JPS63300429A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS63300429A
JPS63300429A JP13525887A JP13525887A JPS63300429A JP S63300429 A JPS63300429 A JP S63300429A JP 13525887 A JP13525887 A JP 13525887A JP 13525887 A JP13525887 A JP 13525887A JP S63300429 A JPS63300429 A JP S63300429A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic layer
electrode
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13525887A
Other languages
Japanese (ja)
Inventor
Kagoji Sugita
杉田 篭二
Kiyokazu Toma
清和 東間
Kazuyoshi Honda
和義 本田
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13525887A priority Critical patent/JPS63300429A/en
Publication of JPS63300429A publication Critical patent/JPS63300429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent wrinkling by contact electrification by using a substrate formed with a metallic layer having a specific thickness or below to the face of a side where a magnetic layer is not formed and forming the magnetic layer by a vacuum deposition method on the other face. CONSTITUTION:An electrode 10 facing the magnetic surface of an electrode 9 for electric discharge used to make a discharge treatment of a film prior to formation of a perpendicularly magnetically anisotropic Co-Cr film with a vacuum deposition device is made of Ti and an electrode 11 facing the base face is made of Cu. The sputtering rate of the electrode 10 is thereby decreased to the rate lower than the sputtering rate of the electrode 11 and since the electrode material adheres extremely thinly to the base material, the contact electrification of the base face is suppressed and the wrinkling is obviated in an ensuing process for vapor deposition of the magnetic layer. The film is subjected to a thermal damage at the time of vapor deposition if the thickness of the metallic layer on this base face exceeds 50Angstrom . The wrinkling is, therefore, prevented by forming the metallic layer on the base face to <=50Angstrom .

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子フィルム上に金属薄膜より成る磁性層を
形成する磁気記録媒体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium in which a magnetic layer made of a thin metal film is formed on a polymer film.

従来の技術 従来、磁気記録媒体としては高分子フィルム等の非磁性
基板上に磁性粉を塗布した塗布形のものが使用されて来
たが、より高い記録密度を達成するために、非磁性基板
上に金属薄膜をスパッタ法や真空蒸着法で形成した、薄
膜形が実用化されつつある。薄膜形磁気記録媒体の中で
も、特に、垂直磁気異方性を持ったCo基合金磁性薄膜
を磁性層として形成した垂直磁気異方性膜が、優れた短
波長記録特性のゆえに注目を集めている。CO基合金の
垂直磁気異方性膜としては、Co−Cr、C。
Conventional technology Conventionally, coated magnetic recording media have been used, in which magnetic powder is coated on a non-magnetic substrate such as a polymer film, but in order to achieve higher recording density, non-magnetic substrate Thin film types, in which a thin metal film is formed on top by sputtering or vacuum evaporation, are being put into practical use. Among thin-film magnetic recording media, perpendicular magnetic anisotropic films, in which a Co-based alloy magnetic thin film with perpendicular magnetic anisotropy is formed as a magnetic layer, are attracting attention because of their excellent short-wavelength recording properties. . Examples of perpendicular magnetic anisotropic films of CO-based alloys include Co-Cr and C.

−Ni−Cr、Co−V、Co−Cr−W、Co−Cr
−Mo。
-Ni-Cr, Co-V, Co-Cr-W, Co-Cr
-Mo.

Go−Cr−Nb、Co−Cr−Ta合金膜等が主に検
討されている。これらのCo基合金垂直磁気異方性膜は
スパッタ法や真空蒸着法(イオングレーティング法の様
に蒸発原子の一部をイオン化して膜を堆積する方法も含
む)により作製されるが、特に後者の方法によれば数1
0・りOA/秒以上という非常に高い膜堆積速度が達成
出来、量産に適している。
Go-Cr-Nb, Co-Cr-Ta alloy films, etc. are mainly being studied. These Co-based alloy perpendicular magnetic anisotropy films are produced by sputtering or vacuum deposition (including methods such as ion grating, in which a part of evaporated atoms is ionized to deposit a film), but the latter method is particularly suitable. According to the method of
A very high film deposition rate of 0.0 OA/sec or more can be achieved, making it suitable for mass production.

非磁性基板として高分子フィルムを用いて、真空蒸着法
によシ金属薄膜形磁気記録媒体を作製する方法としては
、高分子フィルムを円筒状キャンの周面に沿わせて走行
させつつ磁性層を蒸着する方法が最も優れている。第2
図にこの様な方法を用いた真空蒸着装置の内部構造の概
略を示す。高分子フィルム1は円筒状キャン2の周面に
沿って走行する。3及び4は高分子フィルムを巻くボビ
ンであり、7a、7b、7cはフリーローラである。高
分子フィルム1上に蒸発源5によって磁性層が形成され
る。蒸発源としては、抵抗加熱蒸発源、誘導加熱蒸発源
、電子ビーム蒸発源等が考えられるが、高融点金属であ
るGo基合金を高速で蒸発させるためには、電子ビーム
蒸発源を採用する必要がある。蒸発源6と円筒状キャン
2との間には、蒸発源6から蒸発する蒸気が不要な部分
に付着するのを防止するために、遮へい板eが配置され
ている。遮へい板6は、第2図Sで示されるように開口
しており、この開口部Sを通過した蒸気が高分子フィル
ム上に付着する。
A method for producing a metal thin film magnetic recording medium by vacuum evaporation using a polymer film as a non-magnetic substrate is to run the polymer film along the circumferential surface of a cylindrical can while depositing the magnetic layer. The best method is vapor deposition. Second
The figure schematically shows the internal structure of a vacuum evaporation apparatus using such a method. The polymer film 1 runs along the circumferential surface of the cylindrical can 2. 3 and 4 are bobbins for winding the polymer film, and 7a, 7b, and 7c are free rollers. A magnetic layer is formed on the polymer film 1 by the evaporation source 5 . Possible evaporation sources include resistance heating evaporation sources, induction heating evaporation sources, and electron beam evaporation sources, but in order to evaporate Go-based alloys, which are high-melting point metals, at high speed, it is necessary to employ electron beam evaporation sources. There is. A shielding plate e is arranged between the evaporation source 6 and the cylindrical can 2 in order to prevent the vapor evaporated from the evaporation source 6 from adhering to unnecessary parts. The shielding plate 6 has an opening as shown in FIG. 2 S, and the vapor passing through the opening S adheres to the polymer film.

なお通常、高分子フィルムと磁性層との接着性を改善す
るために、蒸着前に、高分子フィルム表面の放電処理を
行なう。このことを第2図を用いて具体的に説明する。
Note that in order to improve the adhesion between the polymer film and the magnetic layer, the surface of the polymer film is usually subjected to a discharge treatment before vapor deposition. This will be specifically explained using FIG. 2.

まずボビン4に巻かれた高分子フィルムを、矢印Bの方
向に走行させる。この際に、蒸着膜の形成される側に対
向して配置された放電用電極8に、直流あるいは交流あ
るいは高周波電圧を印加し、放電を発生させる。なお、
放電用電極の材料としてはSUSが一般的である。
First, the polymer film wound around the bobbin 4 is run in the direction of arrow B. At this time, a direct current, an alternating current, or a high frequency voltage is applied to the discharge electrode 8 disposed opposite to the side on which the vapor deposited film is formed to generate a discharge. In addition,
SUS is generally used as a material for the discharge electrode.

また、放電を発生させるために、真空槽内にAr。Additionally, Ar was placed in the vacuum chamber to generate electric discharge.

N2,02等のガスを導入し、放電用電極近傍のガス圧
を1〜100mTorr程度にしておく。この様にして
放電処理を施された高分子フィルムはボビン3に巻き取
られる。次に、高分子フィルムを矢印Aの方向に走行さ
せ、蒸着源6によって、磁性層を形成する。
A gas such as N2, 02, etc. is introduced, and the gas pressure near the discharge electrode is kept at about 1 to 100 mTorr. The polymer film subjected to the discharge treatment in this manner is wound onto the bobbin 3. Next, the polymer film is run in the direction of arrow A, and a magnetic layer is formed by the vapor deposition source 6.

発明が解決しようとする問題点 Co基合金薄膜垂直磁気記録媒体をVTR用等の磁気テ
ープとして実用化する場合には、高分子フィルムの膜厚
を約16μm以下に薄くする必要がある。特に家庭用V
TRを考えると10μm前後の非常に薄い、高分子フィ
ルムを使用することが要求される。このような薄い高分
子フィルム上に、第2図に示した真空蒸着装置を用いて
Co基合金薄膜を形成すると、以下の問題か生じた。
Problems to be Solved by the Invention When a Co-based alloy thin film perpendicular magnetic recording medium is put to practical use as a magnetic tape for a VTR or the like, it is necessary to reduce the thickness of the polymer film to about 16 μm or less. Especially for home use
Considering TR, it is required to use a very thin polymer film of around 10 μm. When a Co-based alloy thin film was formed on such a thin polymer film using the vacuum evaporation apparatus shown in FIG. 2, the following problems occurred.

高分子フィルムとしては、膜厚8μmのポリイミドフィ
ルムを用いた。まず、このフィルムを矢印Bの方向に走
行させ、蒸着膜の形成される面(以下この面を磁性面と
称する)の放電処理を行なった。この時のフィルム走行
速度は20m/分とし、放電用電極は高周波電源に接続
し、500Wの電力を供給した。なお、真空槽内には放
電を発生させるためにArガスを導入し、ガス圧を20
mTorrとした。
As the polymer film, a polyimide film with a thickness of 8 μm was used. First, this film was run in the direction of arrow B, and the surface on which the deposited film was formed (hereinafter this surface will be referred to as the magnetic surface) was subjected to a discharge treatment. The film running speed at this time was 20 m/min, the discharge electrode was connected to a high frequency power source, and 500 W of power was supplied. In addition, Ar gas was introduced into the vacuum chamber to generate electric discharge, and the gas pressure was increased to 20
mTorr.

次に、放電処理の施されたフィルムを矢印Aの方向に走
行させ、膜厚0.2μmのCo −Cr垂直磁気異方性
膜を蒸着した。なお、蒸着時に蒸着膜と円筒状キャン2
との間に電位差を設けた。電位差を設けるためには、例
えば、第2図における7リーローラ7Cを金属製にし、
このフリーローラと円筒状キャン2を直流電源あるいは
交流電源と接続すれば良い。この様に、膜と円筒状キャ
ン2の周面との間に電位差を設けることにより、静電引
力によりフィルムが円筒状キャンに強く接触する。
Next, the discharge-treated film was run in the direction of arrow A, and a Co--Cr perpendicular magnetic anisotropy film having a thickness of 0.2 μm was deposited. In addition, during vapor deposition, the vapor deposited film and the cylindrical can 2
A potential difference was established between the two. In order to provide a potential difference, for example, the 7 Lee roller 7C in FIG. 2 is made of metal,
This free roller and the cylindrical can 2 may be connected to a DC power source or an AC power source. In this manner, by providing a potential difference between the film and the circumferential surface of the cylindrical can 2, the film is brought into strong contact with the cylindrical can due to electrostatic attraction.

その結果、蒸着時に蒸発源からの輻射熱や蒸着原子の凝
縮熱等によりフィルムが受ける熱が、円筒状キャンに移
動し易くなり、フィルムの熱的ダメージを減少させるこ
とが出来る。この電位差としては、高分子フィルムの膜
厚が10μm前後の場合には、約50〜300vが適し
ている。
As a result, heat received by the film during vapor deposition due to radiant heat from the evaporation source, condensation heat of vaporized atoms, etc., is easily transferred to the cylindrical can, and thermal damage to the film can be reduced. As this potential difference, when the thickness of the polymer film is about 10 μm, approximately 50 to 300 V is suitable.

ところが、上記の工程で、実際にフィルム上に膜厚0.
2μmのCo−Cr膜を蒸着すると、蒸着されたフィル
ムが7リーローラ7Cを通過する際、及びポビン4に巻
かれる際に、フィルムにしわが発生した。しわが発生す
ると、磁気テープとして使用することは不可能であり、
何らかの解決策が必要である。
However, in the above process, the film actually has a film thickness of 0.
When a 2 μm Co-Cr film was deposited, wrinkles were generated in the deposited film when it passed through the 7-ree roller 7C and when it was wound around the pobbin 4. Once wrinkles occur, it is impossible to use it as a magnetic tape,
Some kind of solution is needed.

問題点を解決するための手段 本発明は円筒状キャンの周面に沿って走行しつつある高
分子フィルムより成る基板の一方の面に真空蒸着法によ
り金属薄膜より成る磁性層を形成する際に、前記基板と
して前記磁性層の形成されない面に厚み50Å以下の金
属層が形成されている基板を用いることを特徴とする磁
気記録媒体の製造方法である。
Means for Solving the Problems The present invention provides a method for forming a magnetic layer made of a thin metal film by vacuum evaporation on one side of a substrate made of a polymer film running along the circumferential surface of a cylindrical can. , a method of manufacturing a magnetic recording medium, characterized in that the substrate is a substrate on which a metal layer with a thickness of 50 Å or less is formed on the surface on which the magnetic layer is not formed.

作  用 本発明の製造方法によれば、高分子フィルムの帯電量を
減少でき、その結果、垂直磁気記録媒体をしわなしに作
製できる。
Function: According to the manufacturing method of the present invention, the amount of charge on the polymer film can be reduced, and as a result, a perpendicular magnetic recording medium can be manufactured without wrinkles.

実施例 第1図〜第3図を用いて本発明の実施例について説明す
る。膜厚8μmのポリイミドフィルム上に、第2図に示
される真空蒸着装置にて、Co−Cr垂直磁気異方性膜
を形成した。ただし、蒸着前にフィルムを放電処理する
ための電極としては、第2図8の従来のものに替えて、
本発明の1例である、第1図に示される電極を用いた。
Embodiment An embodiment of the present invention will be described using FIGS. 1 to 3. A Co--Cr perpendicular magnetic anisotropy film was formed on a polyimide film having a film thickness of 8 μm using a vacuum evaporation apparatus shown in FIG. However, as an electrode for discharging the film before vapor deposition, instead of the conventional one shown in Fig. 2,
An electrode shown in FIG. 1, which is an example of the present invention, was used.

本発明の放電用電極9は、フィルム1の両面に対向して
配置されている。しかも、磁性面(第1図矢印Cで示さ
れる面)に対向した放電用電極10のスパッタ率を、他
方の面(以下ペース面と称する)に対向した放電用電極
のスパッタ率よりも低くなるようにしている。具体的に
は、放電用電極10及び11の材料を、それぞれTi及
びCuとした。Ti及びCuのスパッタ率は、放電ガス
としてAτを用いた場合には第1表の様になっている。
The discharge electrodes 9 of the present invention are arranged facing both sides of the film 1. Moreover, the sputtering rate of the discharge electrode 10 facing the magnetic surface (the surface indicated by arrow C in FIG. 1) is lower than the sputtering rate of the discharge electrode 10 facing the other surface (hereinafter referred to as the pace surface). That's what I do. Specifically, the materials of the discharge electrodes 10 and 11 were Ti and Cu, respectively. The sputtering rates of Ti and Cu are as shown in Table 1 when Aτ is used as the discharge gas.

第   1   表 放電処理用Arガスは真空槽内に20mTotr導入し
た。両放電用電極は発振周波数13 、 eMHzのR
F電源12に接続し、1KWの電力を投入することによ
り放電処理を行なった。なお、処理時にはフィルムを第
2図の矢印Bの方向に走行させ、走行速度は20 m1
5+とじた。次に、この様な処理の施されたフィルムを
、第2図の矢印Aの方向に10 m15+の速度で走行
させて膜厚0.2μmのCo−Cr膜を形成した。なお
、蒸着の際にCo −Cr膜と円筒状キャンとの間に2
00Vの電位差を設けた。
Table 1 20 mTotr of Ar gas for discharge treatment was introduced into the vacuum chamber. Both discharge electrodes have an oscillation frequency of 13, eMHz R.
The discharge treatment was performed by connecting to the F power source 12 and applying 1 KW of power. During processing, the film was run in the direction of arrow B in Figure 2, and the running speed was 20 m1.
5+ closed. Next, the film subjected to such treatment was run at a speed of 10 m15+ in the direction of arrow A in FIG. 2 to form a Co--Cr film with a thickness of 0.2 μm. Note that during vapor deposition, 2
A potential difference of 00V was provided.

Co−Cr膜が形成されて円筒状キャンを出たフィルム
は、フリ−ローラ7C通過後、及ヒホヒン4に巻き取ら
れる時に、しわは全く発生せず、従来法に比べ大幅な改
善が認められた。
The film on which the Co-Cr film was formed and exited the cylindrical can did not have any wrinkles at all after passing through the free roller 7C and when it was wound up on the hehihohin 4, which was a significant improvement compared to the conventional method. Ta.

以上の様に本発明により、しわに関して、従来法に比べ
顕著な改善効果が見られる原因は、高分子フィルムにお
ける、円筒状キャン周面と接触する面(ベース面)の帯
電量の減少にある。すなわち、従来法では、フィルムと
円筒状キャン周面とが強く接触するために、接触帯電に
よってフィルムのベース面が帯電し、この帯電による、
フリーローラあるいは巻き取りボビンとの不均一なはり
付きのために、フリーローラ通過時及び巻き取り時にし
わが発生する。これに対して本発明の方法では、放電処
理時にスパッタ率の高い電極がスバツタ率の高い電極が
スパッタされて、電極材料がベース面に極めて薄く(数
人〜数10人)付着するために、ベース面の接触帯電が
抑制され、しわが改善される。ここで、ベース面に付着
した数人〜数10人の金属層は連続した膜になっておら
ず、島状になっている可能性がある。この場合の膜厚と
は、平均膜厚、すなわち膜を平均化し膜が一様に連続で
あると仮定した膜厚のことである。なおベース面に50
人を越える厚さの金属層を形成すると、円筒状キャンと
蒸着膜との間に電位差を設けても、フィルムの円筒状キ
ャン周面へのはり付きが弱くなり、蒸着時にフィルムが
熱的ダメージを受けてしまうことが、実験の結果、明ら
かになった。
As described above, the reason why the present invention has a remarkable improvement effect on wrinkles compared to the conventional method is due to the reduction in the amount of charge on the surface (base surface) of the polymer film that comes into contact with the cylindrical can peripheral surface. . That is, in the conventional method, the base surface of the film is charged due to contact charging due to strong contact between the film and the circumferential surface of the cylindrical can, and this charging causes
Due to uneven adhesion to the free roller or the winding bobbin, wrinkles occur when the winding passes through the free roller and when winding up. On the other hand, in the method of the present invention, the electrode with a high sputtering rate is sputtered during the discharge treatment, and the electrode material adheres to the base surface extremely thinly (several to several tens of layers). Contact charging on the base surface is suppressed and wrinkles are improved. Here, the metal layer of several to several dozen layers attached to the base surface may not be a continuous film but may be in the form of islands. The film thickness in this case is the average film thickness, that is, the film thickness assuming that the film is averaged and the film is uniform and continuous. In addition, 50 on the base surface
When a metal layer that is thicker than a human being is formed, even if a potential difference is created between the cylindrical can and the deposited film, the adhesion of the film to the circumferential surface of the cylindrical can becomes weak, causing thermal damage to the film during deposition. As a result of experiments, it became clear that

また、フィルムの磁性面側の放電用電極を、ベース面側
と同じ、スパッタ率の高いCu IICすると、放電処
理時に磁性面側にも電極材料であるCuが薄く形成され
る。この上に、Co−0r膜を形成すると磁気特性が劣
化してしまう。
Furthermore, if the discharge electrode on the magnetic surface side of the film is made of Cu IIC, which has a high sputtering rate like the base surface side, a thin layer of Cu, which is the electrode material, is also formed on the magnetic surface side during the discharge treatment. If a Co-0r film is formed on top of this, the magnetic properties will deteriorate.

以上の現象をまとめて第2表に示す。なお第2表には、
放電用電極として本発明の1例(電極材料:磁性面側が
Ti、ベース面側がCu)、従来例(磁性面側にのみS
US製電極)以外に、本発明と同じ構造をしているが、
電極材料は磁性面側。
The above phenomena are summarized in Table 2. In Table 2,
One example of the present invention as a discharge electrode (electrode material: Ti on the magnetic surface side, Cu on the base surface side), and a conventional example (S on the magnetic surface side only)
It has the same structure as the present invention except for the US-made electrode).
The electrode material is on the magnetic side.

ベース面側ともにTiのもの、及び両面側ともにCuの
ものの結果も示す。放電処理は上記と同様に、Arガス
を真空槽内に2 o mT or r導入し、RF電源
からの投入電力を変化させて行なった。また放電処理時
のフィルム走行速度は20 m7%とじた。
The results are also shown for the case where both the base side is made of Ti and the case where both the both sides are made of Cu. The discharge treatment was carried out in the same manner as described above, by introducing Ar gas at 2 0 mTorr into the vacuum chamber and varying the input power from the RF power source. The film running speed during the discharge treatment was 20 m/7%.

この放電処理終了後、1μ町働の膜堆積速度で膜厚0.
2μmのGo−Cr垂直磁気異方性膜を蒸着した。キャ
ンとGo−Cr膜との間には200V第   2   
表 の電位差を設けた。
After this discharge treatment is completed, the film thickness is 0.1 μm at a film deposition rate of 1 μm.
A 2 μm Go-Cr perpendicular magnetic anisotropy film was deposited. There is a 200V voltage between the can and the Go-Cr film.
A table potential difference was provided.

膜物性としては、Co−Cr膜の磁気特性を最も適確に
表現する、稠密六方構造におけるC軸の膜面垂直方向に
対する分散角Δθ6゜が小さい程、C軸の膜面垂直方向
への配向性が良く、磁気特性の優れた膜であることを意
味する。
As for film physical properties, the smaller the dispersion angle Δθ6° of the C-axis to the direction perpendicular to the film surface in the dense hexagonal structure, which most accurately expresses the magnetic properties of the Co-Cr film, the more the C-axis is oriented in the direction perpendicular to the film surface. This means that the film has good properties and excellent magnetic properties.

第2表より、本発明の方法を用いて、RF電源からの投
入電力をo、sKW以上として放電処理を行なうと、し
わの発生がなく、かつΔθゎが50と極めて結晶配向性
の優れた媒体が得られることがわかる。これに対し、従
来の方法及び両面側ともにTiから成る放電用電極を配
置した方法では、RF電源からの投入電力を変化させて
も、しわが消えなかった。また、両面側ともKCuから
成る放電用電極を配置した方法では、RF電源からの投
入電力をO,sKW以上にすると、しわは消えたが、C
o−Cr膜のΔθ6゜は10°を越えてしまい、磁気特
性に極端な劣化が見られた。Δθ6゜が100を越える
Go−Cr膜は、垂直磁気異方性が低下し、短波長再生
出力が大幅に減少する。
Table 2 shows that when the discharge treatment is performed using the method of the present invention with the input power from the RF power source being 0, sKW or more, no wrinkles occur and Δθゎ is 50, which shows extremely excellent crystal orientation. It can be seen that a medium is obtained. On the other hand, in the conventional method and the method in which discharge electrodes made of Ti were arranged on both sides, the wrinkles did not disappear even if the power applied from the RF power source was changed. In addition, in the method in which discharge electrodes made of KCu were arranged on both sides, the wrinkles disappeared when the input power from the RF power source was increased to O.sKW or more, but C
The Δθ6° of the o-Cr film exceeded 10°, and an extreme deterioration in magnetic properties was observed. A Go-Cr film in which Δθ6° exceeds 100 has a decreased perpendicular magnetic anisotropy and a significant decrease in short wavelength reproduction output.

以上説明した様に、本発明の方法によってのみ、しわの
発生がなく、かつ短波長再生出力の高い媒体が得られる
As explained above, only by the method of the present invention can a medium with no wrinkles and high short wavelength reproduction output be obtained.

以上では、ベース面側の放電用電極をCu、磁性面側の
放電用電極をTiとした場合の例について説明したが、
本発明はこれらの材料に限られるものではなく、ベース
面側にスパッタ率の高い放電用電極を、磁性面側にスパ
ッタ率の低い放電用電極を配置して、放電処理を行なえ
ば良い。スパッタ率の高い放1用電極の材料としては、
Cu以外にNi、Cr、Co、Fe、あるいはこれらの
合金等がある。スパッタ率の低い放電用電極の材料とし
ては、Ti以外にS i 、Mo 、Nb 、Ta 、
W、あるいはこれらの合金等がある。
In the above, an example was explained in which the discharge electrode on the base surface side was made of Cu and the discharge electrode on the magnetic surface side was made of Ti.
The present invention is not limited to these materials, and the discharge treatment may be performed by arranging a discharge electrode with a high sputtering rate on the base surface side and a discharge electrode with a low sputtering rate on the magnetic surface side. Materials for the radiation 1 electrode with a high sputtering rate include:
In addition to Cu, there are Ni, Cr, Co, Fe, or alloys thereof. In addition to Ti, materials for the discharge electrode with a low sputtering rate include Si, Mo, Nb, Ta,
Examples include W and alloys thereof.

本発明の方法に用いる放電用電極の構造の例としては、
第1図に示されるもの以外に、第3図の様にしても良い
Examples of the structure of the discharge electrode used in the method of the present invention include:
In addition to the configuration shown in FIG. 1, the configuration shown in FIG. 3 may be used.

また、以上の実施例では、磁性層としてCo−Cr膜の
場合について説明したが、当然のことながら、G o 
−Cτ膜膜外外Co基合金薄膜でも全く同様である。
Furthermore, in the above embodiments, the case where a Co--Cr film was used as the magnetic layer was explained, but as a matter of course, Go
The same holds true for the Co-based alloy thin film outside the -Cτ film.

以上では高分子フィルム上に直接Co基合金薄膜を蒸着
する場合について説明した。一般に、高分子フィルム上
に、CO基合金から成る垂直磁気異方性膜を蒸着する際
には、Ti、Go等の下地層を介して、Co基合金垂直
磁気異方性膜を形成すると、Δθ5oが小さくなり、短
波長再生出力が改善されることが知られている。本発明
の方法は、この様な構成の媒体における場合も有効であ
る。
The case where a Co-based alloy thin film is directly deposited on a polymer film has been described above. Generally, when depositing a perpendicular magnetic anisotropic film made of a CO-based alloy on a polymer film, if the perpendicular magnetic anisotropic film made of a Co-based alloy is formed via an underlayer such as Ti or Go, It is known that Δθ5o becomes smaller and short wavelength reproduction output is improved. The method of the present invention is also effective in the case of a medium having such a configuration.

すなわち、上記した本発明の方法によって、放電処理を
施した高分子フィルム上に、まず下地層を蒸着し、その
上にさらにCo基合金垂直磁気異方性膜を蒸着すること
により、しわのない、かつ結晶配向性の優れた垂直磁気
記録媒体を製造出来る。1さらに、本発明の方法の実施
は、従来性なっていた放電処理時に出来るので、新たに
工程が増えることなく、生産性を低下させない。なお、
放電処理は、磁性層を蒸着する装置と異なる真空装置で
行なってもよい。
That is, by first depositing a base layer on a polymer film subjected to discharge treatment using the method of the present invention described above, and then depositing a Co-based alloy perpendicular magnetic anisotropic film on top of the base layer, a wrinkle-free film can be obtained. , and a perpendicular magnetic recording medium with excellent crystal orientation can be manufactured. 1 Furthermore, since the method of the present invention can be carried out during the conventional discharge treatment, no new steps are required and productivity is not reduced. In addition,
The discharge treatment may be performed in a vacuum device different from the device for depositing the magnetic layer.

以上では高分子フィルムのベース面に、放電処理時に金
属層を極めて薄く形成する例について説明したが、スパ
ッタ法等の方法で50Å以下の金属層をベース面に形成
しても、上記と全く同様にしわのない媒体が得られる。
The above example describes an example in which an extremely thin metal layer is formed on the base surface of a polymer film during discharge treatment, but even if a metal layer of 50 Å or less is formed on the base surface by a method such as sputtering, the same effect as described above is obtained. A wrinkle-free medium is obtained.

発明の効果 本発明によれば、膜厚10μm程度の薄い高分子フィル
ムを基板として使用した垂直磁気記録媒体を、しわの発
生なしに安定に作製出来るので、ディジタルVTR用等
の超高記録密度の垂直磁気テープの実現が可能である。
Effects of the Invention According to the present invention, a perpendicular magnetic recording medium using a thin polymer film with a film thickness of about 10 μm as a substrate can be stably produced without wrinkles, so it can be used for ultra-high recording densities such as those for digital VTRs. It is possible to realize perpendicular magnetic tape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放電処理を施すための放電用電極の一
例を示す図、第2図は真空蒸着装置内部の概略を示す図
、第3図は本発明の放電処理を施すための放電用電極の
他の例を示す図である。 1・・−・・・高分子フィルム、2・・・・・・円筒状
キャン、3.4・・・・・・高分子フィルムを巻くボビ
ン、6・・・・・・蒸発源、6・・・・・・運へい板、
7a、7b、7c・・・・・・フリーローラ、8・・・
・・・従来の放電用電極、9・・・・・・本発明の放電
用電極、1o・・・・・・磁性面に対向した放電用電極
、11・・・・・・ベース面に対向した放電用電極、1
2・・・・・・RF電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−フィルム /2−ff F電源 c−m−フィルムの′;4性面 第2図 第3図
Figure 1 is a diagram showing an example of a discharge electrode for performing the discharge treatment of the present invention, Figure 2 is a diagram showing an outline of the inside of a vacuum evaporation apparatus, and Figure 3 is a diagram showing an example of a discharge electrode for performing the discharge treatment of the present invention. It is a figure which shows the other example of the electrode. 1...Polymer film, 2...Cylindrical can, 3.4...Bobbin for winding polymer film, 6...Evaporation source, 6... ...Luck board,
7a, 7b, 7c...Free roller, 8...
...Conventional discharge electrode, 9...Discharge electrode of the present invention, 1o...Discharge electrode facing the magnetic surface, 11...Counter to the base surface discharge electrode, 1
2...RF power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Film/2-ff

Claims (7)

【特許請求の範囲】[Claims] (1)円筒状キャンの周面に沿って走行しつつある高分
子フィルムより成る基板の一方の面に真空蒸着法により
金属薄膜より成る磁性層を形成する際に、前記基板とし
て前記磁性層の形成されない面に厚み50Å以下の金属
層が形成されている基板を用いることを特徴とする磁気
記録媒体の製造方法。
(1) When forming a magnetic layer made of a thin metal film by vacuum evaporation on one surface of a substrate made of a polymer film running along the circumferential surface of a cylindrical can, the magnetic layer is used as the substrate. A method of manufacturing a magnetic recording medium, comprising using a substrate on which a metal layer with a thickness of 50 Å or less is formed on a non-forming surface.
(2)円筒状キャンの周面に沿って走行しつつある高分
子フィルムより成る基板の一方の面に真空蒸着法により
金属薄膜より成る磁性層を形成する際に、前記基板の前
処理として、前記基板の両面に対向して、前記磁性層の
形成される面に対向した放電用電極のスパッタ率が他方
の面に対向した放電用電極のスパッタ率よりも低い放電
用電極を配置し、放電処理を施した後に磁性層を形成す
ることを特徴とする特許請求の範囲第1項記載の磁気記
録媒体の製造方法。
(2) When forming a magnetic layer made of a thin metal film by vacuum evaporation on one surface of a substrate made of a polymer film running along the circumferential surface of a cylindrical can, as a pretreatment of the substrate, Discharging electrodes are disposed opposite both surfaces of the substrate, and the sputtering rate of the discharging electrode facing the surface on which the magnetic layer is formed is lower than the sputtering rate of the discharging electrode facing the other surface. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic layer is formed after the treatment.
(3)基板上に下地層を介して金属薄膜より成る磁性層
を形成することを特徴とする特許請求の範囲第1項記載
の磁気記録媒体の製造方法。
(3) A method for manufacturing a magnetic recording medium according to claim 1, characterized in that a magnetic layer made of a metal thin film is formed on the substrate with an underlayer interposed therebetween.
(4)前処理を施した基板上に、下地層を介して金属薄
膜より成る磁性層を形成することを特徴とする特許請求
の範囲第2項記載の磁気記録媒体の製造方法。
(4) A method for manufacturing a magnetic recording medium according to claim 2, characterized in that a magnetic layer made of a thin metal film is formed on a pretreated substrate with an underlayer interposed therebetween.
(5)磁性層を形成する際に、円筒状キャンと磁性層と
の間に電位差を設けることを特徴とする特許請求の範囲
第1項記載の磁気記録媒体の製造方法。
(5) The method for manufacturing a magnetic recording medium according to claim 1, wherein a potential difference is provided between the cylindrical can and the magnetic layer when forming the magnetic layer.
(6)下地層を形成する際に、円筒状キャンと下地層と
の間に電位差を設けることを特徴とする特許請求の範囲
第3項または第4項記載の磁気記録媒体の製造方法。
(6) The method for manufacturing a magnetic recording medium according to claim 3 or 4, wherein a potential difference is provided between the cylindrical can and the underlayer when forming the underlayer.
(7)前記磁性層が垂直磁気異方性を有するCo基合金
磁性薄膜であることを特徴とする特許請求の範囲第1項
〜第6項のいずれかに記載の磁気記録媒体の製造方法。
(7) The method for manufacturing a magnetic recording medium according to any one of claims 1 to 6, wherein the magnetic layer is a Co-based alloy magnetic thin film having perpendicular magnetic anisotropy.
JP13525887A 1987-05-29 1987-05-29 Production of magnetic recording medium Pending JPS63300429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13525887A JPS63300429A (en) 1987-05-29 1987-05-29 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13525887A JPS63300429A (en) 1987-05-29 1987-05-29 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63300429A true JPS63300429A (en) 1988-12-07

Family

ID=15147500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13525887A Pending JPS63300429A (en) 1987-05-29 1987-05-29 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63300429A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616939A (en) * 1979-07-20 1981-02-18 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5746321A (en) * 1980-08-30 1982-03-16 Tdk Corp Magnetic recording medium
JPS6089828A (en) * 1983-10-21 1985-05-20 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616939A (en) * 1979-07-20 1981-02-18 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5746321A (en) * 1980-08-30 1982-03-16 Tdk Corp Magnetic recording medium
JPS6089828A (en) * 1983-10-21 1985-05-20 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
EP0122030B1 (en) A magnetic recording member and a manufacturing method for such a member
JPS63300429A (en) Production of magnetic recording medium
JPH0770058B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH0721560A (en) Production of magnetic recording medium
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
JPS5814328A (en) Production of magnetic recording medium
JPH0198123A (en) Production of magnetic recording medium
JPH01102734A (en) Manufacture of magnetic recording medium
JPS6367328B2 (en)
JPS59172163A (en) Production of vertical magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPS63310960A (en) Production of thin metal film
JPS59129944A (en) Method and device for manufacturing magnetic recording medium
JPS60217531A (en) Production of magnetic recording medium
JPS61196430A (en) Production of magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JP2004362699A (en) Manufacturing method and manufacturing equipment of magnetic recording medium
JPS63308729A (en) Production of magnetic recording medium
JPH0320815B2 (en)
JPH0341896B2 (en)
JPH07103464B2 (en) Metal thin film manufacturing method
JPH04356728A (en) Production of magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS61133030A (en) Production of magnetic recording medium
JPH04188432A (en) Manufacture of magnetic recording medium