JPS63302787A - Changeover of pwm carrier frequency - Google Patents

Changeover of pwm carrier frequency

Info

Publication number
JPS63302787A
JPS63302787A JP62133271A JP13327187A JPS63302787A JP S63302787 A JPS63302787 A JP S63302787A JP 62133271 A JP62133271 A JP 62133271A JP 13327187 A JP13327187 A JP 13327187A JP S63302787 A JPS63302787 A JP S63302787A
Authority
JP
Japan
Prior art keywords
carrier frequency
torque command
value
microprocessor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62133271A
Other languages
Japanese (ja)
Inventor
Kenichi Aoki
青木 賢一
Toru Matsuura
透 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP62133271A priority Critical patent/JPS63302787A/en
Publication of JPS63302787A publication Critical patent/JPS63302787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To keep the thermal loss by a combination of a power transistor and a heat sink below the rated value, by changing over the carrier frequency in several stages in accordance with torque command value. CONSTITUTION:A torque command TREF is inputted into an A/D converter 13 to be converted to a digital value and is taken into a microprocessor 10'. In the microprocessor 10' the torque command value is always monitored by software processing, where a carrier changeover signal 15 is set at a high level below a certain value while it is set at a low level above a certain value, turning OFF an analogue switch 14. The cycle of a triangular wave output signal is thereby changed over in accordance with the torque command value, so that the carrier frequency of a PWM signal is changed over.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はPWMパルス分配による電流制御ループをもつ
電動機制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a motor control circuit having a current control loop using PWM pulse distribution.

〔従来の技術〕[Conventional technology]

第4図はこの種の電動機制御回路の従来例のブロック図
である。
FIG. 4 is a block diagram of a conventional example of this type of motor control circuit.

この電動機制御回路は、ACサーボモータ1に取付けら
れたロータリエンコーダ2からの磁極検出信号11にし
たがってU相、■相、W相基準電流信号12a、 12
b%12cをマイクロプロセッサ10で発生し、・これ
らをそれぞれ乗算型D/A変換器9m、9b、9cでト
ルク指令T、。、と乗算して電流指令に変換し、これら
各電流指令と電流検出器3a、3b、3cで検出した電
流検出信号の偏差をとり、電流アンプ7a、7b、7c
によりU相、■相、W相電流偏差信号AU、AV、AW
を得、これらをそれぞれコンパレータ6a、6b、6c
により三角波発生回路8で発生した三角波信号と比較し
てU相、■相、W相PWM信号MU。
This motor control circuit generates U-phase, ■-phase, and W-phase reference current signals 12a and 12 in accordance with a magnetic pole detection signal 11 from a rotary encoder 2 attached to an AC servo motor 1.
b% 12c is generated by the microprocessor 10, and torque commands T are generated by the multiplication type D/A converters 9m, 9b, and 9c, respectively. , and converts it into a current command, and calculates the deviation between each current command and the current detection signal detected by the current detectors 3a, 3b, and 3c.
U phase, ■ phase, W phase current deviation signals AU, AV, AW
and convert these into comparators 6a, 6b, and 6c, respectively.
The U-phase, ■-phase, and W-phase PWM signals MU are compared with the triangular wave signal generated by the triangular wave generation circuit 8.

MV、MWを発生して、ベースドライブ回路5を介して
3相トランジスタブリツジ4のパワートランジスタに印
加し、ACサーボモータ1を駆動する。
MV and MW are generated and applied to the power transistor of the three-phase transistor bridge 4 via the base drive circuit 5 to drive the AC servo motor 1.

(発明が解決しようとする問題点) 上述した従来のPWM駆動方式の電動機制御回路におい
ては、制御システムの高速応答性を高めるためにキャリ
ア周波数を高くとると、必然的にパワートランジスタの
スイッチング損失が大きくなり、高い定格値電力のパワ
ートランジスタまたは大きなヒートシンクを選ばねばな
らない。パワートランジスタまたはヒートシンクの大容
量化は装置のコスト、外形に大きく影響を及ぼすため、
通常は電動機回路の定格から計算された発熱損失が、経
済的に選んだヒートシンクとパワートランジスタの許°
容値以下になるようにスイッチング損失、すなわちキャ
リア周波数を低くおさえた設計にしている。
(Problems to be Solved by the Invention) In the conventional PWM drive type motor control circuit described above, when the carrier frequency is set high in order to improve the high-speed response of the control system, the switching loss of the power transistor inevitably increases. Larger, higher rated power power transistors or larger heat sinks must be chosen. Increasing the capacity of power transistors or heat sinks has a significant impact on the cost and appearance of the device, so
Typically, heat losses calculated from the motor circuit rating are determined by the tolerances of the economically selected heat sink and power transistor.
The switching loss, that is, the carrier frequency, is designed to be kept low so that it is below the capacitance value.

本発明の目的は、パワートラジスタとヒートシンクの組
み合わせにおける熱的損失を定格値以下におさえること
ができるPWMキャリア周波数切替方法を提供すること
である。
An object of the present invention is to provide a PWM carrier frequency switching method that can suppress thermal loss in a combination of a power transistor and a heat sink below a rated value.

(問題点を解決するための手段) 本発明のPWMキャリア周波数切替方法は、トルク指令
が大きいときはキャリア周波数が小さく、トルク指令が
小さいときはキャリアが大きくなるようにトルク指令の
値に応じてキャリア周波数を数段階に切替えるか、連続
的に変化させるものである。
(Means for Solving the Problems) The PWM carrier frequency switching method of the present invention changes the carrier frequency according to the value of the torque command so that when the torque command is large, the carrier frequency is small and when the torque command is small, the carrier is large. The carrier frequency is switched in several stages or is changed continuously.

(作用) パワートランジスタの発生損失をPCとすると、発生損
失PCはスイッチング損失と定常状態の損失とに分けら
れ、これらを各々psw l PONとすると、pc=
 PiIw◆PONと表わすことができる。スイッチン
グ損失Pa1mはコレクタ電流ICとキャリア周波数の
積に比例し、定常状態の損失P。Nはコレクタ電流■。
(Function) If the generated loss of the power transistor is PC, the generated loss PC is divided into switching loss and steady state loss, and if each of these is psw l PON, then pc=
It can be expressed as PiIw◆PON. The switching loss Pa1m is proportional to the product of the collector current IC and the carrier frequency, and is a steady state loss P. N is collector current■.

に、それぞれ近似的に比例計算できる。can be calculated approximately proportionally.

第3図はキャリア周波数を切替えた時のパワートランジ
スタの発生損失PCとコレクタ電流1cとの関係を表わ
したものである。
FIG. 3 shows the relationship between the loss PC generated in the power transistor and the collector current 1c when the carrier frequency is changed.

ここで、ICOはキャリア周波数をfからf/2に切替
えた時の電流値、pswtはキャリア周波数fの時のス
イッチング損失(ただし、0≦Ic<Ico)、P8V
2はキャリア周波数f/2の時のスイッチング損失(I
C≧Ico ) 、PONは定常状態の損失、Pctは
pswtとPONの和(O≦Ic<Ico ) −PC
2はP9W2とPONの和(Ic≧Ico )である。
Here, ICO is the current value when the carrier frequency is switched from f to f/2, pswt is the switching loss when the carrier frequency is f (however, 0≦Ic<Ico), P8V
2 is the switching loss (I
C≧Ico), PON is the steady state loss, Pct is the sum of pswt and PON (O≦Ic<Ico) -PC
2 is the sum of P9W2 and PON (Ic≧Ico).

第3図でわかるように、コレクタ電流ICのある点IC
Oにてキャリア周波数を172に下げることにより、コ
レクタ電流はICIまで流すことができる。このことは
すなわち、電動機に流す電流が最大1c2であった場合
に、キャリア周波数がfのままであれば、パワートラン
ジスタの発生損失の許容限界を越えるためICIまでし
か流せず、−股上の許容損失をもつパワートランジスタ
を選定せねばならないが、キャリア周波数を切替えるこ
とによりトランジスタを効率よく使えるということにな
る。
As can be seen in Figure 3, a certain point IC of the collector current IC
By lowering the carrier frequency to 172 at O, the collector current can flow up to ICI. This means that if the maximum current flowing through the motor is 1c2, and the carrier frequency remains f, the current can only flow up to ICI because it exceeds the allowable limit of the loss generated by the power transistor, and the allowable loss of - rise However, by switching the carrier frequency, the transistor can be used efficiently.

なお、本願と類似の発明(特開昭6O−66674)が
本出願人によって出願されている。この先願は周波数指
令信号Vrarに対してキャリア周波数のスムーズな切
替を行なうものである。これに対し本願は、周波数変換
そのものは古典的なアナログ回路を用いており、何ら目
斬らしい回路ではない。
Incidentally, an invention similar to the present application (Japanese Unexamined Patent Publication No. 60-66674) has been filed by the present applicant. This prior application performs smooth switching of the carrier frequency with respect to the frequency command signal Vrar. On the other hand, in the present application, the frequency conversion itself uses a classical analog circuit, and is not an innovative circuit.

周波数の切替を行なうことにより過負荷出力時にインバ
ータのスイッチングロスを低く押えている。この結果と
して、インバータの電力変換効率を上げることができ、
したがって、熱的過負荷耐量の低いインバータを使用す
ることができるようになる。すなわち、ランニングコス
トを下げ、インバータを小型・軽量化・低価格化・高効
率化することができる。これらの効果は、インバータの
過負荷状態を検出し、PWMキャリア周波数を切替える
ことで実現できる。本願は過負荷状態の検出にトルク指
令信号Ttafを使ったものである。なお、アナログ回
路で構成しているため周波数の切替におけるショックは
ない。
By switching the frequency, the switching loss of the inverter is kept low during overload output. As a result, the power conversion efficiency of the inverter can be increased,
Therefore, it becomes possible to use an inverter with low thermal overload resistance. In other words, running costs can be lowered, and the inverter can be made smaller, lighter, cheaper, and more efficient. These effects can be achieved by detecting the overload state of the inverter and switching the PWM carrier frequency. In the present application, the torque command signal Ttaf is used to detect an overload state. Furthermore, since it is constructed with an analog circuit, there is no shock when switching frequencies.

(実施例〕 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明のPWMキャリア周波数切替方法が適用
された電動機制御回路の一実施例のブロック図、第2図
は三角波発生回路8の回路図である。
FIG. 1 is a block diagram of an embodiment of a motor control circuit to which the PWM carrier frequency switching method of the present invention is applied, and FIG. 2 is a circuit diagram of a triangular wave generation circuit 8.

本実施例は第4図の従来例の構成に、トルク指令Tra
rをA/D変換してマイクロプロセッサlO。
This embodiment has the structure of the conventional example shown in FIG.
The microprocessor lO converts r into A/D.

に出力するA/D変換器13とアナログスイッチ14が
付加され、かつマイクロプロセッサlO°と三角波発生
回路8′の構成が第4図の従来例と異なっている。この
三角波発生回路8°は公知の回路で、コンパレータI、
C,と、演算増幅器IC,、抵抗R1、R2、コンデン
サCからなる積分回路とを主な構成要素とし、抵抗R2
と直列、抵抗R1と並列にアナログスイッチ14が接続
されている。ここで、抵抗R,,R,の抵抗値は等しく
Rであるとすると、三角波出力信号の周期は、アナログ
スイッチ14がオンのときはR,xC=RxCに比例し
、オフのときは(R,xR,/(R,+R2)) xC
=RxC/2に比例し、アナログスイッチ14がオンの
ときとオフのときとでキャリア周波数は1:2になる。
An A/D converter 13 and an analog switch 14 are added, and the configurations of the microprocessor 10° and the triangular wave generating circuit 8' are different from the conventional example shown in FIG. This triangular wave generating circuit 8° is a well-known circuit, with comparators I,
The main components are an integral circuit consisting of an operational amplifier IC, resistors R1 and R2, and a capacitor C, and a resistor R2.
An analog switch 14 is connected in series with the resistor R1 and in parallel with the resistor R1. Here, assuming that the resistance values of the resistors R, , R, are equal to R, the period of the triangular wave output signal is proportional to R,xC=RxC when the analog switch 14 is on, and (R , xR, /(R, +R2)) xC
=RxC/2, and the carrier frequency is 1:2 when the analog switch 14 is on and when it is off.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

トルク指令T、。fはA/D変換器13に入力して、デ
ジタル値に変換されマイクロプロセッサlO°にとりこ
まれる。マイクロプロセッサ10°ではソフトウェア処
理により常時トルク指令値Trefを監視し、ある値以
下ではキャリア切替信号15をハイレベルにして、アナ
ログスイッチ14をオンさせ、またある値以上ではキャ
リア切替信号15をローレベルにしてアナログスイッチ
14をオフさせる。したがって、三角波出力信号の周期
がトルク指令値Treeに応じて切替わるためPWM信
号のキャリア周波数が切替わることになる。
Torque command T. f is input to the A/D converter 13, converted into a digital value, and taken into the microprocessor lO°. The microprocessor 10° constantly monitors the torque command value Tref through software processing, and when it is below a certain value, the carrier switching signal 15 is set to high level and the analog switch 14 is turned on, and when it is above a certain value, the carrier switching signal 15 is set to low level. to turn off the analog switch 14. Therefore, since the cycle of the triangular wave output signal changes according to the torque command value Tree, the carrier frequency of the PWM signal changes.

(発明の効果) 以上説明したように本発明は、トルク指令に応じてキャ
リア周波数を切替えることにより、通常の使用において
は最も頻度が多いトルク範囲においてキャリア周波数が
高くとれるので、応答性の向上、騒音の減少がはかられ
る上、パワートランジスタの定格からみて効率のよい素
子または経済的、外形的に極小なヒートシンクが選定で
きるため、制御装置を安価、小型に構成することができ
る効果がある。
(Effects of the Invention) As explained above, the present invention allows the carrier frequency to be high in the torque range that is most frequently used in normal use by switching the carrier frequency according to the torque command. In addition to reducing noise, it is possible to select an element that is efficient in terms of the rating of the power transistor or a heat sink that is economical and extremely small in size, which has the effect of making the control device inexpensive and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のPWMキャリア周波数切替方法が適用
された電動機制御回路の一実施例のブロック図、第2図
は三角波発生回路8゛の回路図、第3図はキャリア周波
数を切替えた時のパワートランジスタの発生損失PCと
コレクタ電流ICとの関係を示す図、第4図は従来例の
ブロック図である。 1−A Cサーボモータ、 2・・・ロータリエンコニダ、 3a、3b、3c=電流検出器、 4−3相トランジスタブリツジ、 5・・・ベースドライブ回路、 6a、6b、6c・−コンパレータ、 7a、7b、7cm−−電流アンプ、 8°・・・三角波発生回路、 9a、9b、9c、・・・乗算型D/A変換器、to’
−・マイクロプロセッサ、 i t−・・磁極検出信号、 12a・・・U相基準電流信号、 12b−V相基準電流信号、 12cm−W相基準電流信号、 13−A / D変換器、 14−・・アナログスイッチ、 + 5−・・キャリア切替信号。
Fig. 1 is a block diagram of an embodiment of a motor control circuit to which the PWM carrier frequency switching method of the present invention is applied, Fig. 2 is a circuit diagram of a triangular wave generation circuit 8゛, and Fig. 3 is a diagram showing when the carrier frequency is switched. FIG. 4 is a block diagram of a conventional example, which shows the relationship between the loss PC generated in the power transistor and the collector current IC. 1-AC servo motor, 2... rotary encoder, 3a, 3b, 3c = current detector, 4-3-phase transistor bridge, 5... base drive circuit, 6a, 6b, 6c - comparator, 7a, 7b, 7cm--Current amplifier, 8°...triangular wave generation circuit, 9a, 9b, 9c,...multiplying D/A converter, to'
- Microprocessor, it - Magnetic pole detection signal, 12a... U-phase reference current signal, 12b-V-phase reference current signal, 12cm-W-phase reference current signal, 13-A/D converter, 14- ...Analog switch, +5-...Carrier switching signal.

Claims (1)

【特許請求の範囲】[Claims] PWMパルス分配による電流制御ループをもつ電動機制
御回路において、トルク指令が大きいときはキャリア周
波数が小さく、トルク指令が小さいときはキャリアが大
きくなるようにトルク指令の値に応じてキャリア周波数
を数段階に切替えるか、連続的に変化させるPWMキャ
リア周波数切替方法。
In a motor control circuit that has a current control loop using PWM pulse distribution, the carrier frequency is set in several stages according to the value of the torque command so that when the torque command is large, the carrier frequency is small and when the torque command is small, the carrier becomes large. PWM carrier frequency switching method that switches or continuously changes.
JP62133271A 1987-05-30 1987-05-30 Changeover of pwm carrier frequency Pending JPS63302787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133271A JPS63302787A (en) 1987-05-30 1987-05-30 Changeover of pwm carrier frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133271A JPS63302787A (en) 1987-05-30 1987-05-30 Changeover of pwm carrier frequency

Publications (1)

Publication Number Publication Date
JPS63302787A true JPS63302787A (en) 1988-12-09

Family

ID=15100722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133271A Pending JPS63302787A (en) 1987-05-30 1987-05-30 Changeover of pwm carrier frequency

Country Status (1)

Country Link
JP (1) JPS63302787A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744927A (en) * 1994-01-28 1998-04-28 Mitsubishi Denki Kabushiki Kaisha Inverter control method and apparatus
JP2003047282A (en) * 2001-07-26 2003-02-14 Nikon Corp Current controller, motor driver, stage device, and exposure system equipped with them
JP2006025542A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Refrigerator
JP2008072868A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd Motor controller for vehicle
JP2010193542A (en) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd Shift controller for vehicles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744927A (en) * 1994-01-28 1998-04-28 Mitsubishi Denki Kabushiki Kaisha Inverter control method and apparatus
JP2003047282A (en) * 2001-07-26 2003-02-14 Nikon Corp Current controller, motor driver, stage device, and exposure system equipped with them
JP2006025542A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Refrigerator
JP2008072868A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd Motor controller for vehicle
JP4661744B2 (en) * 2006-09-15 2011-03-30 日産自動車株式会社 Vehicle motor control device
JP2010193542A (en) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd Shift controller for vehicles

Similar Documents

Publication Publication Date Title
JP4669723B2 (en) Electric motor control device
JP3274169B2 (en) converter
JP4601044B2 (en) Power converter and air conditioner equipped with the power converter
JP2000324853A (en) Method and device for modified space vector pulse width modulation reducing dc bus ripple action in power supply inverter
WO2003079531A1 (en) Pwm inverter device
WO2004062078A1 (en) Motor drive device for air conditioner
US6956352B2 (en) Vector control of an induction motor
JP4783174B2 (en) Power converter
JP2002354674A (en) Control device for electric-power converter, and electric-power converter
JPS63302787A (en) Changeover of pwm carrier frequency
JP4029282B2 (en) AC / AC direct conversion power converter
US6366064B1 (en) Dual mode controller for switching circuirty
US20220102975A1 (en) Active filter device and air conditioner
JP2003230276A (en) Control method for power converter
JP2005130611A (en) Auxiliary resonance pwm power converter
JPH02114829A (en) Control circuit for flywheel power storage unit
JPH11136994A (en) Three-phase induction motor driver
Kimball et al. Real-time optimization of dead time for motor control inverters
JPH11164481A (en) Method for controlling active filter
JP6910505B1 (en) Power converter
JPS5819169A (en) Controlling method for pwm control converter
Murugan et al. Realization of fault tolerant capability in a multiphase SRM drive using wavelet transform
JP2003111428A (en) Inverter controlled engine generator
JP2008160915A (en) Inverter controller for driving motor and apparatus employing the same
JPH08251938A (en) Inverter