JPS63302755A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPS63302755A
JPS63302755A JP13405687A JP13405687A JPS63302755A JP S63302755 A JPS63302755 A JP S63302755A JP 13405687 A JP13405687 A JP 13405687A JP 13405687 A JP13405687 A JP 13405687A JP S63302755 A JPS63302755 A JP S63302755A
Authority
JP
Japan
Prior art keywords
coil
linear motor
air flow
coils
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13405687A
Other languages
Japanese (ja)
Inventor
Masato Negishi
真人 根岸
Eiji Osanai
小山内 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13405687A priority Critical patent/JPS63302755A/en
Publication of JPS63302755A publication Critical patent/JPS63302755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To cool coils simply and effectively by cooling said coils through air suction means generating air flow in the vicinity of said coil. CONSTITUTION:Permanent magnet 1B, 1C and yokes 2B, 2C are arranged in opposition to each other via non-magnetic material spacers 3, and coils 5 wound on a bobbin 4 move in a levitated state through a space between them. Air flow is generated in the vicinity of said coils 5 by a negative pressure generated through a vacuum source 8, the coils 5 are cooled by said air flow, and the air flow changed into warm air by warming is drawn outward of a linear motor via a through hole 6 and piping 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁石によって形成される磁界の中をコイルが運
動する方式の多極型リニアモーターに関し、特に当該モ
ーターの冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multipolar linear motor in which a coil moves in a magnetic field formed by a magnet, and particularly to a cooling device for the motor.

〔従来技術〕[Prior art]

リニアモーターは、一般に、界磁マグネット(永久磁石
)およびヨークから成り磁気回路を形成する1次側(固
定側)とボビンに巻線された可動コイルを有する2次側
とを備え、位置検出器および閉ループ制御回路で前記2
次側の位置および速度を制御するよう構成されている。
A linear motor generally has a primary side (fixed side) consisting of a field magnet (permanent magnet) and a yoke forming a magnetic circuit, and a secondary side having a moving coil wound around a bobbin, and a position detector. and said 2 in a closed loop control circuit.
Configured to control the position and speed of the next side.

第2図は従来の多極型リニアモーターの部分斜視図であ
る。
FIG. 2 is a partial perspective view of a conventional multipolar linear motor.

第2図において、−側の永久磁石(界磁マグネット)I
Aおよびヨーク2Aと他側の永久磁石lB%ICおよび
コーク2B、2Cとが非磁性体のスペーサー3.3を介
して対向しており、その間の空間を通してボビン4に巻
線されたコイル5が移動するよう構成されている。
In Figure 2, the negative permanent magnet (field magnet) I
A and the yoke 2A and the permanent magnet 1B%IC and the corks 2B and 2C on the other side face each other with a non-magnetic spacer 3.3 interposed therebetween, and the coil 5 wound on the bobbin 4 is passed through the space between them. Configured to move.

コイル5の位置および速度は該コイルに供給される電流
および周波数によって制御される。
The position and speed of the coil 5 is controlled by the current and frequency supplied to the coil.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記リニアモーターにあっては、コイル5に電流を流す
とジュール熱が発生し、コイル温度が上昇するため、次
のような問題が生じることがあった。
In the linear motor described above, when a current is passed through the coil 5, Joule heat is generated and the coil temperature increases, so that the following problem may occur.

(i)光ディスクのヘッド駆動モータなど精密機器にリ
ニアモーターを使用する場合、温度変化によって精密機
器の精度に狂いが生じる。
(i) When a linear motor is used in a precision device such as a head drive motor for an optical disk, the accuracy of the precision device may be disrupted due to temperature changes.

(ii )コイル5の温度上昇によってリニアモーター
の電機的特性が変化してしまう。
(ii) The electrical characteristics of the linear motor change due to the rise in temperature of the coil 5.

(1i)コイル5の近(に配置される磁石lA11B、
ICの温度が上昇するため該磁石の寿命が短くなる。
(1i) Magnet lA11B placed near the coil 5,
As the temperature of the IC increases, the life of the magnet is shortened.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来技術の問題に鑑みなされたものであり
、簡単かつ効果的にコイルを冷却し上記従来技術の問題
を解消しうるリニアモーターを提供することを目的とす
る。
The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide a linear motor that can simply and effectively cool a coil and solve the problems of the prior art described above.

本発明は、コイル近傍に空気流を生じさせる空気吸引手
段によりコイルの熱を外へ輸送し、該コイルの温度上昇
を抑えることにより上記目的を達成するものである。
The present invention achieves the above object by transporting the heat of the coil to the outside by means of an air suction means that generates an air flow in the vicinity of the coil, and suppressing the rise in temperature of the coil.

〔実施例〕〔Example〕

第1図は本発明によるリニアモーターの一実施例の断面
図であり、以下第1図を参照して本発明を具体的に説明
する。
FIG. 1 is a cross-sectional view of one embodiment of a linear motor according to the present invention, and the present invention will be specifically described below with reference to FIG.

第1図において、モーターの全体構造は第2図の場合と
同様、−側の永久磁石IB、ICおよびヨーク2B、2
Cとが非磁性体のスペーサー3.3を介して対向配置さ
れ、その間の空間を通してボビン4に巻線されたコイル
5が浮遊状態で移−するよう構成されている。
In FIG. 1, the overall structure of the motor is the same as in FIG.
C are arranged to face each other with a non-magnetic spacer 3.3 in between, and the coil 5 wound around the bobbin 4 is moved in a floating state through the space therebetween.

磁石IAS IB、ICとコイル5との間の隙間(エア
ギャップ)は比較的小さな値(例えば0.5鶴程度)に
設定されている。
The gap (air gap) between the magnet IAS IB, IC and the coil 5 is set to a relatively small value (for example, about 0.5 mm).

而して、前記ボビン4には図示のごと(上下に貫通し前
記エアギャップとボビン上面を連通ずる孔6が形成され
ており、この貫通孔6の外側開口は配管7を介して吸引
ポンプ等の真空源8に接続されている。
As shown in the figure, the bobbin 4 is formed with a hole 6 that passes through it vertically and communicates the air gap with the upper surface of the bobbin, and the outer opening of the through hole 6 is connected to a suction pump, etc. is connected to a vacuum source 8.

こうして、前記真空源8を作動させることにより、コイ
ル5まわりのエアギャップから空気を吸引し、第1図中
矢印で示すようにコイル5近傍に空気流を生じさせ、こ
の空気流によってコイル5の熱を外部へ輸送し該コイル
5を冷却しその温度上昇を防止するよう構成されている
In this way, by activating the vacuum source 8, air is sucked from the air gap around the coil 5, and an air flow is generated near the coil 5 as shown by the arrow in FIG. It is configured to transport heat to the outside to cool the coil 5 and prevent its temperature from rising.

すなわち、真空源8によって生成された負圧によってコ
イル5の近傍に空気流を生じさせ、この空気流によって
コイル5を冷却して該空気流を暖めて温風にし、貫通孔
6および配管7を介してリニアモーターの外へ吸い出す
よう構成されている。
That is, an air flow is generated in the vicinity of the coil 5 by the negative pressure generated by the vacuum source 8, and the coil 5 is cooled by this air flow, and the air flow is warmed and turned into warm air, and the through hole 6 and the piping 7 are heated. It is configured so that it is sucked out of the linear motor through the linear motor.

以上説明したリニアモーターの実施例構造によれば、次
のような効果を達成することができる。
According to the embodiment structure of the linear motor described above, the following effects can be achieved.

(i)コイル5と磁石IA、IB、ICとの隙間(エア
ギャップ)は一般に狭く (例えば0.5sn)設定さ
れるので、比較的高い流速の空気流がコイル5近傍に生
じることになる。
(i) Since the air gap between the coil 5 and the magnets IA, IB, and IC is generally set to be narrow (for example, 0.5 sn), an air flow with a relatively high velocity will occur near the coil 5.

このため、コイル5と空気流との間に高い熱伝達率が得
られ、効率よくコイル5を冷却することができた。
Therefore, a high heat transfer coefficient was obtained between the coil 5 and the air flow, and the coil 5 could be efficiently cooled.

(11)コイル5の冷却を空気の吹き出しではなく吸引
によって行うので、ゴミやほこりを撒き散らすことがな
く、クリーンルーム内の精密機器に装着しても何ら問題
のないリニアモーターを得ることができた。
(11) Since the coil 5 is cooled by suction rather than blowing air, it does not scatter dirt or dust, and it was possible to obtain a linear motor that would not cause any problems even when installed in precision equipment in a clean room. .

(■1)通常の冷却回路では低温側の配管と高温側の配
管で少なくとも2本の配管が必要であるが、実施例構造
では1本の配管7で済ませることができ、きわめて簡単
な構造でコイル5を効果的に冷却することができた。
(■1) A normal cooling circuit requires at least two pipes, one on the low temperature side and one on the high temperature side, but in the example structure, only one pipe 7 is required, resulting in an extremely simple structure. The coil 5 could be effectively cooled.

(発明の効果〕 以上の説明から明らかなごとく、本発明によれば、コイ
ル近傍に空気流を生じさせる空気吸引手段によりコイル
を冷却するので、簡単な構成でしかもほこりを立てる心
配がなく、コイルの温度上昇を効果的に防止しうるリニ
アモーターが得られる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the coil is cooled by an air suction means that generates an air flow near the coil. A linear motor can be obtained that can effectively prevent temperature rise.

また、コイルの温度上昇が抑えられるため、リニアモー
ターを取付けた装置の熱変形が防止され、リニアモータ
ーの電機特性も安定的に良好に維持され、さらに、リニ
アモーターの磁石の寿命を延ばすことができるなどの効
果も達成することが可能になる。
In addition, since the rise in temperature of the coil is suppressed, thermal deformation of the equipment to which the linear motor is installed is prevented, the electrical characteristics of the linear motor are maintained stably and well, and the life of the linear motor's magnets is extended. It becomes possible to achieve effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるリニアモーターの一実施例の模式
的横断面図、第2図は従来のリニアモーターの部分斜視
図である。 IA% IB、IC・−・−一−−−・・磁石、′4・
−−一−−−・−・ボビン、5−・・−・−一−−−コ
イル、6・−・−・・・・・−貫通孔、7・−−−−−
・・−・配管、8−・−・−真空源。 代理人 弁理士  大 音 康 毅 第1図
FIG. 1 is a schematic cross-sectional view of an embodiment of a linear motor according to the present invention, and FIG. 2 is a partial perspective view of a conventional linear motor. IA% IB, IC・・・−1−−・・Magnet, '4・
−−1−−−・−・Bobbin, 5−・・−・−1−−− Coil, 6・−・−・・−Through hole, 7・−−−−−
・・・−・Piping, 8−・−・−Vacuum source. Agent Patent Attorney Yasushi Ooto Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)コイル近傍に空気流を生じさせる空気吸引手段に
よりコイルを冷却することを特徴とするリニアモーター
(1) A linear motor characterized in that the coil is cooled by air suction means that generates an air flow near the coil.
(2)コイルのボビンに貫通孔を設け、該貫通孔を通し
て空気を吸引することを特徴とする特許請求の範囲第1
項記載のリニアモーター。
(2) A through hole is provided in the bobbin of the coil, and air is sucked through the through hole.
Linear motor as described in section.
JP13405687A 1987-05-29 1987-05-29 Linear motor Pending JPS63302755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13405687A JPS63302755A (en) 1987-05-29 1987-05-29 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13405687A JPS63302755A (en) 1987-05-29 1987-05-29 Linear motor

Publications (1)

Publication Number Publication Date
JPS63302755A true JPS63302755A (en) 1988-12-09

Family

ID=15119332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13405687A Pending JPS63302755A (en) 1987-05-29 1987-05-29 Linear motor

Country Status (1)

Country Link
JP (1) JPS63302755A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703418A (en) * 1996-03-22 1997-12-30 Northern Magnetics, Inc. DC cooled linear motor
EP1289103A2 (en) * 2001-08-29 2003-03-05 Tsunehiko Yamazaki Air cooled linear motor
KR100375638B1 (en) * 1999-12-10 2003-03-10 미래산업 주식회사 Method of Making Movable Member of Linear Motor
KR100441226B1 (en) * 2001-12-15 2004-07-21 미래산업 주식회사 Cooling Apparatus of Single Linear Motor
KR101445862B1 (en) * 2013-08-01 2014-09-30 미래산업 주식회사 Mover of Linear Motor and Linear Motor having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703418A (en) * 1996-03-22 1997-12-30 Northern Magnetics, Inc. DC cooled linear motor
KR100375638B1 (en) * 1999-12-10 2003-03-10 미래산업 주식회사 Method of Making Movable Member of Linear Motor
EP1289103A2 (en) * 2001-08-29 2003-03-05 Tsunehiko Yamazaki Air cooled linear motor
EP1289103A3 (en) * 2001-08-29 2006-11-08 Tsunehiko Yamazaki Air cooled linear motor
KR100441226B1 (en) * 2001-12-15 2004-07-21 미래산업 주식회사 Cooling Apparatus of Single Linear Motor
KR101445862B1 (en) * 2013-08-01 2014-09-30 미래산업 주식회사 Mover of Linear Motor and Linear Motor having the same

Similar Documents

Publication Publication Date Title
US4624617A (en) Linear induction semiconductor wafer transportation apparatus
JP3891545B2 (en) Linear motor
JPH09154272A (en) Cooling structure of linear motor
JPS5942165B2 (en) Magnetic non-contact bearing device
JPS63302755A (en) Linear motor
JP2001169529A (en) Mobile body and mobile body system
US5601027A (en) Positioning system with damped magnetic attraction stopping assembly
JP3084132B2 (en) Magnetic levitation device
JP2019216591A (en) Linear motor, transfer device, and production device
CN214281262U (en) Magnetostrictive driving mechanism
JPWO2004059821A1 (en) Drive device
CN112564544A (en) Magnetostrictive driving mechanism
JP3661978B2 (en) Moving coil linear motor
JPH0741992B2 (en) Magnetic levitation carrier
US3845337A (en) Electromagnetic coupling having an end mounted field
JPH05272539A (en) Superconducting magnetic bearing device
JPH0881006A (en) Travel guiding mechanism for stacker crane
KR102429302B1 (en) A linear active magnetic bearing
JPH0559010B2 (en)
JP2882850B2 (en) AC magnetic levitation transfer device
KR900011164Y1 (en) Air cooling apparatus for anelectro magnet
JP2001217120A (en) Laminated electromagnet
WO2019240132A1 (en) Linear motor, conveyance device, and production device
JPH082957Y2 (en) Electromagnetic induction heating device
JPH0530328Y2 (en)