JPH08323387A - Anaerobic treatment - Google Patents

Anaerobic treatment

Info

Publication number
JPH08323387A
JPH08323387A JP16007895A JP16007895A JPH08323387A JP H08323387 A JPH08323387 A JP H08323387A JP 16007895 A JP16007895 A JP 16007895A JP 16007895 A JP16007895 A JP 16007895A JP H08323387 A JPH08323387 A JP H08323387A
Authority
JP
Japan
Prior art keywords
waste water
anaerobic
anaerobic treatment
organic
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16007895A
Other languages
Japanese (ja)
Inventor
Motoyuki Yoda
元之 依田
Sosuke Nishimura
総介 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP16007895A priority Critical patent/JPH08323387A/en
Publication of JPH08323387A publication Critical patent/JPH08323387A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To provide the treatment with which organic waste water can be treated at a low cost without generating hydrogen sulfide and the maintenance of treating facilities can easily be performed by adding iron ions to the organic waste water in an amount expressed in terms of the number of moles equal to or more than that of sulfur compounds in the waste water and subjecting the waste water contg. iron ions to anaerobic treatment. CONSTITUTION: In this treatment, iron ions are added to organic waste water in an amount expressed in terms of the number of moles equal to or more than that of sulfur compounds in the waste water and the resulting organic waste water contg. iron ions is subjected to anaerobic treatment, wherein the anaerobic treatment is an operation for decomposing organic matter in organic waste water through acid formation reaction and methane formation reaction by utilizing the action of anaerobic microorganisms while maintaining the waste water contg. organic substances to be treated in an anaerobic state. Examples of waste water to which this anaerobic treatment can be applied are sewage, human waste, industrial waste water, etc., each of which contains a small amount of sulfur compounds such as sulfate and sulfite ions. At the time of performing this anaerobic treatment, organic matter in waste water is decomposed through acid formation reaction and methane formation reaction effected by the action of anaerobic bacteria and on the other hand, sulfate ions, etc., are reduced to hydrogen sulfide by the action of sulfate reducing bacteria.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫酸、亜硫酸イオン等
のイオウ化合物を少量含有する有機性排水の嫌気的生物
処理方法に関するものである。特に、嫌気性処理におい
て発生するバイオガス中の硫化水素を簡易に低減するこ
とができる生物処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anaerobic biological treatment of organic wastewater containing a small amount of sulfur compounds such as sulfuric acid and sulfite ions. In particular, the present invention relates to a biological treatment method capable of easily reducing hydrogen sulfide in biogas generated during anaerobic treatment.

【0002】[0002]

【従来の技術】下水、し尿、産業排水等の有機性排水の
処理方法として、嫌気性生物処理が行われている。この
嫌気性処理は有機物を含む排水を嫌気性菌(汚泥)と接
触させ炭酸ガス、メタンガスまで分解するものであり、
バイオガスが発生する。バイオガス中にはメタン、炭酸
ガスのほかに、排水中のイオウ化合物に起因して硫化水
素が含まれている。このようなバイオガスは、通常エネ
ルギー回収の目的でボイラ、焼却炉の燃料として有効利
用される場合が多いが、焼却装置等の腐食防止のため、
大気汚染防止のためバイオガス中の硫化水素の除去(脱
硫)が不可欠である。従来バイオガスの脱硫方法とし
て、ガスを酸化鉄と接触させて硫化水素を固定する乾式
法、ガスをアルカリ吸収液と接触させる湿式法などがあ
る。
BACKGROUND ART Anaerobic biological treatment is performed as a method for treating organic wastewater such as sewage, night soil, industrial wastewater and the like. In this anaerobic treatment, wastewater containing organic matter is brought into contact with anaerobic bacteria (sludge) to decompose carbon dioxide gas and methane gas,
Biogas is generated. In addition to methane and carbon dioxide, biogas contains hydrogen sulfide due to sulfur compounds in wastewater. Such biogas is usually used effectively as fuel for boilers and incinerators for the purpose of recovering energy, but in order to prevent corrosion of incinerators, etc.,
Removal of hydrogen sulfide (desulfurization) in biogas is essential to prevent air pollution. Conventionally, as a desulfurization method of biogas, there are a dry method in which a gas is brought into contact with iron oxide to fix hydrogen sulfide, and a wet method in which a gas is brought into contact with an alkali absorbing liquid.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の脱硫方
法では脱硫のための装置を嫌気性処理装置とは別途に設
ける必要があったり、乾式法では廃棄物がでる、充填剤
の交換が大変などの問題が、湿式法では高コストという
問題点があった。本発明はこうした問題点を解決するも
ので、硫化水素を発生させずに、低コストで維持管理の
容易な嫌気性処理方法を提供する。
However, in the conventional desulfurization method, an apparatus for desulfurization needs to be provided separately from the anaerobic treatment apparatus, and in the dry method waste is generated, and replacement of the filler is difficult. However, the wet method has a problem of high cost. The present invention solves these problems, and provides an anaerobic treatment method that does not generate hydrogen sulfide and is low cost and easy to maintain.

【0004】[0004]

【課題を解決するための手段】本発明は、有機性排水
に、排水中に含まれるイオウ化合物と等モル以上の鉄イ
オンを添加して、嫌気性処理行うことを特徴とする有機
性廃水の嫌気性処理方法である。本発明において嫌気性
処理とは、被処理物である有機性物質を含む排水を嫌気
状態に保ち、嫌気性微生物の作用を利用して有機物を酸
生成反応およびメタン生成反応を経て分解する操作であ
り、有機性物質の全体を投入して消化させる嫌気性消化
と、固形物を除去して溶解性有機物を嫌気性処理するU
ASB法(上向流スラッジブランケット法)、流動床
法、固定床法などの高負荷嫌気性処理とが一般的であ
る。また、嫌気性処理は酸生成反応とメタン生成反応と
を一つの嫌気性反応槽で行う一相方式でも、両反応を別
々の反応槽で行う二相方式でもよい。
DISCLOSURE OF THE INVENTION The present invention is characterized in that organic wastewater is characterized in that an anaerobic treatment is carried out by adding to the organic wastewater iron ions in an equimolar amount or more to the sulfur compound contained in the wastewater. Anaerobic treatment method. In the present invention, the anaerobic treatment is an operation in which wastewater containing an organic substance which is an object to be treated is kept in an anaerobic state, and the action of an anaerobic microorganism is used to decompose an organic substance through an acid-forming reaction and a methanogenic reaction. Yes, anaerobic digestion that puts in and digests the whole organic substance and anaerobic treatment of soluble organic substances by removing solids
High load anaerobic treatments such as ASB (upflow sludge blanket method), fluidized bed method and fixed bed method are generally used. The anaerobic treatment may be a one-phase system in which the acid production reaction and the methane production reaction are carried out in one anaerobic reaction tank, or a two-phase system in which both reactions are carried out in separate reaction tanks.

【0005】嫌気性処理の対象となる有機性排水は、例
えば下水、し尿、産業排水等の排水であり、硫酸イオ
ン、亜硫酸イオン等のイオウ化合物を少量含有する排水
である。好ましくは、イオウ化合物の量はSとして40
mg/l以下がよい。このような排水を嫌気性処理する
に際し、排水に鉄イオンを添加する。鉄イオンとしては
水中において鉄イオンを解離する鉄化合物であればよ
く、例えば塩化第一鉄、塩化第二鉄、硝酸第一鉄、硝酸
第二鉄等の鉄塩が使用できる。鉄塩は嫌気性反応槽に流
入する原水、望ましくはメタン発酵槽の入り口に添加す
るのがよい。鉄塩の添加量は排水中の硫酸、亜硫酸等の
イオウと等モル以上、好ましくは1.2〜2倍量が望ま
しい。例えば、UASB法などの高負荷嫌気性処理の対
象となるような排水中に、硫酸、亜硫酸がSとして10
〜20mg/L程度含まれている場合、添加に必要なF
e濃度は 17〜35mg/L以上となる。鉄塩が添加
された排水は通常の通り嫌気性処理される。
The organic waste water to be subjected to the anaerobic treatment is, for example, waste water such as sewage, night soil, industrial waste water, etc., and waste water containing a small amount of sulfur compounds such as sulfate ion and sulfite ion. Preferably, the amount of sulfur compound is 40 as S
It is preferably mg / l or less. When anaerobically treating such wastewater, iron ions are added to the wastewater. As the iron ion, any iron compound that dissociates the iron ion in water may be used, and for example, iron salts such as ferrous chloride, ferric chloride, ferrous nitrate, and ferric nitrate can be used. The iron salt is preferably added to the raw water flowing into the anaerobic reaction tank, preferably the inlet of the methane fermentation tank. The amount of iron salt added is preferably equimolar or more, preferably 1.2 to 2 times the amount of sulfur such as sulfuric acid or sulfurous acid in the waste water. For example, sulfuric acid and sulfurous acid as S in the wastewater that is the target of high-load anaerobic treatment such as the UASB method is 10%.
If about 20 mg / L is included, it is necessary to add F
The e concentration is 17 to 35 mg / L or more. The wastewater to which the iron salt has been added is anaerobically treated as usual.

【0006】嫌気性処理を行うと、有機物は嫌気性菌の
作用により、酸生成、メタン生成の反応が生じ分解され
るが、この際、硫酸イオン等は以下の反応式に従って、
硫酸塩還元細菌によって硫化水素に還元される。 SO42-+CH3COO- → CO2+S2-+H2O+HCO3- 生成した硫化水素は添加された鉄イオンと速やかに反応
して硫化鉄を生じる。 Fe2+ +S2- → FeS 生成した硫化鉄は汚泥に付着し、系内に保持されてバイ
オガス中に硫化水素が移行することはない。硫化鉄を付
着した汚泥は、任意の時期に余剰汚泥として反応槽から
排出される。このようにして嫌気性処理の際に発生する
バイオガスには硫化水素の含有量が著しく低減されてお
り、バイオガスを有効利用しても腐食等の問題を軽減で
きる。
When anaerobic treatment is carried out, the organic matter is decomposed due to the reaction of acid production and methane production due to the action of anaerobic bacteria.
Reduced to hydrogen sulfide by sulfate-reducing bacteria. SO4 2- + CH3COO- → CO2 + S2 - + H2O + HCO3 - generated hydrogen sulfide is rapidly reacts with the added iron ions produce iron sulfide. Fe2 + + S2- → FeS The produced iron sulfide adheres to the sludge and is not retained in the system, and hydrogen sulfide does not migrate to the biogas. The sludge to which iron sulfide is attached is discharged from the reaction tank as excess sludge at any time. In this way, the content of hydrogen sulfide in the biogas generated during the anaerobic treatment is remarkably reduced, and problems such as corrosion can be alleviated even if the biogas is effectively used.

【0007】本発明においては添加する鉄イオンと排水
由来のS濃度との比(Fe/S)が大きければ大きいほ
ど、反応槽の水中に残留する硫化水素濃度は低くなり、
処理ガス中の硫化水素濃度として20〜30ppm程度
以下とすることは比較的容易である。しかし、処理ガス
中の硫化水素をさらに低下させて高純度のガスを得よう
とする場合は、処理ガスを水、またはアルカリを溶解さ
せた水で洗浄し、その洗浄液をメタン生成反応槽の原水
に循環させることにより、ガス相に出て行く硫化水素を
効率的に捕捉することができる。この場合、アルカリ剤
を洗浄液に使用すると、若干設備および薬剤コストは高
くなるが、従来技術によって高純度ガスを得ようとすれ
ば、アルカリ剤量は著しく多量となるため、本発明の方
がはるかに経済的である。なお、鉄塩の添加量は通常、
原水中の硫酸および亜硫酸濃度の上限値に基づき、等モ
ル以上添加するが、発生するガス中の硫化水素濃度を硫
化水素センサー等で検出し、検出量に応じて添加する鉄
塩供給ポンプの流量を変化させて、安定した除去性能を
得ることもできる。
In the present invention, the larger the ratio (Fe / S) between the added iron ions and the S concentration derived from the waste water, the lower the concentration of hydrogen sulfide remaining in the water in the reaction tank,
It is relatively easy to set the hydrogen sulfide concentration in the processing gas to about 20 to 30 ppm or less. However, in order to further reduce the hydrogen sulfide in the treated gas to obtain a high-purity gas, the treated gas is washed with water or water in which an alkali is dissolved, and the washing liquid is used as the raw water in the methane generation reaction tank. By circulating the hydrogen sulfide in the gas phase, it is possible to efficiently capture the hydrogen sulfide flowing out to the gas phase. In this case, if an alkaline agent is used for the cleaning liquid, the equipment and chemical cost will be slightly higher, but if an attempt is made to obtain a high-purity gas by the conventional technique, the amount of the alkaline agent will be remarkably large, so that the present invention is far more advantageous. It is economical. The amount of iron salt added is usually
Based on the upper limits of sulfuric acid and sulfite concentrations in raw water, equimolar or more is added, but the hydrogen sulfide concentration in the generated gas is detected with a hydrogen sulfide sensor, etc., and the flow rate of the iron salt supply pump is added according to the detected amount. Can also be changed to obtain stable removal performance.

【0008】本発明は、特にUASBなどの高負荷嫌気
処理方式が適用されるビール排水、ポテト加工排水など
比較的硫化物イオン濃度が低い(Sとして40mg/L
以下)場合において効果的、経済的であり、ガス処理と
しての脱硫装置なしでボイラー等の燃焼装置に悪影響を
及ぼすことなく燃焼可能である。また、排水中のイオウ
化合物が多量に含まれる場合は、汚泥中の硫化鉄の割合
が次第に多くなり、反応槽の菌の保持量が減少して生物
処理が十分に進まなくなる恐れが生ずる。
The present invention has a relatively low sulfide ion concentration such as beer wastewater and potato processing wastewater to which a high load anaerobic treatment system such as UASB is applied (40 mg / L as S).
In the following cases), it is effective and economical, and can be burned without adversely affecting a combustion device such as a boiler without a desulfurization device as a gas treatment. Further, when a large amount of sulfur compounds is contained in the waste water, the proportion of iron sulfide in the sludge gradually increases, and the amount of bacteria retained in the reaction tank decreases, which may lead to insufficient progress of biological treatment.

【0009】[0009]

【実施例】容量9L(直径10cm、高さ約100c
m)のUASBメタン生成槽および容量2.5Lの酸生
成槽から成る実験装置を用いて、発生硫化水素濃度に及
ぼす鉄塩濃度の影響を調べた。基質はグルコース+エタ
ノール(CODcrとして3:1で混合)で、N(窒
素)、P(燐)をCODcr:N:Pとして1000:
10:2になるように塩化アンモニウム、リン酸一カリ
ウムを加え、さらにCODcrが約4000mg/Lと
なるように水道水で希釈した。実験装置は、摂氏30度
の恒温室内に設置して、pHは酸生成槽内を6.2とな
るように25%のNaOHを添加した。槽内にはビール
排水を処理している実装置からグラニュール汚泥を約3
L(VSS:45000mg/L)を採取して充填し、
運転CODcr負荷を8kg/m3/d程度で連続運転
した。水道水で希釈した合成排水中にはおよそ3〜5m
g/L(Sとして)の硫酸イオンが含まれており、これ
に対して等モルのFe3+は5.2〜8.7mg/Lとな
る。実験では、Run−1(比較例)は無添加、Run
−2(比較例)ではFeを3mg/L、Run−3(実
施例)では10mg/Lとなるように塩化第二鉄を添加
して、発生ガス中の硫化水素濃度を調べた。結果は次の
通りであった。 上記結果からも明らかなように、硫酸に対し等モル以上
の鉄イオンを存在させることにより、ガス中への硫化水
素の移行が抑制されることが分かる。
[Example] Capacity 9 L (diameter 10 cm, height about 100 c
The effect of the iron salt concentration on the generated hydrogen sulfide concentration was investigated using an experimental apparatus consisting of the UASB methane generation tank of m) and the acid generation tank of 2.5 L in capacity. The substrate is glucose + ethanol (mixed as CODcr 3: 1), N (nitrogen) and P (phosphorus) as CODcr: N: P 1000:
Ammonium chloride and monopotassium phosphate were added to 10: 2, and further diluted with tap water so that CODcr was about 4000 mg / L. The experimental apparatus was installed in a thermostatic chamber at 30 degrees Celsius, and 25% NaOH was added so that the pH in the acid production tank would be 6.2. Approximately 3 granule sludge from the actual equipment that processes beer wastewater in the tank
L (VSS: 45000 mg / L) was collected and filled,
Operation The CODcr load was continuously operated at about 8 kg / m 3 / d. About 3 to 5 m in synthetic wastewater diluted with tap water
It contains g / L (as S) of sulfate ions, and the equimolar amount of Fe 3+ is 5.2 to 8.7 mg / L. In the experiment, Run-1 (Comparative Example) was not added, and Run was not added.
-2 (Comparative Example) was added with ferric chloride so that Fe was 3 mg / L and Run-3 (Example) was 10 mg / L, and the hydrogen sulfide concentration in the generated gas was examined. The results were as follows. As is clear from the above results, it is found that the presence of equimolar or more iron ions relative to sulfuric acid suppresses the transfer of hydrogen sulfide into the gas.

【0010】[0010]

【発明の効果】本発明によれば、脱硫のための設備が不
要となり、そのため維持管理も薬剤添加だけであるので
容易となり、脱硫コストも著しく低減できる。また、従
来の脱硫では生物反応後のバイオガスを処理するので、
生物反応で生成した硫化水素が生物に対し活性阻害を起
こす恐れがあるが、本発明では生成した硫化水素は鉄イ
オンと反応して無害化されるので、その恐れはない。さ
らに、UASB法に適用した場合、グラニュール中にF
eSが析出して、UASBの欠点とされる汚泥の沈降性
が改善される。
EFFECTS OF THE INVENTION According to the present invention, equipment for desulfurization is not required, and therefore maintenance is facilitated only by adding chemicals, and desulfurization cost can be remarkably reduced. In addition, since conventional desulfurization processes biogas after biological reaction,
Hydrogen sulfide generated by a biological reaction may cause activity inhibition to living organisms, but in the present invention, the generated hydrogen sulfide reacts with iron ions and is rendered harmless, so there is no such fear. Furthermore, when applied to the UASB method, the F
The eS precipitates and the sludge settling property, which is a drawback of UASB, is improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】有機性排水に、排水中に含まれるイオウ化
合物と等モル以上の鉄イオンを添加して、嫌気性処理を
行うことを特徴とする有機性廃水の嫌気性処理方法
1. A method for anaerobic treatment of organic wastewater, which comprises adding to the organic wastewater at least an equimolar amount of iron ions with a sulfur compound contained in the wastewater to perform anaerobic treatment.
JP16007895A 1995-06-02 1995-06-02 Anaerobic treatment Pending JPH08323387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16007895A JPH08323387A (en) 1995-06-02 1995-06-02 Anaerobic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16007895A JPH08323387A (en) 1995-06-02 1995-06-02 Anaerobic treatment

Publications (1)

Publication Number Publication Date
JPH08323387A true JPH08323387A (en) 1996-12-10

Family

ID=15707404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16007895A Pending JPH08323387A (en) 1995-06-02 1995-06-02 Anaerobic treatment

Country Status (1)

Country Link
JP (1) JPH08323387A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007588A1 (en) * 2003-07-16 2005-01-27 Ebara Corporation Method and apparatus for anaerobic treatment of wastewater containing sulfur compound
JPWO2004096720A1 (en) * 2003-03-31 2006-07-13 株式会社荏原製作所 Method and apparatus for methane fermentation treatment of wastewater containing sulfur compounds
JP2012206022A (en) * 2011-03-30 2012-10-25 Kubota Corp Organic wastewater treatment facility and method
JP2014023984A (en) * 2012-07-25 2014-02-06 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method
DE102010006641B4 (en) * 2009-02-05 2014-05-15 Lausitzer Und Mitteldeutsche Bergbau-Verwaltungsgesellschaft Mbh Process for the treatment of mining-grade sulfuric acid groundwater and surface waters

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004096720A1 (en) * 2003-03-31 2006-07-13 株式会社荏原製作所 Method and apparatus for methane fermentation treatment of wastewater containing sulfur compounds
WO2005007588A1 (en) * 2003-07-16 2005-01-27 Ebara Corporation Method and apparatus for anaerobic treatment of wastewater containing sulfur compound
JPWO2005007588A1 (en) * 2003-07-16 2006-08-31 株式会社荏原製作所 Method and apparatus for anaerobic treatment of wastewater containing sulfur compounds
US7427357B2 (en) 2003-07-16 2008-09-23 Ebara Corporation Process and apparatus for anaerobic treatment of sulfur compound-containing wastewater
JP4611204B2 (en) * 2003-07-16 2011-01-12 荏原エンジニアリングサービス株式会社 Method and apparatus for anaerobic treatment of wastewater containing sulfur compounds
DE102010006641B4 (en) * 2009-02-05 2014-05-15 Lausitzer Und Mitteldeutsche Bergbau-Verwaltungsgesellschaft Mbh Process for the treatment of mining-grade sulfuric acid groundwater and surface waters
DE102010006641B9 (en) * 2009-02-05 2015-03-05 Lausitzer Und Mitteldeutsche Bergbau-Verwaltungsgesellschaft Mbh Process for the treatment of mining-grade sulfuric acid groundwater and surface waters
JP2012206022A (en) * 2011-03-30 2012-10-25 Kubota Corp Organic wastewater treatment facility and method
JP2014023984A (en) * 2012-07-25 2014-02-06 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method

Similar Documents

Publication Publication Date Title
CN205328814U (en) Handle alkaline dye wastewater's device
JP5355459B2 (en) Organic wastewater treatment system
JP5197223B2 (en) Water treatment system
CN104609665A (en) Glyphosate-producing wastewater treatment integration technology
CN105439374A (en) Acidic high sulfate organic wastewater treatment process and apparatus
CN101693569A (en) Device for catalyzing and oxidating ozone effectively
CN1837073A (en) Treatment method for denitrogenation of waste water
Deng et al. Energy-neutral municipal wastewater treatment based on partial denitrification-anammox driven by side-stream sulphide
JP3235131B2 (en) Digestion gas desulfurization method and apparatus
Jiang et al. A novel combined treatment for pyridine waste gas using liquid absorption, catalytic ozonation, and sulfur autotrophic denitrification (LA-CO-SAD)
JPH08323387A (en) Anaerobic treatment
JP4611204B2 (en) Method and apparatus for anaerobic treatment of wastewater containing sulfur compounds
JP2002079051A (en) Method for deodorizing hydrogen sulfide containing gas
CN103121743A (en) Method for treating reverse osmosis concentrated water generated during urban sewage reuse
Einarsen et al. Biological prevention and removal of hydrogen sulphide in sludge at Lillehammer wastewater treatment plant
TWI511937B (en) An anaerobic treatment method and treatment device for the drainage of terephthalic acid
JP2011062656A (en) Nitrogen-containing wastewater treatment method
JP2000061497A (en) Treatment of organic wastewater and equipment therefor
JP4838649B2 (en) Anaerobic fermentation method and biodesulfurization method
CN108383299A (en) The preprocess method and pretreatment system of coal chemical industrial waste water
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
JP2005288371A (en) Wastewater treatment method
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
KR101269379B1 (en) Treatment method for wastewater