JPS6330080B2 - - Google Patents

Info

Publication number
JPS6330080B2
JPS6330080B2 JP14207279A JP14207279A JPS6330080B2 JP S6330080 B2 JPS6330080 B2 JP S6330080B2 JP 14207279 A JP14207279 A JP 14207279A JP 14207279 A JP14207279 A JP 14207279A JP S6330080 B2 JPS6330080 B2 JP S6330080B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
digestion
tank
dioxide concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14207279A
Other languages
Japanese (ja)
Other versions
JPS5665690A (en
Inventor
Kenji Baba
Shunsuke Nokita
Shoji Watanabe
Toshio Yahagi
Shunji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14207279A priority Critical patent/JPS5665690A/en
Publication of JPS5665690A publication Critical patent/JPS5665690A/en
Publication of JPS6330080B2 publication Critical patent/JPS6330080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明は嫌気性消化槽に係り、特に、有機物の
安定かつ高効率な消化ガス化を目的とする嫌気性
消化槽の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anaerobic digestion tank, and more particularly to a control device for an anaerobic digestion tank for stably and highly efficient digestion and gasification of organic matter.

下水汚泥、し尿、都市ゴミ等の有機廃棄物の処
理処分方法として、嫌気性消化法が知られてい
る。嫌気性消化法とは、嫌気的状態において微生
物の働きにより有機物を分解し、主にメタンガス
と炭酸ガスとを生成させる方法である嫌気性消化
法による処理を安定かつ高効率に行うためには、
有機物の生物化学的分解及びガス化に関与する微
生物に好適な環境を維持することが重要である。
Anaerobic digestion is known as a method for treating and disposing organic waste such as sewage sludge, human waste, and municipal garbage. Anaerobic digestion is a method of decomposing organic matter through the action of microorganisms in an anaerobic state, producing mainly methane gas and carbon dioxide gas.In order to perform processing stably and with high efficiency,
It is important to maintain a suitable environment for microorganisms involved in the biochemical decomposition and gasification of organic matter.

嫌気性消化槽の管理指標としては、PH、有機酸
濃度、アルカリ度、ガス発生量、ガス組成等が知
られている。嫌気性消化が正常に行なわれている
槽では、経験的にPH7.0ないし7.4、有機酸濃度は
2000mg/以下、アルカリ度は2000mg/以上で
あるといわれている。一方、嫌気性消化が正常に
行なわれない場合にはガス発生量が減少するとと
もにメタン濃度が50%にまで低下すると云われて
いる。これらの管理指標のなかで、現在オンライ
ン制御に用いられている指標はPHである。PHを適
正に維持するためには、アルカリ剤を添加する方
法が知られている。
PH, organic acid concentration, alkalinity, gas generation amount, gas composition, etc. are known as management indicators for anaerobic digestion tanks. Empirically, in a tank where anaerobic digestion is performed normally, the pH is 7.0 to 7.4, and the organic acid concentration is
It is said that the alkalinity is 2000mg/or less, and the alkalinity is 2000mg/or more. On the other hand, it is said that when anaerobic digestion is not performed normally, the amount of gas generated decreases and the methane concentration decreases to 50%. Among these management indicators, the indicator currently used for online control is PH. In order to maintain proper pH, a method of adding an alkaline agent is known.

しかしながらPHをオンライン制御の指標として
用いることにはつぎの欠点がある。まず第1に、
測定されるPHは嫌気性消化槽内のある特定の一点
における値であり、必ずしも嫌気性消化槽全体を
表す指標ではない。なぜなら、嫌気性消化槽はた
とえ撹拌が行なわれていたとしても、槽内汚泥の
粘性が比較的高く槽内が均一には混合されないた
め槽内のPHにも空間的な分布を生ずるからであ
る。
However, using PH as an index for online control has the following drawbacks. First of all,
The measured pH is a value at a specific point within the anaerobic digestion tank, and is not necessarily an index representing the entire anaerobic digestion tank. This is because even if stirring is performed in an anaerobic digestion tank, the viscosity of the sludge in the tank is relatively high and it is not mixed uniformly within the tank, resulting in a spatial distribution of pH within the tank. .

このように測定されるPHが、嫌気性消化槽の平
均的な値でない場合には、最適なPH値からはづれ
た値で制御を行うことになる。その結果、ガス発
生量が減少し有機物のガス化率が低下する。
If the PH measured in this way is not the average value for the anaerobic digestion tank, control will be performed at a value that deviates from the optimal PH value. As a result, the amount of gas generated decreases and the gasification rate of organic matter decreases.

第2に、PH計を槽内の汚泥に浸漬するため電極
にスカム等が付着し、誤差が生じ易い。第3に、
PH計の校正等の維持管理が煩雑である。
Second, since the PH meter is immersed in the sludge in the tank, scum and the like adhere to the electrodes, which tends to cause errors. Thirdly,
Maintenance such as calibration of the PH meter is complicated.

本発明の目的は、消化ガス中の炭酸ガス濃度を
制御指標とすることにより、安定かつ高効率の処
理を行いうる嫌気性消化槽の制御装置を提供する
ことにある。
An object of the present invention is to provide a control device for an anaerobic digestion tank that can perform stable and highly efficient processing by using the carbon dioxide concentration in the digestion gas as a control index.

本発明は、嫌気性消化槽のメタン効率が消化ガ
ス中の炭酸ガス濃度によつて変化することを実験
的に見い出したことにもとづくもので、消化ガス
中の炭酸ガス濃度を制御指標とし消化ガス中の炭
酸ガスを適量除去することによつてメタン収率を
向上させるようにしたことにある。
The present invention is based on the experimental finding that the methane efficiency of an anaerobic digestion tank changes depending on the carbon dioxide concentration in the digestion gas. The purpose is to improve the methane yield by removing an appropriate amount of carbon dioxide gas.

以下、まず本発明の理念を説明する。 First, the concept of the present invention will be explained below.

本発明者達は次のような実験を行つた。 The present inventors conducted the following experiment.

消化汚泥7.5を含む容積8の嫌気性消化槽
を2槽設置し、同一条件で運転した。すなわち、
槽全体を36℃に保温し、パドルによる機械撹拌を
行う一方で、1日1回の消化汚泥引抜き及び汚泥
供給を行い滞留時間10日で運転した。供給汚泥は
下水処理場から採取した固形物濃度2.0%ないし
2.5%の濃縮余剰汚泥を用いた。ここで、2槽の
うち1槽にはガス循環装置を設け、ガス循環経路
中には水酸化ナトリウムによる洗浄を行う炭酸ガ
ス除去装置を設置した。そして、消化ガス中の炭
酸ガス濃度が所定濃度になるように、ガス循環装
置及び炭酸ガス除去装置の作動時間を制御した。
ガス発生量及びガス組成を測定しながら10日前後
実験を続け、安定した時期のメタン収率即ち、供
給汚泥中有機物(VS)量当りのメタンガス発生
量を測定した。炭酸ガス濃度をかえてこの実験を
計3回行つた結果、第1図が得られた。第1図よ
り、嫌気性消化槽のメタン収率が消化ガス中の炭
酸ガス濃度によつて変化するとともに、消化ガス
中の炭酸ガス濃度を所定値に維持すればメタン収
率を向上させうることがわかる。
Two anaerobic digestion tanks with a capacity of 8 containing 7.5 ml of digested sludge were installed and operated under the same conditions. That is,
The entire tank was kept at a temperature of 36°C, and while mechanical stirring was performed using a paddle, the digested sludge was extracted once a day and the sludge was supplied, and the tank was operated for a residence time of 10 days. The supplied sludge is collected from a sewage treatment plant and has a solids concentration of 2.0% or more.
2.5% thickened surplus sludge was used. Here, one of the two tanks was equipped with a gas circulation device, and a carbon dioxide removal device for cleaning with sodium hydroxide was installed in the gas circulation path. Then, the operating times of the gas circulation device and the carbon dioxide removal device were controlled so that the carbon dioxide concentration in the digestion gas became a predetermined concentration.
The experiment was continued for about 10 days while measuring the amount of gas generated and the gas composition, and the methane yield during the stable period, that is, the amount of methane gas generated per amount of organic matter (VS) in the supplied sludge was measured. As a result of performing this experiment a total of three times with different carbon dioxide concentrations, the results shown in Figure 1 were obtained. Figure 1 shows that the methane yield of the anaerobic digestion tank changes depending on the carbon dioxide concentration in the digestion gas, and that the methane yield can be improved by maintaining the carbon dioxide concentration in the digestion gas at a predetermined value. I understand.

次に本発明の実施例を第2図に示し以下説明す
る。消化汚泥は嫌気性消化槽1から汚泥引抜管を
通じて引き抜かれる一方、汚泥は汚泥供給管3を
通じて供給される。消化ガスはガス抜出管4によ
り抜出され、ガスブロワー5により循環される。
循環ガスは電磁弁6を経由して二方に分岐する。
一方はガス循環管を通り嫌気性消化槽へ流れ槽内
を撹拌する。もう一方は吸引塔12を経てガス循
環管15を通り、ガス循環管7へ合流する。吸収
塔12へはタンク13に貯留されている水酸化ナ
トリウム溶液がポンプ14により噴霧される。吸
収塔12では消化ガス中の炭酸ガスが、噴霧され
た水酸化ナトリウム溶液と反応することにより除
去される。
Next, an embodiment of the present invention is shown in FIG. 2 and will be described below. Digested sludge is withdrawn from the anaerobic digestion tank 1 through a sludge withdrawal pipe, while sludge is supplied through a sludge supply pipe 3. Digestion gas is extracted by a gas extraction pipe 4 and circulated by a gas blower 5.
The circulating gas is branched into two directions via a solenoid valve 6.
One side flows through the gas circulation pipe to the anaerobic digestion tank and stirs the inside of the tank. The other side passes through the suction tower 12, the gas circulation pipe 15, and joins the gas circulation pipe 7. A sodium hydroxide solution stored in a tank 13 is sprayed into the absorption tower 12 by a pump 14 . In the absorption tower 12, carbon dioxide gas in the digestion gas is removed by reacting with the atomized sodium hydroxide solution.

消化ガスは、一方でガスサンプル管8によつて
炭酸ガス濃度検出器9へと導かれる。この検出値
は制御装置10へと入力され、ここにおいて設定
器11で入力された値と検出値とを比較すること
により、電磁弁6とポンプ14とを作動させる。
この場合、消化ガス中の炭酸ガス濃度検出値が設
定器11で入力された値より高い値であれば、制
御装置10は、消化ガスが吸収塔12へと流れる
ように電磁弁6を制御する。逆に、炭酸ガス濃度
検出値が設定器11で入力された値より低い値で
あれば、制御装置10は、消化ガスがガス循環管
7へ流れるように電磁弁6を制御する。
The digestion gas is on the one hand led to a carbon dioxide concentration detector 9 by a gas sample tube 8 . This detected value is input to the control device 10, where the solenoid valve 6 and the pump 14 are operated by comparing the detected value with the value input by the setting device 11.
In this case, if the detected carbon dioxide concentration value in the digestion gas is higher than the value input by the setting device 11, the control device 10 controls the solenoid valve 6 so that the digestion gas flows to the absorption tower 12. . Conversely, if the detected carbon dioxide concentration value is lower than the value input by the setting device 11, the control device 10 controls the solenoid valve 6 so that the digestion gas flows into the gas circulation pipe 7.

かかる構成であるので、嫌気性消化槽1の消化
ガス中の炭酸ガス濃度を常に一定に維持すること
ができ、安定な処理を行うことができるとともに
メタン収率を増加させることができる。
With this configuration, the carbon dioxide concentration in the digestion gas in the anaerobic digestion tank 1 can be maintained constant, and stable processing can be performed while increasing the methane yield.

また、消化ガス中の炭酸ガス濃度を指標するこ
とには次のような利点がある。
Furthermore, using the carbon dioxide concentration in digestive gas as an index has the following advantages.

第1に、消化ガスは嫌気性消化槽内の汚泥全体
から生成するから、消化ガス中の炭酸ガス濃度
は、槽内特定箇所で測定されるPH値と比較してよ
り適確な指標であるといえる。
First, since the digestion gas is generated from the entire sludge in the anaerobic digestion tank, the carbon dioxide concentration in the digestion gas is a more accurate indicator compared to the pH value measured at a specific point in the tank. It can be said.

第2に炭酸ガス濃度のオンライン測定は極めて
容易であり、かつ高精度である。PH計による計測
では0.1程度の誤差はやむをえないが、炭酸ガス
濃度の計測誤差は0.1vol%以内と考えてよく、制
御を行う際、高い制御精度が維持できる。
Second, online measurement of carbon dioxide concentration is extremely easy and highly accurate. Although an error of about 0.1 is unavoidable when measuring with a PH meter, the measurement error of carbon dioxide concentration can be considered to be within 0.1 vol%, and high control accuracy can be maintained when performing control.

第3にPH計をはじめとして水質計器はメンテナ
ンスが煩雑であるが、ガス濃度計測器はメンテナ
ンスが容易である。
Thirdly, maintenance of water quality instruments such as PH meters is complicated, but maintenance of gas concentration measuring instruments is easy.

ところで、嫌気性消化槽より生成するガスは、
炭酸ガスの他は、窒素等を含む1ないし3%のガ
スを除いて全てメタンガスである。したがつて本
発明は、メタンガス濃度を所定値に維持すること
によつても、メタン収率の向上を期待できる。
By the way, the gas generated from the anaerobic digestion tank is
Other than carbon dioxide gas, all gases are methane gas except for 1 to 3% of gases containing nitrogen and the like. Therefore, the present invention can be expected to improve the methane yield even by maintaining the methane gas concentration at a predetermined value.

次に、前述した消化ガス中炭酸ガスの除去方法
が、圧力脈動吸着法である場合の実施例を第3図
に示し、以下説明する。
Next, an embodiment in which the method for removing carbon dioxide from the digestion gas mentioned above is a pressure pulsation adsorption method is shown in FIG. 3 and will be described below.

圧力脈動吸着法とは、複数の吸着塔の各々が加
圧吸着工程と減圧脱着工程とを繰返してガスを精
製する方法である。第3図の例では吸着塔が2塔
の場合について図示してある。
The pressure pulsation adsorption method is a method in which each of a plurality of adsorption towers repeats a pressure adsorption step and a reduced pressure desorption step to purify gas. In the example shown in FIG. 3, there are two adsorption towers.

電磁弁6を経由した消化ガスは、圧縮機21に
よつて加圧され、除湿器22を経た後、弁23ま
たは弁24のどちらか一方を介して吸着塔25ま
たは吸着塔26のどちらか一方へと供給される。
吸着塔25と26には炭酸ガスを選択的に吸着す
る吸着剤、例えば合成ゼオライトが充填されてい
る。ここで炭酸ガスが吸着除去され、弁27また
は弁28のどちらか一方を介し、ガス戻し管29
を経由してガス循環管7へと合流する。一方、吸
着された炭酸ガスが脱着され、排気される際には
弁30または弁31のどちらか一方を経て排気管
32により排気される。
Digestion gas that has passed through the solenoid valve 6 is pressurized by a compressor 21, passes through a dehumidifier 22, and then is sent to either an adsorption tower 25 or 26 via either a valve 23 or a valve 24. supplied to.
The adsorption towers 25 and 26 are filled with an adsorbent that selectively adsorbs carbon dioxide, such as synthetic zeolite. Here, carbon dioxide gas is adsorbed and removed, and the gas is returned to the gas return pipe 29 through either the valve 27 or the valve 28.
It joins the gas circulation pipe 7 via. On the other hand, when the adsorbed carbon dioxide gas is desorbed and exhausted, it is exhausted through the exhaust pipe 32 via either the valve 30 or the valve 31.

具体的な操作は次のように行なわれる。 The specific operation is performed as follows.

まず、2つの吸着塔は、一方が加圧吸着工程に
あり、もう一方が減圧脱着工程にある。
First, one of the two adsorption towers is in the pressure adsorption process and the other is in the vacuum desorption process.

かりに、吸着塔25が加圧吸着工程にあり、吸
着塔26が減圧脱着工程にあるとすると、弁2
3,27,31は開であり、弁24,28,30
は閉である。従つて消化ガスは、吸着塔25に導
かれここで炭酸ガスが加圧吸着されることにより
除去され、メタンを主成分としたガスがガス戻し
管29を経由してガス循環管7へと合流する。一
方吸着塔26では、前工程で吸着した炭酸ガスが
減圧脱着されて、排気管32を経由して排気され
る。以上の工程が一定時間持続された後、次に弁
23,27,31が閉になり、弁24,28,3
0が開になる。つまり吸着塔25は減圧脱着工程
になり、吸着塔26は加圧吸着工程になる。この
ようにして2つの吸着塔は加圧吸着工程と減圧脱
着工程とを交互に繰り返し、炭酸ガスを吸着除去
する。
On the other hand, if the adsorption tower 25 is in the pressurized adsorption step and the adsorption tower 26 is in the reduced pressure desorption step, then the valve 2
3, 27, 31 are open, valves 24, 28, 30
is closed. Therefore, the digestion gas is led to the adsorption tower 25, where carbon dioxide gas is removed by being adsorbed under pressure, and the gas containing methane as a main component flows into the gas circulation pipe 7 via the gas return pipe 29. do. On the other hand, in the adsorption tower 26, the carbon dioxide gas adsorbed in the previous step is desorbed under reduced pressure and exhausted through the exhaust pipe 32. After the above process continues for a certain period of time, the valves 23, 27, and 31 are closed, and the valves 24, 28, and 3 are closed.
0 becomes open. In other words, the adsorption tower 25 is used for the reduced pressure desorption process, and the adsorption tower 26 is used for the pressurized adsorption process. In this way, the two adsorption towers alternately repeat the pressurized adsorption step and the reduced pressure desorption step to adsorb and remove carbon dioxide.

この実施例ではさらに次のような効果がある。
吸収塔の場合、NaOH溶液を用いたとすると、
1モルの炭酸ガスを吸収するのに2モルの
NaOH溶液が消費される。と同時にNa2CO3を含
む廃液を処分する必要がある。一方で吸着塔の場
合、吸着剤は2年ないし3年間使用することがで
きるので維持費の面で経済的である。
This embodiment also has the following effects.
In the case of an absorption tower, if NaOH solution is used,
It takes 2 moles of carbon dioxide to absorb 1 mole of carbon dioxide.
NaOH solution is consumed. At the same time, it is necessary to dispose of the waste liquid containing Na 2 CO 3 . On the other hand, in the case of an adsorption tower, the adsorbent can be used for two to three years, so it is economical in terms of maintenance costs.

また吸収塔ではNaOHをスプレーするため、
ミストが飛散し循環管7を経由して槽内に侵入す
る。ナトリウムイオンは嫌気性消化に関与する微
生物に毒性を示し、有機物の分解を阻害する。一
方吸着塔の場合、薬剤の使用はなく安定な処理が
期待できる。
In addition, since NaOH is sprayed in the absorption tower,
The mist scatters and enters the tank via the circulation pipe 7. Sodium ions are toxic to microorganisms involved in anaerobic digestion and inhibit the decomposition of organic matter. On the other hand, in the case of adsorption towers, stable processing can be expected without the use of chemicals.

次に、前述した発明の実施例では弁6が電磁弁
である例を説明した。第4図は流量調節弁41と
42とを調節することによつて、消化ガス中の炭
酸ガス濃度を制御する実施例である。ここで第4
図に示す炭酸ガス除去装置43は前述した公知技
術すなわち水酸化ナトリウム溶液による吸収装置
または圧力脈動吸着装置である。
Next, in the embodiments of the invention described above, an example was explained in which the valve 6 was a solenoid valve. FIG. 4 shows an embodiment in which the concentration of carbon dioxide in the digestion gas is controlled by adjusting flow rate control valves 41 and 42. Here the fourth
The carbon dioxide removal device 43 shown in the figure is the aforementioned known technique, ie, an absorption device using a sodium hydroxide solution or a pressure pulsation adsorption device.

この例では、流量調節弁41及び42を用いて
炭酸ガスの除去量及び除去速度を制御できる。た
とえば、炭酸ガスを少量ずつ時間をかけて除去し
たい場合には、流量調節弁41を閉方向に調節す
る一方で流量調節弁42を開方向に調節する。逆
に炭酸ガスを短時間で除去したい場合には、流量
調節弁41を開方向に調節する一方で流量調節弁
42を閉方向に調節する。
In this example, the amount and speed of removal of carbon dioxide gas can be controlled using the flow control valves 41 and 42. For example, when it is desired to remove carbon dioxide little by little over time, the flow rate control valve 41 is adjusted in the closing direction while the flow rate control valve 42 is adjusted in the opening direction. Conversely, if it is desired to remove carbon dioxide gas in a short time, the flow rate control valve 41 is adjusted in the open direction, while the flow rate control valve 42 is adjusted in the closed direction.

この実施例では、消化ガスの発生量に応じて炭
酸ガスの除去量及び速度を調節できる効果があ
る。
This embodiment has the effect of being able to adjust the amount and speed of carbon dioxide removal depending on the amount of digestive gas generated.

以上説明したように、本発明によれば、消化ガ
ス中の炭酸ガス濃度を所定値に維持することによ
り、メタン収率を向上させることができる。
As explained above, according to the present invention, the methane yield can be improved by maintaining the carbon dioxide concentration in the digestion gas at a predetermined value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験結果を示す特性図、第2図〜第4
図はそれぞれ本発明の一実施例を示す構成図であ
る。 1…嫌気性消化槽、2…汚泥引抜管、3…汚泥
供給管、4…ガス抜出管、5…ガスブロワー、6
…電磁弁、7…ガス循環管、8…ガスサンプル
管、9…炭酸ガス濃度検出器、10…制御装置、
11…設定器、12…吸収塔、13…タンク、1
4…ポンプ、15…ガス循環管。
Figure 1 is a characteristic diagram showing the experimental results, Figures 2 to 4
Each figure is a configuration diagram showing an embodiment of the present invention. 1... Anaerobic digestion tank, 2... Sludge extraction pipe, 3... Sludge supply pipe, 4... Gas extraction pipe, 5... Gas blower, 6
... Solenoid valve, 7 ... Gas circulation pipe, 8 ... Gas sample pipe, 9 ... Carbon dioxide concentration detector, 10 ... Control device,
11... Setting device, 12... Absorption tower, 13... Tank, 1
4...Pump, 15...Gas circulation pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 有機廃棄物を嫌気状態に維持する嫌気性消化
槽と、該嫌気性消化槽より生成する消化ガスを循
環するガス循環装置と、該ガス循環装置の配管系
と並列に電磁弁を介して設けられ前記消化ガス中
の炭酸ガスを除去する炭酸ガス除去装置と、前記
消化ガス中の炭酸ガス濃度を検出する炭酸ガス濃
度検出器と、前記消化ガス中の炭酸ガス濃度目標
値を設定する設定器と、前記炭酸ガス濃度検出器
の検出値と前記設定器で設定される炭酸ガス濃度
目標値とを比較し前記電磁弁を制御する制御装置
とを具備した嫌気性消化槽の制御装置。
1. An anaerobic digestion tank that maintains organic waste in an anaerobic state, a gas circulation device that circulates the digestion gas generated from the anaerobic digestion tank, and a solenoid valve installed in parallel with the piping system of the gas circulation device. a carbon dioxide gas removal device for removing carbon dioxide from the digestion gas; a carbon dioxide concentration detector for detecting the carbon dioxide concentration in the digestion gas; and a setting device for setting a target value for the carbon dioxide concentration in the digestion gas. and a control device for controlling the electromagnetic valve by comparing the detection value of the carbon dioxide concentration detector and the carbon dioxide concentration target value set by the setting device.
JP14207279A 1979-11-05 1979-11-05 Control device of anaerobic digestion vessel Granted JPS5665690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14207279A JPS5665690A (en) 1979-11-05 1979-11-05 Control device of anaerobic digestion vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14207279A JPS5665690A (en) 1979-11-05 1979-11-05 Control device of anaerobic digestion vessel

Publications (2)

Publication Number Publication Date
JPS5665690A JPS5665690A (en) 1981-06-03
JPS6330080B2 true JPS6330080B2 (en) 1988-06-16

Family

ID=15306771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14207279A Granted JPS5665690A (en) 1979-11-05 1979-11-05 Control device of anaerobic digestion vessel

Country Status (1)

Country Link
JP (1) JPS5665690A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830321A (en) * 1981-08-14 1983-02-22 Hitachi Ltd Refining device for gas
FR2938838B1 (en) * 2008-11-27 2012-06-08 Arkema France PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370550A (en) * 1976-12-06 1978-06-23 Hitachi Ltd Organic waste liquid anaerobic digesting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370550A (en) * 1976-12-06 1978-06-23 Hitachi Ltd Organic waste liquid anaerobic digesting method

Also Published As

Publication number Publication date
JPS5665690A (en) 1981-06-03

Similar Documents

Publication Publication Date Title
CN1039190A (en) The microbial conversion process of sulphur containing harmful components in the waste gas
KR101017555B1 (en) Biogas desulfurization system using acidithiobacillus thiooxidans
CN105214495A (en) A kind of take hydrogen sulfide as the coal-fired flue-gas synchronized desulfuring and denitrifying technique of reducing agent
CN104611193A (en) Device and method for quickly enriching Nx-DAMO bacteria
CN113376362A (en) Novel plastic biodegradation test device and test method
CN109107359B (en) Biogas biological desulfurization system
CN208603834U (en) Resource utilization coal hydrogen production system CO2Chemical system for tail gas and fusel waste liquid
Eis et al. The fate and effect of bisulfate in anaerobic treatment
JPS6330080B2 (en)
CN105693033A (en) Treatment system for removing ammonia nitrogen in domestic wastewater
Hirowatari Scale prevention method by brine acidification with biochemical reactors
WO2014002926A1 (en) Device and method for biological desulfurization of biogas
CN116789246A (en) Quality and efficiency improving method for sewage system
CN115180724A (en) Hydrogen autotrophic microorganism denitrification and uranium fixation domestication device and domestication method
CN211837191U (en) Processing system of high concentration stench waste gas
CN201978655U (en) Organic odor gas purification system
CN212357164U (en) Biogas biological desulfurization equipment for anaerobic fermentation of kitchen waste
JPH08323387A (en) Anaerobic treatment
KR101003268B1 (en) Equipment for removal of ammonia from waste water
JP7300902B2 (en) Apparatus and method for treating nitrogen-containing organic matter
JP6101740B2 (en) Biological desulfurization method of biogas
CN214881325U (en) Device for simultaneously removing hydrogen sulfide and nitric acid nitrogen
CN220703389U (en) Auxiliary purification system for circulating water culture
TWI777326B (en) Anaerobic fermentation system and method for stabilizing bacterial activity
CN216155537U (en) But continuous operation photocatalysis sewage treatment plant