JPS63299514A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS63299514A
JPS63299514A JP62135040A JP13504087A JPS63299514A JP S63299514 A JPS63299514 A JP S63299514A JP 62135040 A JP62135040 A JP 62135040A JP 13504087 A JP13504087 A JP 13504087A JP S63299514 A JPS63299514 A JP S63299514A
Authority
JP
Japan
Prior art keywords
dfet
field effect
source
threshold voltage
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62135040A
Other languages
Japanese (ja)
Inventor
Akitoshi Tetsuka
手束 明稔
Katsuya Hasegawa
克也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135040A priority Critical patent/JPS63299514A/en
Publication of JPS63299514A publication Critical patent/JPS63299514A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To reduce the variance of the threshold voltage of a field effect transistor TR and the variance of the current driving capacity, by connecting a resistance between the source and the gate of the field effect TR serving as a load resistor and a gate to the drain of a field effect TR which performs a switching action. CONSTITUTION:In case the threshold voltage of a depression type field effect transistor DFET is set at the negative side centering on the design center, the source potential rises up with increase of the current flowing to a DFETT3 since a resistance 12 is connected to the source 11 of the DFET. Thus the increase of the current flowing to the DFETT3 is extremely reduced. While the source potential is reduced with decrease of the current flowing to the DFETT3 in case the threshold voltage of the DFETT3 is set at the positive side centering on said design center. Thus the change of the current flowing to the DFET is suppressed even though the threshold voltage of the DFET has variance from the design center owing to the change of the source potential caused by the resistance connected to the source of the DFET.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、GaAs等の化合物半導体基板上に形成され
る電界効果トランジスタを用いた半導体集積回路に利用
される。特に、DCFL (DirectCouple
d FET  Logic)と呼ばれる論理回路を用い
た半導体集積回路に利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applied to a semiconductor integrated circuit using a field effect transistor formed on a compound semiconductor substrate such as GaAs. In particular, DCFL (Direct Couple
It is used in semiconductor integrated circuits using a logic circuit called dFET Logic.

従来の技術 化合物半導体基板上に形成される電界効果トランジスタ
を用いた半導体集積回路には、種々の論理回路が用いら
れている。特に、DCFLはその低電力性と高速性から
広く用いられている論理回路である。
2. Description of the Related Art Various logic circuits are used in semiconductor integrated circuits using field effect transistors formed on compound semiconductor substrates. In particular, DCFL is a logic circuit that is widely used because of its low power consumption and high speed.

第2図に、DCFLによるインバータの回路図?示す。Figure 2 shows the circuit diagram of an inverter using DCFL. show.

図中において、T1は負荷抵抗体となるデプレッション
型電界効果トランジスタ(以下、DFETと略す)であ
る。さらに、T2はスイッチングを行うエンハンスメン
ト型電界効果トランジスタ(以下、EFETと略す)で
ある。DFET、T1  のゲートとソースは短絡され
て、EFET 、 T 2   のドレインに接続され
ている。さらに、DFET 、T1のドレインは、電源
vDD、1に接続されている。EFET、T2   の
ソースは接地されている。
In the figure, T1 is a depletion field effect transistor (hereinafter abbreviated as DFET) serving as a load resistor. Furthermore, T2 is an enhancement type field effect transistor (hereinafter abbreviated as EFET) that performs switching. The gate and source of DFET, T1, are shorted and connected to the drain of EFET, T2. Furthermore, the drain of DFET, T1, is connected to the power supply vDD,1. The source of EFET, T2, is grounded.

インバータの入力は、EFET、T2   のゲート、
2である。又、出力はEFET、T2   のドレイン
、3である。
The input of the inverter is EFET, the gate of T2,
It is 2. Also, the output is the drain of EFET, T2, 3.

さて、DCFLにおいてゲート遅延時間は、前記DFE
TとEFETの電流駆動能力によシ決定されている。
Now, in the DCFL, the gate delay time is
It is determined by T and the current drive capability of the EFET.

周知のように、DFETとEFETの電流駆動能力の比
が大きくなる程ゲート遅延時間は小ざくなる。
As is well known, the gate delay time decreases as the ratio of the current drive capabilities of the DFET and EFET increases.

しかし、同時に論理振幅が小さくなシ、ノイズマージン
が小さくなる。逆に、前記電流駆動能力の比が大きくな
ると、ノイズマージンが大きくなるが、ゲート遅延時間
も大きくなる。その結果、前記DFETとEFETの電
流駆動能力の比には最適値が存在する。
However, at the same time, since the logic amplitude is small, the noise margin becomes small. Conversely, as the ratio of the current drive capabilities increases, the noise margin increases, but the gate delay time also increases. As a result, there is an optimum value for the ratio of current drive capabilities of the DFET and EFET.

ところで、DF ETとEFET  の電流駆動能力は
、主にFETのしきい電圧により決定される。また、一
般にEFETのしきい電圧のバラツキに比べ、DFET
のしきい電圧のバラツキが大きい。
By the way, the current drive capability of DFET and EFET is mainly determined by the threshold voltage of the FET. Additionally, in general, compared to the variation in threshold voltage of EFET, DFET
There are large variations in the threshold voltage.

その結果、従来の技術によるDCFLは、DFETのし
きい電圧のバラツキにより、ゲート遅延時間とノイズマ
ージンに大きなバラツキが生じていた。
As a result, DCFLs according to the prior art have large variations in gate delay time and noise margin due to variations in the threshold voltage of the DFET.

発明が解決しようとする問題点 本発明が解決しようとする問題点は、前記のような従来
技術によるDCFLO問題点である。つまシ、負荷抵抗
体となるDFETのしきい電圧のバラツキにより、ゲー
ト遅延時間とノイズマージンに大きなバラツキが生じて
いた事である。その結果、半導体集積回路の動作速度が
遅くなるとか、製造歩留りが低下するという原因となっ
ていた。
Problems to be Solved by the Invention The problems to be solved by the present invention are the problems of the DCFLO according to the prior art as described above. Unfortunately, due to variations in the threshold voltage of the DFET that serves as the load resistor, large variations have occurred in gate delay time and noise margin. As a result, the operating speed of the semiconductor integrated circuit becomes slow and the manufacturing yield decreases.

問題点を解決するための手段 本発明による半導体集積回路は、負荷抵抗体となるミノ
界効果トランジスタとスイッチングを行う電界効果トラ
ンジスタを直列に接続して構成される論理回路を用いた
半導体集積回路において、前記負荷抵抗体となる電界効
果トランジスタのソースとゲートが抵抗により接続され
るとともに、該ゲートが前記スイッチングを行う電界効
果トランジスタのドレインに接続されている事を特徴と
する論理回路を少なくとも1個含むものである。
Means for Solving the Problems The semiconductor integrated circuit according to the present invention is a semiconductor integrated circuit using a logic circuit configured by connecting in series a mino field effect transistor serving as a load resistor and a field effect transistor performing switching. , at least one logic circuit characterized in that the source and gate of the field effect transistor serving as the load resistor are connected by a resistor, and the gate is connected to the drain of the field effect transistor performing the switching. It includes.

作  用 前記負荷抵抗体となる電界効果トランジスタのソースと
ゲート間に接続される抵抗により、該電界効果トランジ
スタのしきい電圧のノ(ラツキを減少させることかでき
、電流駆動能力のバラツキを減少させることができる。
Function: The resistor connected between the source and gate of the field effect transistor, which serves as the load resistor, can reduce the fluctuations in the threshold voltage of the field effect transistor, thereby reducing the fluctuations in current drive capability. be able to.

実施例 第1図に、本発明の一実施例であるインバータの回路図
を示す。図中において、Tsは負荷抵抗体となるDFE
Tである。T4は、スイッチングを行うEFETである
。DFET 、Tsのソース11とゲート間に、抵抗、
12が接続でれている。さらに、DFET、Ts   
のゲートとEFET、T4   のドレインが接続され
ている。DFETのドレインは、電源VDD、1a  
 に接続されている。EFETのソースは接地されてい
る。インバータの入力はEFETのゲート14である。
Embodiment FIG. 1 shows a circuit diagram of an inverter which is an embodiment of the present invention. In the figure, Ts is the DFE serving as a load resistor.
It is T. T4 is an EFET that performs switching. DFET, between the source 11 and gate of Ts, a resistor,
12 is connected. Furthermore, DFET, Ts
The gate of EFET and the drain of T4 are connected. The drain of DFET is connected to the power supply VDD, 1a
It is connected to the. The source of the EFET is grounded. The input of the inverter is the gate 14 of the EFET.

インバータの出力は、EFETのドレイン、15である
The output of the inverter is the drain of the EFET, 15.

さて、DFETのソースとゲート間を抵抗で接続するこ
とにより、DFETのしきい電圧の)くラツキによるD
FETの電流駆動能力のノくラツキが低減される訳であ
るが、その理由を以下に述べる。
Now, by connecting the source and gate of the DFET with a resistor, the D
The fluctuations in the current drive capability of the FET are reduced, and the reason for this will be described below.

今、DFETのしきい電圧が設計中心より負側となった
場合を考える。従来技術では、DF ETに流れる電流
はしきい電圧の2乗に比例して増加した。
Now, consider a case where the threshold voltage of the DFET is on the negative side from the design center. In the prior art, the current flowing through the DFET increased in proportion to the square of the threshold voltage.

しかし、本発明では、DFETのソースに抵抗が接続さ
れている為に、DFETに流れる電流が増加するとリー
ス電位が上昇する。その結果、DFETに流れる電流の
増加は、従来技術に比べて大巾に小さくなる訳である。
However, in the present invention, since a resistor is connected to the source of the DFET, the lease potential increases as the current flowing through the DFET increases. As a result, the increase in current flowing through the DFET is significantly smaller than in the prior art.

逆に、DFETのしきい電圧が設計中心よシ正側となっ
た場合を考える。従来技術では、DFETに流れる電流
は、しきい電圧の2乗に比例して減少する。しかし、本
発明では、DFETに流れる電流が減少するとソース電
位が下降する。その結果、DFETに流れる電流の減少
は、従来技術に比べて大巾に小さくなる。
Conversely, consider a case where the threshold voltage of the DFET is on the positive side of the design center. In the prior art, the current flowing through the DFET decreases in proportion to the square of the threshold voltage. However, in the present invention, when the current flowing through the DFET decreases, the source potential decreases. As a result, the reduction in current flowing through the DFET is much smaller than in the prior art.

以上の説明で明らかなように、本発明によればDFET
のしきい電圧が設計中心からのバラツキが生じても、D
FETのソースに接続された抵抗によりソース電位が変
化し、DFETに流れる電流の変化が抑制される。その
結果、DFETのしきい電圧のバラツキにより生じてい
たDFETの電流駆動能力のバラツキが抑制される訳で
ある。
As is clear from the above explanation, according to the present invention, the DFET
Even if the threshold voltage varies from the design center, D
A resistor connected to the source of the FET changes the source potential, suppressing changes in the current flowing through the DFET. As a result, variations in the current drive capability of the DFET caused by variations in the threshold voltage of the DFET are suppressed.

なお、本発明ではDCFLによるインバータのみについ
て説明したが、スイッチングを行うEF ETを並列に
接続したNOR回路など他の回路にも適用できることは
自明である。
In the present invention, only an inverter using a DCFL has been described, but it is obvious that the present invention can be applied to other circuits such as a NOR circuit in which switching EFETs are connected in parallel.

発明の効果 上述のように本発明によれば、負荷抵抗となるDFET
のしきい電圧のバラツキにより、ゲート遅延時間とノイ
ズマージンに大きなバラツキが生じるという従来技術に
よるDCFLの問題点が解決された。その結果、DCF
Lによる半導体集積回路の動作速度が向上し、製造歩留
りが大巾に改善された。
Effects of the Invention As described above, according to the present invention, the DFET serving as a load resistance
This solves the problem of conventional DCFLs in which large variations in gate delay time and noise margin occur due to variations in threshold voltage. As a result, DCF
The operating speed of semiconductor integrated circuits using L has been improved, and manufacturing yields have been greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるDCFLのインバータの回路図、
第2図は従来技術によるDCFLのインバータの回路図
である。 T1.T3・・・・・・負荷抵抗となる電界効果トラン
ジスタ、T2.T4・・・・・・スイッチングを行う電
界効果トランジスタ、1.13・・・・・・電源VDD
、2゜14・・・・・・インバータの入力、3,15・
・・・・・インノ(−夕の出力、11・・・・・・DF
ETのソース、12・・・・・・本発明の特徴である抵
抗。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1121 第2図 /I−DFE7のソース /2−i氏抗 /3−VDD !4−・・入力 l5−−一エカ 、73−D F ET T4−−・日FET / −−Vo。 ?−人力 3−一一已カ T、−1)FET Tこ− EFET
FIG. 1 is a circuit diagram of a DCFL inverter according to the present invention,
FIG. 2 is a circuit diagram of a DCFL inverter according to the prior art. T1. T3... Field effect transistor serving as a load resistance, T2. T4... Field effect transistor for switching, 1.13... Power supply VDD
, 2゜14... Inverter input, 3,15.
...Inno (-evening output, 11...DF
Source of ET, 12...Resistance which is a feature of the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person
1121 Figure 2/I-DFE7 source/2-i Mr. Anti/3-VDD! 4--Input l5--Eka, 73-D FET T4--Day FET/--Vo. ? -Manpower 3-11 T, -1) FET T- EFET

Claims (1)

【特許請求の範囲】[Claims] 負荷抵抗体となる電界効果トランジスタとスイッチング
を行う電界効果トランジスタを直列に接続して構成され
る論理回路を用いた半導体集積回路であって、前記負荷
抵抗体となる電界効果トランジスタのソースとゲートが
抵抗を介して接続されるとともに、前記ゲートが前記ス
イッチングを行う電界効果トランジスタのドレインに接
続されていることを特徴とする論理回路を少なくとも1
個含む半導体集積回路。
A semiconductor integrated circuit using a logic circuit configured by connecting a field effect transistor serving as a load resistor and a field effect transistor performing switching in series, the source and gate of the field effect transistor serving as the load resistor being connected in series. At least one logic circuit is connected through a resistor, and the gate is connected to the drain of the field effect transistor that performs the switching.
Semiconductor integrated circuits.
JP62135040A 1987-05-29 1987-05-29 Semiconductor integrated circuit Pending JPS63299514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135040A JPS63299514A (en) 1987-05-29 1987-05-29 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135040A JPS63299514A (en) 1987-05-29 1987-05-29 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63299514A true JPS63299514A (en) 1988-12-07

Family

ID=15142536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135040A Pending JPS63299514A (en) 1987-05-29 1987-05-29 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63299514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933497B2 (en) 2009-05-19 2015-01-13 Murata Manufacturing Co., Ltd. Semiconductor switch device and method of manufacturing semiconductor switch device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933497B2 (en) 2009-05-19 2015-01-13 Murata Manufacturing Co., Ltd. Semiconductor switch device and method of manufacturing semiconductor switch device

Similar Documents

Publication Publication Date Title
US4071783A (en) Enhancement/depletion mode field effect transistor driver
EP1102402A1 (en) Level adjustment circuit and data output circuit thereof
US4412139A (en) Integrated MOS driver stage with a large output signal ratio
JPH035692B2 (en)
JPS58137331A (en) Inverter circuit
JPH06350431A (en) Input buffer circuit with sleep mode and bus hold function
US4489246A (en) Field effect transistor logic circuit having high operating speed and low power consumption
JP3196301B2 (en) Compound semiconductor integrated circuit device
US4868422A (en) TTL compatible CMOS logic circuit for driving heavy capacitive loads at high speed
JP2872058B2 (en) Output buffer circuit
JPS63299514A (en) Semiconductor integrated circuit
US4954730A (en) Complementary FET circuit having merged enhancement/depletion FET output
JPH02280413A (en) Basic logic circuit
JP3186302B2 (en) Compound semiconductor integrated circuit device
JPH03272221A (en) Chemical compound semiconductor integrated circuit
JPS6341451B2 (en)
JPH0681039B2 (en) Field effect transistor logic circuit
JPS6390210A (en) Semiconductor integrated circuit
JP3016266B2 (en) Compound semiconductor logic circuits
JP2752778B2 (en) Semiconductor integrated circuit
JPS598912B2 (en) logic signal amplification circuit
JPH01162415A (en) Semiconductor logic circuit
JPS62217721A (en) Field effect transistor logic circuit
JPH05211435A (en) Logic circuit
JPH0439244B2 (en)