JPS63300567A - Floating gate type insulated gate field effect transistor - Google Patents

Floating gate type insulated gate field effect transistor

Info

Publication number
JPS63300567A
JPS63300567A JP62137231A JP13723187A JPS63300567A JP S63300567 A JPS63300567 A JP S63300567A JP 62137231 A JP62137231 A JP 62137231A JP 13723187 A JP13723187 A JP 13723187A JP S63300567 A JPS63300567 A JP S63300567A
Authority
JP
Japan
Prior art keywords
region
channel
drain
concentration
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62137231A
Other languages
Japanese (ja)
Inventor
Shoichi Iwasa
岩佐 昇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62137231A priority Critical patent/JPS63300567A/en
Publication of JPS63300567A publication Critical patent/JPS63300567A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a writing speed by setting the substrate concentration profile of a channel to the depth of the vicinity of the bottom of source, drain regions at the peak of concentration. CONSTITUTION:Source and drain regions 5, 4 made of selectively formed N-type impurity regions are formed on a P-type semiconductor substrate 1. A first channel region 13 made of part of the substrate 1 is formed directly under a floating gate insulating film 9. A high concentration second channel region 12 in contact with the bottom of the region 4 and the vicinity is formed under the region 13. Further, a higher concentration P-type buried region 11a than the region 12 is formed thereunder. In this case, since there are buried regions under the regions 12 and 4, a depleted layer is scarcely extended downward. Accordingly, a punch-through scarcely occurs, and the depthwise component of a drain electric field is weakened, and its channel component is strengthened. Thus, channel hot electrons are easily generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不揮発性MO8半導体記憶装置に使用される
浮遊ゲート型絶縁ゲート電界効果トランジスタに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a floating gate type insulated gate field effect transistor used in a nonvolatile MO8 semiconductor memory device.

〔従来の技術〕[Conventional technology]

従来のEFROMKは、第5図に示すように浮遊ゲート
型絶縁ゲート電界効果トランジスタをメモリ素子として
用いられており、CHE(チャネルホットエレクトロン
)注入によりプログラミングする方式が主流である。こ
の方式の場合、通常JEFROMの特性(しきい電圧や
書込特性)を制御する為に、半導体基板に不純物ドーピ
ングを行ないウェル(2)を形成し7た構造を用いてい
る。
As shown in FIG. 5, a conventional EFROMK uses a floating gate type insulated gate field effect transistor as a memory element, and the mainstream programming method is CHE (channel hot electron) injection. In this method, in order to control the characteristics (threshold voltage and write characteristics) of the JEFROM, a structure is usually used in which a semiconductor substrate is doped with impurities to form a well (2).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の浮遊ゲート型絶縁ゲート電界効果トラン
ジスタを用いたEPROMは、所定の書込スピードを得
る為に、ウェルの不純物濃度を適当に制御するので、そ
れに応じて、消去時のしきい電圧が必然的に決定される
。従来例の場合、通常しきい電圧は2.Ov前後に設定
されているので読出電源電圧Vccが5.Ovの場合問
題とはならない。
In the EPROM using the conventional floating gate type insulated gate field effect transistor described above, the impurity concentration of the well is appropriately controlled in order to obtain a predetermined writing speed, so the threshold voltage during erasing is adjusted accordingly. determined by necessity. In the case of the conventional example, the threshold voltage is usually 2. Since the reading power supply voltage Vcc is set around 5.0V. In the case of Ov, this is not a problem.

しかし、Vccを下げていく場合、それに呼応してしき
い電圧を下げなければならない。通常、プロセス上の制
御としてウェル濃度を下げることが考えられるが、その
代わり、電界強度が弱くなる結果、書込スピードが遅く
な9、所定の規格を満足しなくなるという場合を生ずる
However, when lowering Vcc, the threshold voltage must be lowered accordingly. Normally, it is considered to lower the well concentration as a process control, but instead, the electric field strength becomes weaker, resulting in a case where the writing speed becomes slow9 or does not meet the predetermined specifications.

r問題点を解決するための手段〕 本発明の浮遊ゲート電界効果トランジスタは、第1導電
型半導体基板に選択的に形成された第2導電型不純物領
域からなるソース領域及びドレイン領域と、ゲート絶縁
膜直下の前記第1導電型半導体基板の一部からなる第1
チャネル領域と、前記第1チャネル領域の下方に設けら
れ前記ドレイン領域の底部とその近傍に接する高濃度の
第2チャネル領域と、前記ドレイン領域及び前記第2チ
ャネル領域の下方に設けられ前記第2チャネル領域より
高濃度の第1導電型埋込領域とを含むというものである
Means for Solving Problems] The floating gate field effect transistor of the present invention has a source region and a drain region made up of impurity regions of a second conductivity type selectively formed in a semiconductor substrate of a first conductivity type, and a gate insulating region. A first conductive type semiconductor substrate comprising a portion of the first conductivity type semiconductor substrate immediately below the film.
a channel region, a highly doped second channel region provided below the first channel region and in contact with the bottom of the drain region and its vicinity; a second channel region provided below the drain region and the second channel region; The first conductivity type buried region has a higher concentration than the channel region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の主要部を主す半導体チ
ップの断面図である。
FIG. 1 is a sectional view of a semiconductor chip mainly showing the main parts of a first embodiment of the present invention.

この実施例は、P型半導体基板1に選択的に形成された
N型不純物領域からなろソース領域5及びドレイン領域
4と、浮遊ゲート絶縁膜9直下のP型半導体基板1の一
部からなる第1チャネル領域13と、瀉1チャネル領域
13の下方に設けられドレイン領域4の底部とその近傍
に接する高濃度の第2チャネル領域12と、ドレイン領
域4及び第2チャネル領域12の下方に設けられ第2チ
ャネル領域12よυ高濃度のP型埋込領域11aとを含
むものである。
This embodiment consists of an N-type impurity region selectively formed in a P-type semiconductor substrate 1, a source region 5 and a drain region 4, and a part of the P-type semiconductor substrate 1 directly under a floating gate insulating film 9. a highly doped second channel region 12 provided below the first channel region 13 and in contact with the bottom of the drain region 4 and its vicinity; It includes a second channel region 12 and a high concentration P-type buried region 11a.

次に、この実施例の製造方法について説明する。Next, the manufacturing method of this example will be explained.

第2図(1)〜(e)は第1の実施例の製造方法を説明
するための工程順に配置した半導体チップの断面図であ
る。
FIGS. 2(1) to 2(e) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the manufacturing method of the first embodiment.

まず、第2図(a)に示すようにシリコンからなるP型
半導体基板Iにおいて側面絶縁膜14で区画されたトラ
ンジスタ形成領域に、ポロンをイオン注入し押込拡散を
することにより、Pウェル2を形成する。
First, as shown in FIG. 2(a), in a P-type semiconductor substrate I made of silicon, a P-well 2 is formed by implanting boron ions into a transistor forming region defined by a side insulating film 14 and performing forced diffusion. Form.

次に、第2図(b)に示すように、フィールド絶縁膜3
でトランジスタ形成領域を区画し、第1ゲート絶禄膜(
浮遊ゲート絶縁膜9)を介して、所定深さにポロンを−
「オン注入して第1のイオン打込層】0を形成する。
Next, as shown in FIG. 2(b), the field insulating film 3
A first gate isolation film (
Poron is applied to a predetermined depth through the floating gate insulating film 9).
A first ion-implanted layer]0 is formed by on-implantation.

さらに、従来と同様にして、第2図CC)に示す如く、
第1ゲート絶縁膜(9)上に第1N型ドープト多結晶シ
リコン層(7)、さらにこの多結晶シリコン層(7)を
熱酸化するととtζより形成した第2の絶縁膜(制御ゲ
ート絶縁膜8)、さらにその上に、第2Nqドープト多
結晶シリコン層(6)を形成して所定形状に整形する。
Furthermore, in the same manner as before, as shown in Fig. 2 CC),
A first N-type doped polycrystalline silicon layer (7) is formed on the first gate insulating film (9), and when this polycrystalline silicon layer (7) is thermally oxidized, a second insulating film (control gate insulating film) formed from tζ is formed. 8) Further, a second Nq-doped polycrystalline silicon layer (6) is formed thereon and shaped into a predetermined shape.

そして、熱酸化法によって第1゜2ON型多結晶シリコ
ン娶の側面((絶縁膜14を形成する。こうして、第2
チャネル領域12.浮遊ゲート電極7.制御ゲート絶縁
膜8.制御ゲー)?lt極6を形成する。
Then, by a thermal oxidation method, an insulating film 14 is formed on the side surface of the first 2 ON type polycrystalline silicon layer.
Channel region 12. Floating gate electrode7. Control gate insulating film 8. Control game)? lt pole 6 is formed.

次に第2図(d)tc示す如く、ゲート電極に対し自己
整合的に、ポロンをイオン注入して第2チャネル領域1
2の下方に第1のイオン打込層】Oより高濃度の第2の
イオン打込層11’a、 ll’bを形成する。
Next, as shown in FIG. 2(d)tc, poron ions are implanted into the second channel region 1 in a self-aligned manner with respect to the gate electrode.
Second ion implantation layers 11'a and 11'b having a higher concentration than the first ion implantation layer 11'a and 11'b are formed below the first ion implantation layer 11'a and 11'b.

次に1第2図(e)K示すよう忙、ヒ素又はリンをイオ
ン注入して、熱処理を行うことによりドレイン領域4.
ソース領域5を形成する。第2のイオン打込層11’a
、 ll’bはそれぞれP型埋込領域11a。
Next, as shown in FIG. 2(e)K, ions of arsenic or phosphorus are implanted and heat treatment is performed to form the drain region 4.
A source region 5 is formed. Second ion implantation layer 11'a
, ll'b are P-type buried regions 11a, respectively.

11bとなる。11b.

次に、第1図に示すように、層間絶縁膜15を形成して
コンタクト孔を設け、アルミニウム′、It&16a、
 16bを形成する。
Next, as shown in FIG. 1, an interlayer insulating film 15 is formed and contact holes are provided, and
16b.

第6図は、この実施例のチャネル部における深さくXj
)と不純物濃度Naの関係を示す不純物濃度プロファイ
ル図である。
FIG. 6 shows the depth Xj in the channel section of this embodiment.
) and impurity concentration Na; FIG.

この実施例において、消去時のしきい電圧は第1チャネ
ル領域の不純物濃度で定まる。このしきい電圧を低くし
ても従来例のように書込スピードを損うことは准い。即
ち、浮遊ゲートjaL極に注入されるチャネルホットエ
レクトロン(以下CHEと記す)は、その発生機構上、
ドレイン電界のチャネル方向成分によって加速されエネ
ルギーを得る。その得たエネルギーがシリコン−シリコ
ン酸化膜界面の障壁高さ3.2eVを越えた時、浮遊ゲ
ート電極への注入が可能となる。従って、上述のチャネ
ル方向の電界成分を大きくする程、注入効率が増すわけ
である。チャネル方向の電界を大きくするにはドレイン
電圧を高くすればよいけれども、その上限はソース−ド
レイン間のパンチスルー電圧で与えられる。そうして、
パンチスルーをひきおこす空乏層の伸びはドレイン領域
の底の近くでおき易い。この実施例では丁度その部分に
高濃度の第2チャネル領域が設けられているし、さらに
ドレイン領域の下方の埋込領域があるのでドレイン領域
から下方へは空乏層が伸び難くなっている。
In this embodiment, the threshold voltage during erasing is determined by the impurity concentration of the first channel region. Even if this threshold voltage is lowered, it is unlikely that the writing speed will be impaired as in the conventional example. In other words, the channel hot electrons (hereinafter referred to as CHE) injected into the floating gate jaL pole have the following mechanism:
It is accelerated by the channel direction component of the drain electric field and gains energy. When the obtained energy exceeds the barrier height of 3.2 eV at the silicon-silicon oxide film interface, injection into the floating gate electrode becomes possible. Therefore, the injection efficiency increases as the electric field component in the channel direction increases. Although the electric field in the channel direction can be increased by increasing the drain voltage, the upper limit is given by the punch-through voltage between the source and drain. Then,
The depletion layer extension that causes punch-through tends to occur near the bottom of the drain region. In this embodiment, the highly doped second channel region is provided exactly at that portion, and there is also a buried region below the drain region, making it difficult for the depletion layer to extend downward from the drain region.

従ってパンチスルーがおき難いばかりでなく、ドレイン
電界の深さ方向成分が弱まりチャネル方向成分が強くな
るので、CHEの発生に有利な構造を有しているといえ
る。
Therefore, not only is punch-through difficult to occur, but also the depth-direction component of the drain electric field is weakened and the channel-direction component is strong, so it can be said that the structure is advantageous for the generation of CHE.

第3図は本発明の第2の実施例の主要部を示す半導体チ
ップの断面図である。
FIG. 3 is a sectional view of a semiconductor chip showing the main parts of a second embodiment of the present invention.

この実施例は第1チャネル領域及び第2チャネル領域が
それぞれ第2エピタキシャル層18及び第1エピタキシ
ャル層17からなっている以外は第1の実施例と同じで
ある。
This embodiment is the same as the first embodiment except that the first channel region and the second channel region are comprised of a second epitaxial layer 18 and a first epitaxial layer 17, respectively.

次に、この実施例の製造方法について説明する。Next, the manufacturing method of this example will be explained.

第4図(a)〜(d)は第2の実施例の製造方法を説明
するための工程順に配置した半導体チップの断面図であ
る。
FIGS. 4(a) to 4(d) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the manufacturing method of the second embodiment.

まず、第4図(a)に示すように、P型半導体下地板1
′上に、同じくP型で下地板よりも濃度の高い第1のエ
ピタキシャル層17を設ける。その上く後KEPROM
の消去時しきい電圧を決定するP型の第2エピタキシャ
ル層18を形成する。この時第2エピタキシヤル層18
の膜厚は、高々ソース・ドレイン拡散領域の深さと同等
とし、かつその濃度は第1エピタキシャル層17の濃度
よりも低いものとする。次に1第4図(b)に示すよう
にフィールド絶縁膜3で素子領域を区画し、次に第4図
(C)に示すように二層のN型多結晶シリコン層(7)
First, as shown in FIG. 4(a), a P-type semiconductor base plate 1
A first epitaxial layer 17, which is also P-type and has a higher concentration than the base plate, is provided on the substrate. After that, KEPROM
A P-type second epitaxial layer 18 is formed which determines the threshold voltage during erasing. At this time, the second epitaxial layer 18
The film thickness is at most the same as the depth of the source/drain diffusion region, and its concentration is lower than the concentration of the first epitaxial layer 17. Next, as shown in FIG. 4(b), the device region is divided with a field insulating film 3, and then a two-layer N-type polycrystalline silicon layer (7) is formed as shown in FIG. 4(C).
.

(6)を従来の方法で形成し、所定形状に整形し、その
後、第4図(d)に示すように多結晶シリコン層の側面
を熱α化法によって絶縁膜14を形成した後、そのゲー
ト電極に対し自己整合的に、所定深さくソース・ドレイ
ン拡散領域 の箇所にポロンをイオン注入して第2のイオン打込層3
1’を形成する。
(6) is formed by a conventional method and shaped into a predetermined shape, and then, as shown in FIG. A second ion-implanted layer 3 is formed by implanting boron ions into the source/drain diffusion region to a predetermined depth in a self-aligned manner with respect to the gate electrode.
1' is formed.

その後は、従来と同様第3図に示すように、ヒ素又はリ
ンをイオン注入法によシ、ソース領域5゜ドレイン領域
4を形成する。そして層間絶縁膜15をCVD法によシ
形成[7、コンタクト孔をパターニングした後、アルミ
ニウム市、欅を設ける。
Thereafter, as in the conventional case, as shown in FIG. 3, arsenic or phosphorus is ion-implanted to form a 5° source region and a drain region 4. Then, an interlayer insulating film 15 is formed by the CVD method [7. After patterning the contact hole, an aluminum layer and a keyaki layer are provided.

この実施例はエピタキシャル層を使用しているので、イ
オン注入工程が少なくて済み、より量産に適していると
いう利点がある。
Since this embodiment uses an epitaxial layer, it has the advantage of requiring fewer ion implantation steps and being more suitable for mass production.

〔発明の効果〕〔Effect of the invention〕

以上説明し、たよりに本発明は、トランジスタのチャネ
ル部の基板濃度プロファイルを前述のように、濃度のピ
ークをソース・ドレイン領域の底面附近の深さに設定す
ることによって、ドレイン電界のチャネル方向成分が強
くなるので、従来よりもCHEの発生率が高くなり、書
込スピードが速くなる。これは、このトランジスタを使
用したメモリセルの消去時しきい電圧を下げても、従来
と同等レベルの書込スピードが得られることを意味し、
読出し電圧を下げた場合に有効である。
Based on the above explanation, the present invention provides a channel-direction component of the drain electric field by setting the concentration peak at a depth near the bottom of the source/drain region in the substrate concentration profile of the channel portion of the transistor as described above. is stronger, the occurrence rate of CHE becomes higher than before, and the writing speed becomes faster. This means that even if you lower the erase threshold voltage of a memory cell using this transistor, you can still obtain the same level of write speed as before.
This is effective when lowering the read voltage.

また、従来タイプに比べ、第1チャネル領域の表面濃度
を下げても、第2チャネル領域の濃度が十分高い為、ド
レインからの空乏層の伸びが抑えられてパンチスルーが
生じ難くなる。従って従来よりもチャネル長が短い領域
で使用可卯となり、書込スピードに対してもよ抄有利に
働く効果がある。
Furthermore, compared to the conventional type, even if the surface concentration of the first channel region is lowered, the concentration of the second channel region is sufficiently high, so that the extension of the depletion layer from the drain is suppressed, making punch-through less likely to occur. Therefore, it can be used in a region where the channel length is shorter than that of the conventional method, and has the effect of working more advantageously in terms of writing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の主要部を示す半導体チ
ップの断面図、第2図(a)〜第2図(e)は第1の実
施例の製造方法を説明するための工程順に配置した半導
体チップの断面図、第3図は本発明の第2の実施例の主
要部を示す半導体チップの断面図、第4図(a)〜第4
図(d)は第2の実施例の製造方法を説明するための工
程順に配置した半導体チップの断面図、第5図は従来例
の主要部を示す半導体チップの断面図、第6図は第1の
実施例のチャネル部の不純物濃度プロファイル図である
。 1・・・・・・P型半導体基板、1′・・・・・・P型
半導体下地板、2・・・・・・Pウェル、3・・・・・
・フィールド絶縁膜、4・・・・・・ドレイン領域、5
・・・・・・ソース領域、6・・・・・・制御ゲート電
極、7・・・・・・浮遊ゲート電極、8・・・・・・制
御/−ト給縁膜、9・・・・・・浮遊ゲート絶縁膜、1
0・・・・−・第1のイオン打込層、lla、llb・
・・・・・P型埋込領域%  ll’a、ll’b・・
・・・・第2のイオン打込み層、12・・・・・・第2
チャネル領域、13・・・・・・第1チャネル領域、1
4・・・・・・絶縁膜、15・・・・・・層間絶縁膜、
16a、 16b・・・・・・アルミニウム電極、17
・・・・・・第1エピタキシヤル眉、18・・・・・・
第2エピタキシャル層。 代理人 弁理士  内 原   晋 q 浮Mさゲート絶間 第2図 第3図 第4図 第4図 ×j伊m2
FIG. 1 is a sectional view of a semiconductor chip showing the main parts of the first embodiment of the present invention, and FIGS. 2(a) to 2(e) are diagrams for explaining the manufacturing method of the first embodiment. 3 is a sectional view of a semiconductor chip arranged in the order of steps; FIG. 3 is a sectional view of a semiconductor chip showing main parts of a second embodiment of the present invention; FIGS.
Figure (d) is a cross-sectional view of a semiconductor chip arranged in the order of steps to explain the manufacturing method of the second embodiment, Figure 5 is a cross-sectional view of a semiconductor chip showing the main parts of a conventional example, and Figure 6 is a cross-sectional view of a semiconductor chip arranged in the order of steps to explain the manufacturing method of the second embodiment. FIG. 1 is an impurity concentration profile diagram of a channel portion in Example 1; 1... P-type semiconductor substrate, 1'... P-type semiconductor base plate, 2... P-well, 3...
・Field insulating film, 4...Drain region, 5
. . . Source region, 6 . . . Control gate electrode, 7 . . . Floating gate electrode, 8 . ...Floating gate insulating film, 1
0...--first ion implantation layer, lla, llb.
...P type embedded area% ll'a, ll'b...
...Second ion implantation layer, 12...Second
Channel region, 13...First channel region, 1
4... Insulating film, 15... Interlayer insulating film,
16a, 16b... Aluminum electrode, 17
・・・・・・First epitaxial eyebrow, 18・・・・・・
Second epitaxial layer. Agent Patent Attorney Susumu Uchihara Umasa Gate Zetsu Figure 2 Figure 3 Figure 4 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体基板に選択的に形成された第2導電
型不純物領域からなるソース領域及びドレイン領域と、
ゲート絶縁膜直下の前記第1導電型半導体基板の一部か
らなる第1チャネル領域と、前記第1チャネル領域の下
方に設けられ前記ドレイン領域の底部とその近傍に接す
る高濃度の第2チャネル領域と、前記ドレイン領域及び
前記第2チャネル領域の下方に設けられ前記第2チャネ
ル領域より高濃度の第1導電型埋込領域とを含むことを
特徴とする浮遊ゲート型絶縁ゲート電界効果トランジス
タ。
a source region and a drain region made of a second conductivity type impurity region selectively formed in a first conductivity type semiconductor substrate;
A first channel region formed of a part of the first conductivity type semiconductor substrate directly under the gate insulating film, and a highly doped second channel region provided below the first channel region and in contact with the bottom of the drain region and its vicinity. and a buried region of a first conductivity type provided below the drain region and the second channel region and having a higher concentration than the second channel region.
JP62137231A 1987-05-29 1987-05-29 Floating gate type insulated gate field effect transistor Pending JPS63300567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137231A JPS63300567A (en) 1987-05-29 1987-05-29 Floating gate type insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137231A JPS63300567A (en) 1987-05-29 1987-05-29 Floating gate type insulated gate field effect transistor

Publications (1)

Publication Number Publication Date
JPS63300567A true JPS63300567A (en) 1988-12-07

Family

ID=15193847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137231A Pending JPS63300567A (en) 1987-05-29 1987-05-29 Floating gate type insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS63300567A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027175A (en) * 1988-08-29 1991-06-25 Nec Corporation Integrated circuit semiconductor device having improved wiring structure
US5359221A (en) * 1992-07-10 1994-10-25 Hitachi, Ltd. Semiconductor device
US5623154A (en) * 1994-10-25 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having triple diffusion
US5691560A (en) * 1994-07-19 1997-11-25 Mitsubishi Denki Kabushiki Kaisha Nonvolatile semiconductor memory device and method of manufacturing the same
US5719422A (en) * 1994-08-18 1998-02-17 Sun Microsystems, Inc. Low threshold voltage, high performance junction transistor
US5773863A (en) * 1994-08-18 1998-06-30 Sun Microsystems, Inc. Low power, high performance junction transistor
US5850093A (en) * 1989-11-20 1998-12-15 Tarng; Huang Chang Uni-directional flash device
US6163057A (en) * 1994-08-17 2000-12-19 Nec Corporation Field effect transistor with improved source/drain diffusion regions having an extremely small capacitance
US6686623B2 (en) * 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JP2005197750A (en) * 2004-01-07 2005-07-21 Programmable Microelectron Corp Two-transistor pmos memory cell and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027175A (en) * 1988-08-29 1991-06-25 Nec Corporation Integrated circuit semiconductor device having improved wiring structure
US5850093A (en) * 1989-11-20 1998-12-15 Tarng; Huang Chang Uni-directional flash device
US5359221A (en) * 1992-07-10 1994-10-25 Hitachi, Ltd. Semiconductor device
US5691560A (en) * 1994-07-19 1997-11-25 Mitsubishi Denki Kabushiki Kaisha Nonvolatile semiconductor memory device and method of manufacturing the same
US6048770A (en) * 1994-07-19 2000-04-11 Mitsubishi Denki Kabushiki Kaisha Nonvolatile semiconductor memory device and method of manufacturing the same
US6163057A (en) * 1994-08-17 2000-12-19 Nec Corporation Field effect transistor with improved source/drain diffusion regions having an extremely small capacitance
US5719422A (en) * 1994-08-18 1998-02-17 Sun Microsystems, Inc. Low threshold voltage, high performance junction transistor
US5773863A (en) * 1994-08-18 1998-06-30 Sun Microsystems, Inc. Low power, high performance junction transistor
US5623154A (en) * 1994-10-25 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having triple diffusion
US6686623B2 (en) * 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
US7535053B2 (en) 1997-11-18 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JP2005197750A (en) * 2004-01-07 2005-07-21 Programmable Microelectron Corp Two-transistor pmos memory cell and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR940010930B1 (en) Manufacturing method of semiconductor
EP0513923B1 (en) Protected programmable transistor with reduced parasitic capacitances and method of fabrication
KR100235274B1 (en) Semiconductor memory device and fabrication method thereof
US5242848A (en) Self-aligned method of making a split gate single transistor non-volatile electrically alterable semiconductor memory device
CN100456452C (en) Method of manufacturing a nonvolatile semiconductor memory device, and a nonvolatile semiconductor memory device
US4701776A (en) MOS floating gate memory cell and process for fabricating same
US5231299A (en) Structure and fabrication method for EEPROM memory cell with selective channel implants
KR930007195B1 (en) Semiconductor device and its manufacturing method
JP4198903B2 (en) Semiconductor memory device
US5378909A (en) Flash EEPROM cell having gap between floating gate and drain for high hot electron injection efficiency for programming
KR100397048B1 (en) A self-aligned buied channel/junction stacked gate flash memory cell
JP2817393B2 (en) Method for manufacturing semiconductor memory device
USRE37959E1 (en) Semiconductor integrated circuit device and method of manufacturing the same
EP0160003B1 (en) Mos floating gate memory cell and process for fabricating same
KR100253778B1 (en) Nonvolatile semiconductor memory device and manufacturing methdo thereof
JP2558961B2 (en) Method for manufacturing semiconductor device
JPS63300567A (en) Floating gate type insulated gate field effect transistor
JP4815695B2 (en) Method of operating nonvolatile semiconductor memory device
US5446298A (en) Semiconductor memory device including a floating gate having an undoped edge portion proximate to a source portion of the memory device
JPH0878541A (en) Method of forming single transistor memory cell structure and self-matching single transistor memory cell structure
CN104638018B (en) A kind of half floating-gate device and preparation method thereof
CN100433334C (en) Method for reducing short channel effects in memory cells and related structure
JPH0132673B2 (en)
JP2975213B2 (en) MOS memory device
KR100247225B1 (en) Fabrication method of non-volatile memory device