive strength tended to decrease slightly, making it practical for practical use. From this point of view, even stronger compressive strength is required. The present invention aims to solve these problems.

問題点を解決するための手段 この問題点を解決するために1本発明は主としてアルミ
ン酸石灰、溶融シリカ、水硬性アルミナ又は活性アルミ
ナ、およびLi2O−A7J205 ・X5i02(但
しX = 2.4 )系複合酸化物で構成される耐熱性
無機酸化物であって、上記アルミン酸石灰、溶融シリカ
、水硬性アルミナ又は活性アルミナ、およびLi2O−
AJ203− XSiO2系複合酸化物の配合組成を2
0〜40重量%:40〜To重量%:6〜20重量%:
1〜10重量%としたものであり好ましくは各々の平均
粒径が5〜30μm=5〜601tm : 1〜101
tm  : 1〜1011mの触媒用担体としたもので
ある。
Means for solving the problem In order to solve this problem, the present invention mainly uses lime aluminate, fused silica, hydraulic alumina or activated alumina, and Li2O-A7J205 ・X5i02 (where X = 2.4) system. A heat-resistant inorganic oxide composed of a composite oxide, the above-mentioned lime aluminate, fused silica, hydraulic alumina or activated alumina, and Li2O-
AJ203- The composition of the XSiO2-based composite oxide is 2.
0-40 weight%: 40-To weight%: 6-20 weight%:
1 to 10% by weight, and preferably each average particle size is 5 to 30 μm = 5 to 601 tm: 1 to 101
tm: 1 to 1011 m as a catalyst carrier.

作用 このような構成により触媒用担体の中にLi2O・Li
2O5・X5i(hを含有させる事によって、このLi
2O−L71203 ・XSiO2t7)微細粒子と比
表面積の大きいアルミナの微細粒子が高温時の熱処理に
よって一部焼結し合い、担体内で強固な結合が形成され
、比表面積を下げないで担体の圧縮強度を向上させてい
る。一般にLi2O・Aj!205・2si02はβ−
ユークリプタイト、 Li2O・Al2O5・4si0
2はスボジュメンの結晶構造を有しておシ、熱膨張係数
を小さくする機能を持っている。同時に、この機能も圧
縮強度を向上させる働きをするために、比表面積の大き
い微細粒子状のアルミナとLi2O・A12os・2,
4Si02の微細粒子が担体内でからみ合って圧縮強度
が大幅に向上させる事ができる。
Function: With this structure, Li2O・Li is formed in the catalyst carrier.
By containing 2O5・X5i (h, this Li
2O-L71203 ・XSiO2t7) Fine particles and alumina fine particles with a large specific surface area are partially sintered together by heat treatment at high temperatures, forming a strong bond within the carrier, increasing the compressive strength of the carrier without reducing the specific surface area. is improving. Generally Li2O・Aj! 205・2si02 is β-
Eucryptite, Li2O・Al2O5・4si0
2 has a subodumene crystal structure and has the function of reducing the coefficient of thermal expansion. At the same time, in order to improve the compressive strength, fine particle alumina with a large specific surface area and Li2O・A12os・2,
The fine particles of 4Si02 are entangled within the carrier, making it possible to significantly improve the compressive strength.

さらにパラジウム触媒などを担持させる事によって、高
温でも長時間にわたって破壊することなく、燃焼機器の
排ガスを効率よく浄化する事ができることとなる。
Furthermore, by supporting a palladium catalyst or the like, it is possible to efficiently purify exhaust gas from combustion equipment without being destroyed even at high temperatures for a long time.

実施例 触媒用担体の構成要素として、平均粒径的1611mの
アルミン酸石灰、平均粒径的30μmの溶融シリカ、平
均粒径的5μmの水硬性アルミナ又は活性アルミナ、平
均粒径的6μmのLi2O・Al2O5・2si02(
結晶構造:β・ユークリプタイト)およびLi2O・L
i2O5・4si02 (結晶構造:スポジュメン)を
各組成比に配合し、さらにこの混合物にカルボキシメチ
ルセルロースの様な有機性結着剤と共に、適量の水を加
えて混練した。この担体材料をハニカム成型機で押し出
し成形し、固化と養生を経てioooCで乾燥し、水分
を除去した後、空気中において1ooO°Cで約20分
間熱処理を行なって5表1に示すような各種類の担体を
得た。
The constituent elements of the carrier for the catalyst in the examples were lime aluminate with an average particle size of 1611 m, fused silica with an average particle size of 30 μm, hydraulic alumina or activated alumina with an average particle size of 5 μm, and Li2O・with an average particle size of 6 μm. Al2O5・2si02(
Crystal structure: β・eucryptite) and Li2O・L
i2O5.4si02 (crystal structure: spodumene) was blended in various composition ratios, and an appropriate amount of water was added and kneaded together with an organic binder such as carboxymethyl cellulose to this mixture. This carrier material was extruded using a honeycomb molding machine, solidified and cured, dried at ioooC to remove moisture, and then heat-treated in air at 1oooC for about 20 minutes. Various types of carriers were obtained.

比較例として従来型組成の担体も合わせて示す。A carrier with a conventional composition is also shown as a comparative example.

但し、有機性結着剤としてカルボキシメチルセルロース
を全体量に対してすべての試料に6重量%加えた。触媒
用担体の物性として、担体の比表面積、圧縮強度、熱彰
張係数を調べて各種担体を評価した。一方、担体の耐久
性については1000°Cの空気雰囲気中において10
00時間曝露した後の比表面積を調べて比較した。
However, 6% by weight of carboxymethyl cellulose was added to all samples as an organic binder based on the total amount. Various carriers were evaluated by examining their specific surface area, compressive strength, and thermal tensile coefficient as physical properties of the catalyst carrier. On the other hand, the durability of the carrier is 10% in an air atmosphere at 1000°C.
The specific surface areas after exposure for 00 hours were investigated and compared.

(以下余白) これらの試料担体において、A、B、C,D。(Margin below) In these sample carriers, A, B, C, D.

K、F、Gの担体が本発明型であり、J、にの担体はL
i2O・ムIhO5・2Si02 、 Li2O・Al
2O3・asi02の含有量が多過ぎる場合であシ、L
の担体はアルミン酸石灰の含有量が多過ぎ、溶融シリカ
の含有量が少な過ぎる場合である。Mの担体はアルミン
酸石灰の含有量が少な過ぎ、溶融シリカの含有量が多過
ぎる場合である。Nの担体はアルミナの全含有量が多過
ぎる場合である。HとIの担体は従来型の担体であシ、
前者は水硬性アルミナを含有し、チタニアとLi2O・
Aj!205・(2、4)Si02を含有しない場合で
あり、後者はチタニアを含有し、各種アルミナとLi2
O・Al2O5(2,4)Si02を含有しない場合で
ある。
The carriers for K, F, and G are of the present invention type, and the carriers for J and N are L.
i2O・muIhO5・2Si02, Li2O・Al
If the content of 2O3/asi02 is too large, L
The carrier contains too much lime aluminate and too little fused silica. The M carrier contains too little lime aluminate and too much fused silica. The N carrier is a case where the total alumina content is too high. The carriers for H and I are conventional carriers;
The former contains hydraulic alumina, titania and Li2O.
Aj! 205・(2,4) This is the case that does not contain Si02, and the latter contains titania, various aluminas and Li2
This is the case where O.Al2O5(2,4)Si02 is not contained.

これらの各種担体について、比表面積< rrfyg>
 。
For these various carriers, the specific surface area <rrfyg>
.

熱膨張係数(x 1o−6/aag) 、機械的強度(
kg/7c+4)を測定した結果を表2に示す。但し、
比表面積の値は、1000°Cの温度で、酸化性雰囲気
中に1000時間曝露した時のものである。機械的強度
は圧縮強度として測定した。
Thermal expansion coefficient (x 1o-6/aag), mechanical strength (
Table 2 shows the results of measuring kg/7c+4). however,
Specific surface area values are based on exposure to an oxidizing atmosphere for 1000 hours at a temperature of 1000°C. Mechanical strength was measured as compressive strength.

表2 表2かられかる様に、本発明型の触媒用担体ム、B、C
,D、E、F、Gにおける比表面積はs、o〜6.5扉
/、9であシ、機械的強度は290〜310kg / 
cAであり、熱膨張係数は2.4〜2.6X10’/’
Cである。これに対して従来型の触媒用担体H,Iにお
ける比表面積はs−4,2,5wl / gであり、機
械的強度は150 、170 kg / (:4 テあ
り、熱膨張係数は2.9 、2.5である。したがって
、本発明型は従来型担体Hと比較して、比表面積は殆ん
ど大差ないが、機械的強度は約2倍程向上し、熱膨張係
数は約20%程小さくなっている。また従来型担体工と
比較しても、熱膨張係数は殆んど大差ないが、比表面積
では約2倍以上向上し、機械的強度は約1.8倍程向上
している。
Table 2 As shown in Table 2, catalyst carriers of the present invention, B, C
, D, E, F, G, the specific surface area is s, o ~ 6.5 doors/, 9, and the mechanical strength is 290 ~ 310 kg /
cA, and the thermal expansion coefficient is 2.4 to 2.6X10'/'
It is C. On the other hand, the specific surface area of conventional catalyst carriers H and I is s-4.2.5 wl/g, the mechanical strength is 150 and 170 kg/(:4 te), and the thermal expansion coefficient is 2. 9, 2.5. Therefore, compared to the conventional carrier H, the specific surface area of the present invention type is almost the same, but the mechanical strength is approximately twice as high, and the thermal expansion coefficient is approximately 20. %.Also, compared to conventional carrier materials, there is almost no difference in the coefficient of thermal expansion, but the specific surface area is more than doubled, and the mechanical strength is improved by about 1.8 times. are doing.

本発明型は比表面積の大きい水硬性アルミナや活性アル
ミナを6〜20重量%含有しているために、担体自体の
比表面積を太きくし、担体の中に平均粒径が1〜10μ
mである微細な水硬性アルミナや活性アルミナが均質に
分散し合って粒子の大きいアルミン酸石灰や溶融シリカ
と平均粒径が1〜1011mであるLi2O・人7!2
J ・2〜45i02の微粒子を介して結合し合い、機
械的強度を増大させると共に高温・酸化性雰囲気中で長
時間曝露しても大きな比表面積を保持している。さらに
平均粒径が6〜5 Q p mである溶融シリカの働き
によって熱膨張係数が上昇する事を抑制している。
Since the present invention type contains 6 to 20% by weight of hydraulic alumina or activated alumina, which has a large specific surface area, the specific surface area of the carrier itself is large, and the average particle size in the carrier is 1 to 10 μm.
Fine hydraulic alumina and activated alumina, which are m, are homogeneously dispersed together with large particles of lime aluminate and fused silica, and Li2O, which has an average particle size of 1 to 1011 m, is 7!2
It is bonded to each other through fine particles of J.2 to 45i02, increasing mechanical strength and retaining a large specific surface area even after long-term exposure in a high-temperature, oxidizing atmosphere. Furthermore, the increase in the coefficient of thermal expansion is suppressed by the action of fused silica having an average particle size of 6 to 5 Q p m.

また、平均粒径が5〜3071mであるアルミン酸石灰
の硬化作用で機械的強度を向上させている。
Furthermore, the mechanical strength is improved by the hardening effect of lime aluminate having an average particle size of 5 to 3071 m.

これに対して、従来型担体Iは高温状態で徐々にシンタ
リング現象をおこし、比表面積は減少する。また従来型
担体Hは高温状態でのシンタリング現象は少なく比表面
積は大きいが、機械的強度が低い。したがって製造工程
中に破損したり、熱燻機器に装着した後での破損などが
発生する。当然比表面積の小さい担体は触媒を担持して
燃焼機器に用いても排ガス浄化能も悪いことになる。
On the other hand, conventional carrier I gradually undergoes a sintering phenomenon at high temperatures, and its specific surface area decreases. Further, although the conventional carrier H has little sintering phenomenon at high temperatures and has a large specific surface area, it has low mechanical strength. Therefore, damage may occur during the manufacturing process or after being installed in hot smoking equipment. Naturally, even if a carrier with a small specific surface area supports a catalyst and is used in combustion equipment, its exhaust gas purification ability will be poor.

触媒用担体J、にはLi2O・Aj1203・2 、 
asi02を多く含有する1例であり、機械的強度と熱
膨張係数の大幅な向上が見られない。Li2O・人7!
2ch・2.4si02の含有示1〜10重量%と比較
すると機械的強度が逆に減少すると云う現象が発生し、
多く含有し過ぎると好ましくない。
For catalyst carrier J, Li2O・Aj1203・2,
This is an example containing a large amount of asi02, and no significant improvement in mechanical strength and coefficient of thermal expansion is observed. Li2O・People 7!
When compared with the content of 2ch/2.4si02 of 1 to 10% by weight, a phenomenon occurs in which the mechanical strength decreases,
It is not preferable to contain too much.

触媒用担体りはアルミン酸石灰が多く、溶融シリカが少
ない例であり、機械的強度は向上するが熱膨張係数が大
きく上昇し、製造工程中に担体自体の膨張・収縮現象の
度合いが大きくひび割れなどを発生する原因となる。
The catalyst carrier is an example of a large amount of lime aluminate and a small amount of fused silica, which improves mechanical strength but significantly increases the coefficient of thermal expansion, and the degree of expansion and contraction of the carrier itself during the manufacturing process causes cracks. This may cause problems such as

触媒用担体Mはアルミン酸石灰が少なく、溶融シリカが
多い例であり、熱膨張係数は小さくなるが、比表面積と
機械的強度が大幅に低下する。
The catalyst carrier M is an example in which the amount of lime aluminate is small and the amount of fused silica is large, and the coefficient of thermal expansion becomes small, but the specific surface area and mechanical strength are significantly reduced.

触媒用担体Nは水硬性アルミナと活性アルミナの量を多
くした例であり、比表面積は大きくなるが恨械的強度は
大幅に減少し熱膨張係数は上昇する。
Catalyst carrier N is an example in which the amounts of hydraulic alumina and activated alumina are increased, and although the specific surface area increases, the mechanical strength decreases significantly and the coefficient of thermal expansion increases.

この事から、アルミン酸石灰は機械強度、溶融ノリ力は
亀裂などの発生、アルミナは比表面積、L工20・Aj
!203・2〜4si02は機械的強度に関係しており
、触媒用担体の最適な配合組成はアルミン酸石灰、溶融
シリカ、水硬性アルミナ又は活性アルミナ、 Li2O
−Al2O2・2,4si02において20〜40重世
%:40〜7o重量%:6〜20重量%:1〜10重景
%と云う事になる。
From this, lime aluminate has mechanical strength, melting strength causes cracks, etc., and alumina has specific surface area, L work 20・Aj
! 203.2-4si02 is related to mechanical strength, and the optimal composition of the catalyst carrier is lime aluminate, fused silica, hydraulic alumina or activated alumina, Li2O
In -Al2O2.2,4si02, 20 to 40% by weight: 40 to 7% by weight: 6 to 20% by weight: 1 to 10% by weight.

さらに、これら材料の粒径によって触媒用担体の物理的
性質も異なって来る。そこで5多くの実験を重ねた結果
、アルミン酸石灰の平均粒子径は6〜3 Q p mの
範囲が最適であり、この最大値上9大きくなると担体の
強度が減少する傾向にある。
Furthermore, the physical properties of the catalyst carrier vary depending on the particle size of these materials. As a result of many experiments, it has been found that the average particle size of lime aluminate is optimally in the range of 6 to 3 Q p m, and when the average particle size of lime aluminate increases by 9 Q p m above this maximum value, the strength of the carrier tends to decrease.

この最小値より小さくすると材料コストの上昇につなが
υ実用上問題となる。溶融シリカの平均粒径は6〜60
μmの範囲が最適であり、この最大値より大きくなると
担体の強度が減少する傾向にあり、比表面積をも減少さ
せる要因となる。この最小値より小さくすると材料コス
トの上昇につながり実用上問題となると共に、担体の膨
張・収縮する度合も大きくなり、亀裂などを発生する要
因となる。水硬性アルミナや活性アルミナの平均粒子径
は1〜10μmの範囲が最適であり、この最大値よυ大
きくなると担体の比表面積が減少する傾向にある。この
最小値より小さくすると材料コストの上昇につながり実
用上問題となると共に、相体の膨張・収縮する度合も大
きくなり、亀裂などを発生する要因となる。Li2O・
Al2O2・2,4Si02の平均粒子径は1〜10μ
mの範囲が最適であり、この最大値よシ大きくなると機
械的強度が減少する傾向にあり、この最小値より小さく
なると材料コストの上昇につながるので好ましくない。
If it is smaller than this minimum value, it will lead to an increase in material cost and cause a practical problem. The average particle size of fused silica is 6-60
The range of μm is optimal, and if it exceeds this maximum value, the strength of the carrier tends to decrease, which also causes a decrease in the specific surface area. If it is smaller than this minimum value, the material cost will increase, causing a practical problem, and the degree of expansion and contraction of the carrier will also increase, causing cracks and the like. The average particle diameter of hydraulic alumina or activated alumina is optimally in the range of 1 to 10 μm, and as it becomes larger than this maximum value, the specific surface area of the carrier tends to decrease. If it is smaller than this minimum value, the material cost will increase, causing a practical problem, and the degree of expansion and contraction of the phase body will also increase, causing cracks and the like. Li2O・
The average particle diameter of Al2O2・2,4Si02 is 1 to 10μ
The range of m is optimal; if it is larger than this maximum value, the mechanical strength tends to decrease, and if it is smaller than this minimum value, it will lead to an increase in material cost, which is not preferable.

いずれにしても最適な組成と粒径を選択する事によって
、各種構成材料の粒子と粒子が強固にからみ合って結合
し、機械的強度の向上、比表面積の増大、熱膨張係数の
抑制になっている。とくに比表面積を高く保持して機械
的強度を大幅に向上させだβ−ユークリプタイト構造の
Li2O・1ho3・2sio 2およびスポジュメン
構造のLi2O・17!205・4Sl○2の効果は非
常に大きい。
In any case, by selecting the optimal composition and particle size, the particles of the various constituent materials are tightly intertwined and bonded, improving mechanical strength, increasing specific surface area, and suppressing the coefficient of thermal expansion. ing. In particular, the effects of Li2O.1ho3.2sio2 having a β-eucryptite structure and Li2O.17!205.4Sl○2 having a spodumene structure are very large, as they maintain a high specific surface area and greatly improve mechanical strength.

本実施例ではアルミン酸石灰、溶融シリカ、水硬性アル
ミナや活性アルミナ、 Li2O・k120s・2.4
Si02についてβ−ユークリプタイトとスポジュメン
単独あるいは混合物で行なったが、この他に不純物材料
として他の金属酸化物例えばF82Q3゜MgO、Li
2O、NaO、NiO、BaO、MnO2、CuO。
In this example, lime aluminate, fused silica, hydraulic alumina, activated alumina, Li2O・k120s・2.4
For Si02, β-eucryptite and spodumene were used alone or in a mixture, but other metal oxides such as F82Q3゜MgO, Li were used as impurity materials.
2O, NaO, NiO, BaO, MnO2, CuO.

Cooなどを少量含有しても担体の物理的性質において
、大きな差は認められなかった。ここで水硬性アルミナ
はガンマ−タイプのアルミナ粉末で、水を添加すると再
水利反応を起し、粒子と粒子が凝集し、硬化するので再
水利性アルミナとも云われており、アルミナ粉末の中で
もとくに優れた性質を示す。
No significant difference was observed in the physical properties of the carrier even when a small amount of Coo was contained. Hydraulic alumina is a gamma-type alumina powder, and when water is added, a rewatering reaction occurs, particles aggregate and harden, so it is also called rewaterable alumina. Shows excellent properties.

発明の効果 以上のように本発明によれば、比表面積が大きく、熱膨
張係数の小さい触媒担体の機械的強度を大幅に増大させ
、製造工程中の亀裂防止および燃焼機器に装着した時の
触媒担体の破損防止に効果を有し、優れた触媒用担体を
提供できるという効果が得られる。
Effects of the Invention As described above, according to the present invention, the mechanical strength of the catalyst carrier having a large specific surface area and a small coefficient of thermal expansion can be greatly increased, which can prevent cracks during the manufacturing process and improve the catalyst when installed in combustion equipment. This has the effect of preventing damage to the carrier and provides an excellent catalyst carrier.

Claims (2)

【特許請求の範囲】[Claims] (1)主としてアルミン酸石灰、溶融シリカ、水硬性ア
ルミナ又は活性アルミナ、およびLi_2O・Al_2
O_3・XSiO_2(但しX=2、4)系複合酸化物
で構成される耐熱性無機酸化物であって、上記アルミン
酸石灰、溶融シリカ、水硬性アルミナ又は活性アルミナ
、Li_2O・Al_2O_3・XSiO_2系複合酸
化物の配合組成を20〜40重量%:40〜70重量%
:5〜20重量%:1〜10重量%とした事を特徴とす
る触媒用担体。
(1) Mainly lime aluminate, fused silica, hydraulic alumina or activated alumina, and Li_2O・Al_2
A heat-resistant inorganic oxide composed of O_3・XSiO_2 (X=2, 4)-based composite oxide, including the above-mentioned lime aluminate, fused silica, hydraulic alumina or activated alumina, Li_2O・Al_2O_3・XSiO_2-based composite Mixing composition of oxide: 20-40% by weight: 40-70% by weight
: 5 to 20% by weight: 1 to 10% by weight.
(2)耐熱性無機酸化物を構成するアルミン酸石灰、溶
融シリカ、水硬性アルミナ又は活性アルミナ、Li_2
O・Al_2O_3・XSiO_2系複合酸化物の各平
均粒径が5〜30μM:5〜50μm:1〜10μm:
1〜10μmである事を特徴とする特許請求の範囲第1
項記載の触媒用担体。
(2) Lime aluminate, fused silica, hydraulic alumina or activated alumina, Li_2 constituting the heat-resistant inorganic oxide
Each average particle size of O・Al_2O_3・XSiO_2-based composite oxide is 5 to 30 μM: 5 to 50 μm: 1 to 10 μm:
Claim 1 characterized in that the diameter is 1 to 10 μm.
Catalyst carrier as described in Section 1.
JP62138516A 1987-06-02 1987-06-02 Carrier for catalyst Pending JPS63302946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138516A JPS63302946A (en) 1987-06-02 1987-06-02 Carrier for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138516A JPS63302946A (en) 1987-06-02 1987-06-02 Carrier for catalyst

Publications (1)

Publication Number Publication Date
JPS63302946A true JPS63302946A (en) 1988-12-09

Family

ID=15223974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138516A Pending JPS63302946A (en) 1987-06-02 1987-06-02 Carrier for catalyst

Country Status (1)

Country Link
JP (1) JPS63302946A (en)

Similar Documents

Publication Publication Date Title
JP5039554B2 (en) Ceramic body based on aluminum titanate and containing a glass phase
JP2008543701A (en) Geopolymer composite and structure formed therefrom
KR20070008701A (en) Method for increasing the strength of porous ceramic bodies and bodies made therefrom
EP0036462B2 (en) A honeycomb structure for use as a catalyst support for automobile exhaust
JP2684518B2 (en) Method for producing fine porous body having heat insulating property
JPS6186944A (en) Catalyst for purifying exhaust gas
KR20120103548A (en) Process for producing cemented and skinned acicular mullite honeycomb structures
JPS6116753B2 (en)
JPS63302946A (en) Carrier for catalyst
JPS5912624B2 (en) High temperature insulation material and its manufacturing method
JPS5888034A (en) Catalyst body for purifying exhaust gas and preparation thereof
JPH0437453A (en) Nozzle for casting wide and thin slab
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JPS63126550A (en) Catalyst carrier
JPS63302945A (en) Production of exhaust gas purification catalyst
JPH01297145A (en) Catalyst
JP2511292B2 (en) Refractory manufacturing method for slide gates
JPH0437452A (en) Nozzle for casting wide and thin slab
JPH04349177A (en) Heat insulator
JPS61291039A (en) Catalyst for purifying exhaust gas
JPS6051541A (en) Catalyst for purifying exhaust gas
SU1060597A1 (en) Refractory product and method for making same
JPS60220149A (en) Preparation of catalyst carrier
JPS634848A (en) Catalytic carrier
JPS60209016A (en) Preparation of composite ceramic fiber