JPS63299273A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63299273A
JPS63299273A JP13146087A JP13146087A JPS63299273A JP S63299273 A JPS63299273 A JP S63299273A JP 13146087 A JP13146087 A JP 13146087A JP 13146087 A JP13146087 A JP 13146087A JP S63299273 A JPS63299273 A JP S63299273A
Authority
JP
Japan
Prior art keywords
gate electrode
film
atmosphere
mask
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13146087A
Other languages
Japanese (ja)
Inventor
Yasuhisa Sato
泰久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13146087A priority Critical patent/JPS63299273A/en
Publication of JPS63299273A publication Critical patent/JPS63299273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the oxidation and exfoliation of a gate electrode by a method wherein, after the gate electrode composed of W has been patterned, it is heat-treated in an atmosphere of NH3 and the surface (the top and side faces) of the gate electrode is nitrified. CONSTITUTION:W for gate electrode use is deposited by a sputtering method. After a resist coated on this W has been patterned, a resist mask 21 is formed; a reactive ion etching operation is executed by using SF6 as an etching gas and by making use of this mask as a mask; a gate electrode 13 composed of W is formed. Then, this assembly is heated in an atmosphere of NH3 at 800 deg.C; a WN film 14 is grown on the surface (the top and side faces) of the gate electrode. Then, if an Si substrate 11 is heat-treated in an atmosphere of O2 at 800 deg.C and an SiO2 film 15 is grown, the surface of the gate electrode is covered with a WO3 film 13a; because WO3 is formed uniformly, it is not exfoliated. In succession, if this assembly is treated with hydrogen at 900 deg.C, WO3 is reduced to W. During this process, because SiO2 is stable, it is possible to execute a stable process by using W.

Description

【発明の詳細な説明】 〔概要〕 アンモニア(NH3)雰囲気中でタングステン(W)、
モリブデン(Mo)の如き純粋高融点金属の側面を含む
全表面を窒化し、W+ Moの窒化物を残し、水素雰囲
気中で熱処理を行い、後の熱酸化工程などにおけるW+
 Moの耐酸化性を向上させ、かつ、剥離を防止する。
[Detailed description of the invention] [Summary] Tungsten (W) in an ammonia (NH3) atmosphere,
The entire surface of a pure high-melting point metal such as molybdenum (Mo), including the side surfaces, is nitrided, leaving a W+ Mo nitride, and heat-treated in a hydrogen atmosphere to remove W+ during the subsequent thermal oxidation process.
Improves the oxidation resistance of Mo and prevents peeling.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特にゲート電極や配線
をWなどの高融点金属を用いて作るにおいて、後工程で
の熱酸化においてWなどの剥離を防止するために、ゲー
ト電極の側面を含む全表面に窒化膜を形成し、それを残
し、しかる後に水素雰囲気中で熱処理をなす方法に関す
る。
The present invention relates to a method for manufacturing a semiconductor device, particularly in manufacturing gate electrodes and wiring using a high melting point metal such as W, in which side surfaces of the gate electrode are included in order to prevent peeling of W etc. during thermal oxidation in a later process. The present invention relates to a method of forming a nitride film on the entire surface, leaving it as it is, and then subjecting it to heat treatment in a hydrogen atmosphere.

〔従来の技術〕[Conventional technology]

MO5型半導体装置では、従来ゲート電極に多結晶シリ
コンや各種の金属珪化物が使われていたがこれらの多結
晶シリコンや金属珪化物は配線にも使われるようになっ
た。半導体装置の高集積化に伴い、電極や配線が微細化
すると、抵抗が増大し動作速度が遅くなる。
In MO5 type semiconductor devices, polycrystalline silicon and various metal silicides have conventionally been used for gate electrodes, but these polycrystalline silicon and metal silicides have also come to be used for wiring. As semiconductor devices become more highly integrated, electrodes and wiring become finer, resulting in increased resistance and slower operation speed.

WやMoなどの純粋高融点金属は、多結晶シリコンや金
属珪化物に比べ電気抵抗率が小であるのでゲート電極、
配線などにWやMOを使用する利点は大であり、例えば
MO3型半導体装置のゲート電極にWを使用する技術が
研究されている。
Pure high-melting point metals such as W and Mo have lower electrical resistivity than polycrystalline silicon and metal silicides, so they can be used for gate electrodes,
There are great advantages to using W or MO for wiring, etc., and for example, techniques for using W for gate electrodes of MO3 type semiconductor devices are being researched.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、WやMoは酸化されやすいために、それを用い
る半導体素子の製造においては、その酸化を防止するこ
とが正要な課題である。例えばWでゲート電極を形成し
たものに酸素雰囲気中で熱処理(900℃+  02 
+ 30分)をした場合、熱処理によって匈03となっ
た膜は剥離してその後のプロセスで使えなくなる。
However, since W and Mo are easily oxidized, it is important to prevent oxidation in manufacturing semiconductor devices using them. For example, a gate electrode formed of W is heat-treated in an oxygen atmosphere (900°C + 02°C).
+ 30 minutes), the film that has become a layer 03 due to the heat treatment will peel off and become unusable in subsequent processes.

WやMoの酸化を防止するための従来例を第3図の断面
図を参照して説明すると、Wで作ったゲート電極の上面
および側面を高融点金属の珪化物で覆う方法が公にされ
(特開昭56−15070号公報)、この方法において
は、シリコン(St)基板31上に絶縁膜(5i02膜
)32を介してWのゲート電極33が形成され、ゲート
電極33の上面と側面はWSi2膜34と35で覆われ
てなるゲート電極が提供される。
A conventional method for preventing the oxidation of W and Mo will be explained with reference to the cross-sectional view in Fig. 3. A method has been publicly disclosed in which the top and side surfaces of a gate electrode made of W are covered with a silicide of a high-melting point metal. (Japanese Unexamined Patent Publication No. 56-15070), in this method, a W gate electrode 33 is formed on a silicon (St) substrate 31 with an insulating film (5i02 film) 32 interposed therebetween. A gate electrode covered with WSi2 films 34 and 35 is provided.

さらには、Wのゲート電極の表面を二酸化シリコン(5
i02 )膜、窒化シリコン(Si3Nq膜)などの絶
縁膜で覆うことによりWやMOの酸化を防止する方法も
知られている(特開昭48−22288号公報)。
Furthermore, the surface of the W gate electrode was coated with silicon dioxide (5
A method of preventing oxidation of W or MO by covering it with an insulating film such as i02) film or silicon nitride (Si3Nq film) is also known (Japanese Unexamined Patent Publication No. 48-22288).

しかし、ゲート電極の側壁に上記した珪化物や絶縁物を
残すためには、ゲート電極形成用のエツチングを行った
後に、珪化物や絶縁物の側壁構成用の膜の堆積とりアク
ティブ・イオンエツチング(R,1,E、)による異方
性エツチングを行わなければならず、工程が増しコスト
が高くなる問題がある。
However, in order to leave the above-mentioned silicide or insulator on the sidewalls of the gate electrode, after performing the etching for forming the gate electrode, active ion etching ( R,1,E,) must be anisotropically etched, which increases the number of steps and increases costs.

他方、酸素分圧を制御することによって、WやMoを酸
化させることなくSt基板のみを酸化させる方法も公に
されているが(特開昭59−132136号公報)、水
素と水蒸気の分圧を選ぶについて難しい問題がある。
On the other hand, a method has been published in which only the St substrate is oxidized without oxidizing W or Mo by controlling the oxygen partial pressure (Japanese Unexamined Patent Publication No. 132136/1982), but the partial pressure of hydrogen and water vapor is There is a difficult problem in choosing.

本発明はこのような点に鑑みて創作されたもので、耐酸
化性をもったゲート電極を具備した半導体装置の製造に
おいて、ゲート電極の酸化と剥離を防止する方法を提供
することを目的とする・〔問題点を解決するための手段
〕 第1図は本発明実施例断面図で、図中、11はシリコン
基板、12はゲート絶縁膜(SiO+膜)、13はWの
ゲート電極、14はWの窒化膜(WN膜)、15は5t
O2膜、16は拡散層、17は絶縁膜(PSG膜)、1
8はシリコン基板とのコンタクト部、19はゲート電極
とのコンタクト部、20はアルミニウム(Al)配線で
ある。
The present invention was created in view of the above points, and an object of the present invention is to provide a method for preventing oxidation and peeling of a gate electrode in manufacturing a semiconductor device equipped with a gate electrode having oxidation resistance.・[Means for solving the problem] FIG. 1 is a cross-sectional view of an embodiment of the present invention, in which 11 is a silicon substrate, 12 is a gate insulating film (SiO+ film), 13 is a W gate electrode, and 14 is W nitride film (WN film), 15 is 5t
O2 film, 16 is a diffusion layer, 17 is an insulating film (PSG film), 1
8 is a contact portion with the silicon substrate, 19 is a contact portion with the gate electrode, and 20 is an aluminum (Al) wiring.

本発明の第1実施例では、Wを用いたゲート電極13を
バターニングした後に、NH3雰囲気中で熱処理を行い
、ゲート電極13の表面(上面および側面)を窒化する
ことによってWNN膜種4形成されてなり、このWNN
膜種4後工程の熱処理において−03となってもそれの
剥離を防止する。
In the first embodiment of the present invention, after patterning the gate electrode 13 using W, heat treatment is performed in an NH3 atmosphere to nitride the surface (upper surface and side surfaces) of the gate electrode 13, thereby forming the WNN film type 4. This WNN
Film Type 4 Prevents peeling even if the temperature reaches -03 in the post-process heat treatment.

〔作用〕[Effect]

WはN2中では1000℃でも容易に窒化しないのであ
るが、NH3中では400〜850℃で窒化する。
W does not easily nitride in N2 even at 1000°C, but nitrides in NH3 at 400 to 850°C.

−Nは酸化の進行を遅らせるので、Si基板11を熱酸
化して300人(7> 5i02 ]IW15を形成す
る工程においてWのゲート電極13には変化が認められ
なかった。
Since -N retards the progress of oxidation, no change was observed in the W gate electrode 13 during the process of thermally oxidizing the Si substrate 11 to form 300 (7>5i02) IW15.

〔実施例〕〔Example〕

以下、図面を参照して本発明実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

再び第1図に戻ると、同図fa)に示されるMOS型半
導体素子のゲート絶縁膜(SiO2膜)12の成長まで
は通常のMOS型半導体素子を作成する場合と同様であ
る。次いで、ゲート電極用のWをスパッタ法によって2
000人の厚さに堆積する。このWの上に塗布したレジ
ストをバターニングしてレジストマスク21を作り、そ
れをマスクにし、エツチングガスにSFsを用いてリア
クティブ・イオン・エツチングを行い、図示したWのゲ
ート電極13を形成する。
Returning to FIG. 1 again, the process up to the growth of the gate insulating film (SiO2 film) 12 of the MOS type semiconductor element shown in fa) in the figure is the same as in the case of manufacturing a normal MOS type semiconductor element. Next, 2 W for the gate electrode was applied by sputtering.
Deposited to a thickness of 000 people. The resist coated on this W is buttered to form a resist mask 21, and using this as a mask, reactive ion etching is performed using SFs as an etching gas to form the W gate electrode 13 shown in the figure. .

次に、800℃で30分NH3雰囲気中で加熱してゲー
ト電極の表面(上面と側面)にい膜14を成長させる(
第1図(b))。
Next, a thin film 14 is grown on the surface (top and side surfaces) of the gate electrode by heating at 800° C. for 30 minutes in an NH3 atmosphere.
Figure 1(b)).

次いで第1図(C)に示される段階ではSi基板11を
02雰囲気、800℃で30分熱処理して200人の膜
厚の5i02膜15を成長させると、ゲート電極の表面
は−03膜13aで覆われ、しかも−03は均一に形成
され、剥離しないことが確認された。
Next, in the step shown in FIG. 1(C), the Si substrate 11 is heat-treated at 800° C. for 30 minutes in an O2 atmosphere to grow a 5i02 film 15 with a thickness of 200, and the surface of the gate electrode becomes a -03 film 13a. It was confirmed that -03 was covered with a uniform coating and did not peel off.

次いで900℃水素処理を行うと、WO3はWに還元す
る。このときSiO2は安定であるために、Wを用いた
安定なプロセスが可能になる。
Then, when hydrogen treatment is performed at 900° C., WO3 is reduced to W. At this time, since SiO2 is stable, a stable process using W becomes possible.

しかる後に、砒素(As”)のイオン注入を行って拡散
層16(ソース、ドレイン領域)を形成し、r’sG膜
17を成長し、PSG膜17を窓開きして基板とのコン
タクト部18、ゲート電極とのコンタクト部19でそれ
ぞれ基板表面とゲート電極13のタングステンを露出し
、AJ電極配線19を形成してMOSトランジスタを完
成する。
After that, arsenic (As'') ions are implanted to form a diffusion layer 16 (source and drain regions), an r'sG film 17 is grown, and a window is opened in the PSG film 17 to form a contact portion 18 with the substrate. , the substrate surface and the tungsten of the gate electrode 13 are exposed at the contact portion 19 with the gate electrode, and the AJ electrode wiring 19 is formed to complete the MOS transistor.

なお、上記の例はWでゲート電極を形成する場合のもの
であるが、WのはかMoも使用可能であり、同じ工程で
形成されうるちのである。
Note that, although the above example is for forming the gate electrode with W, it is also possible to use Mo instead of W, and the gate electrode can be formed in the same process.

本発明の第2実施例では、電極になるWまたはMoの上
に、SiO2もしくは窒化シリコン(Si7Nu )の
ような絶縁膜、またはTiNのようなW + Moと反
応しない導電膜を堆積し、このようにゲート電極の上に
被覆した膜をマスクにしてW、MOをエツチングし、し
かる後にNH3雰囲気中で熱処理を行いゲート電極の側
面の部分のWもしくはMoを窒化することにより、その
後の熱処理におけるW、Moの剥離を防止する。
In the second embodiment of the present invention, an insulating film such as SiO2 or silicon nitride (Si7Nu), or a conductive film such as TiN that does not react with W+Mo is deposited on W or Mo, which becomes an electrode. In this way, W and MO are etched using the film coated on the gate electrode as a mask, and then heat treatment is performed in an NH3 atmosphere to nitride the W or Mo on the side surfaces of the gate electrode. Prevents peeling of W and Mo.

第2図を参照して本発明第2実施例について説明すると
、MOS型半導体素子のゲート絶縁膜12成長までは第
1実施例の場合と同様である。続いてゲート電極用のW
をスパンタ法により2000人の厚さに堆積した後に、
SiHgとNH3とを用いた化学気相成長(CVD )
法により800℃で窒化シリコンを1000人の膜厚に
堆積して窒化シリコン膜22を作る。レジスト23をマ
スクにし、エツチングガスにSF6を用いるリアクティ
ブ・イオン・エツチングで窒化シリコン膜とWとを連続
してエツチングし、上に窒化シリコン膜22がかぶさっ
たゲート電極13を形成する。
The second embodiment of the present invention will be described with reference to FIG. 2. The steps up to the growth of the gate insulating film 12 of the MOS type semiconductor device are the same as in the first embodiment. Next, W for the gate electrode.
After depositing it to a thickness of 2000 mm using the Spanta method,
Chemical vapor deposition (CVD) using SiHg and NH3
A silicon nitride film 22 is formed by depositing silicon nitride to a thickness of 1000 nm at 800° C. using a method. Using the resist 23 as a mask, the silicon nitride film and W are successively etched by reactive ion etching using SF6 as an etching gas, thereby forming the gate electrode 13 on which the silicon nitride film 22 is covered.

次に、800℃、30分、NH3雰囲気中で加熱してゲ
ート電極13の両側壁にWNII!i!14を成長させ
る(第2図(b))。
Next, it is heated at 800° C. for 30 minutes in an NH3 atmosphere to form WNII! on both side walls of the gate electrode 13. i! 14 (Fig. 2(b)).

次いで、シリコン基板を900℃で熱酸化し、200人
の厚さの5i02膜15を成長させる(第2図(C))
Next, the silicon substrate is thermally oxidized at 900° C. to grow a 5i02 film 15 with a thickness of 200 μm (FIG. 2(C)).
.

以下、第1実施例の場合と同様に、900℃水素処理、
Asのイオン注入を行って拡散層16(ソース。
Hereinafter, as in the case of the first example, 900°C hydrogen treatment,
As ion implantation is performed to form the diffusion layer 16 (source).

ドレイン領域)を作り、−03をWに還元し、第2図+
d)に示されるMOS )ランジスタを完成する。
drain region) and reduce -03 to W, Figure 2+
Complete the MOS transistor shown in d).

第1実施例と第2実施例とを比較すると、第1実施例で
は、R,1,E、でゲート電極を形成するとき第1図(
a)に誇張して示したように電極のサイドエツチングが
若干発生し、レジスト21の下にひさしが作られたよう
になり、レジストのパターンどおり真直ぐにエツチング
されず、またレジスト中のアルカリ金属汚染が発生する
のに対し、第2実施例では、レジストの直下にSi3N
+1膜が存在するため、サイドエツチングなしにレジス
ト23のパターンどおりの異方性エツチングがなされ、
レジスト中のアルカリ金属汚染が防止され、加えてイオ
ン注入に対するマスク性が優れる利点がある。しかし、
Wの剥離防止の効果は再実施例とも同じである。
Comparing the first embodiment and the second embodiment, in the first embodiment, when forming the gate electrode with R,1,E, as shown in FIG.
As shown exaggeratedly in a), some side etching of the electrode occurs, and an eaves are created under the resist 21, and the etching is not straight according to the resist pattern, and there is also alkali metal contamination in the resist. However, in the second embodiment, Si3N is formed directly under the resist.
Since the +1 film is present, anisotropic etching is performed according to the pattern of resist 23 without side etching.
This method has the advantage that alkali metal contamination in the resist is prevented and, in addition, has excellent masking properties for ion implantation. but,
The effect of preventing peeling of W is the same as in the second example.

上述した如く、Wゲート電極形成工程においてゲート電
極上部に窒化シリコンなどの膜を形成して耐酸化性をも
たせ、またソース、ドレイン用のイオン注入のマスクと
するとともに、側壁を窒化することにより、多結晶シリ
コンゲートと同様の安定したプロセスが可能になった。
As mentioned above, in the step of forming the W gate electrode, a film of silicon nitride or the like is formed on the top of the gate electrode to provide oxidation resistance, and also to serve as a mask for ion implantation for the source and drain, and by nitriding the sidewalls. A stable process similar to that used for polycrystalline silicon gates has become possible.

なお、本発明は上記の例の場合に限定されるものでなく
、窒化シリコン膜に代えて5iOz + TiNも使用
可能であり、ゲート電極はMoで作る場合にも及ぶもの
である。
Note that the present invention is not limited to the case of the above example, and it is also possible to use 5iOz + TiN instead of the silicon nitride film, and it also extends to the case where the gate electrode is made of Mo.

なお、W、Mo薄膜の窒化は公知の技術であるが(アメ
リカ特許第4471004号)、その場合には窒化後に
水素処理によってW、Moに変換してから使用するもの
であるので、WやMoの窒化物をそのまま残して酸化防
止に使う点において、上記した技術は新規なものと解す
る。
Note that nitriding of W and Mo thin films is a known technique (US Pat. No. 4,471,004), but in that case, after nitriding, it is converted to W and Mo by hydrogen treatment before use. The above-mentioned technology is considered to be new in that the nitride is left intact and used for oxidation prevention.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、MO5型半導体
装置の製造において、W、Moなどの如き低抵抗率の高
融点金属でゲート電極を形成しても、それは後工程の熱
処理において剥離することがないものであり、半導体集
積回路の高集積化に有効である。
As described above, according to the present invention, in the manufacture of MO5 type semiconductor devices, even if the gate electrode is formed of a high melting point metal with low resistivity such as W or Mo, it will peel off during the heat treatment in the post-process. This is effective for increasing the degree of integration of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+〜fd)は本発明第1実施例断面図、第2
図(al〜(diは本発明第2実施例断面図、第3図は
従来例断面図である。 第1図と第2図において、 11はSi基板、 12はゲート絶縁膜、 13はゲート電極、 14は−N膜、 15は 5iOz膜、 16は拡散層、 17はPSG膜、 18は基板とのコンタクト部、 19はゲート電極とのコンタクト部、 22は窒化シリコン膜、 21と23はレジストである。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 ヘ 一〜 Δ □□ OD ψ□ へ    ■ 【
Fig. 1 (ta+ to fd) is a sectional view of the first embodiment of the present invention;
Figures (al to (di) are cross-sectional views of the second embodiment of the present invention, and Figure 3 is cross-sectional views of the conventional example. In Figures 1 and 2, 11 is a Si substrate, 12 is a gate insulating film, and 13 is a gate Electrodes, 14 is a -N film, 15 is a 5iOz film, 16 is a diffusion layer, 17 is a PSG film, 18 is a contact part with the substrate, 19 is a contact part with the gate electrode, 22 is a silicon nitride film, 21 and 23 are It is a resist. Agent: Patent attorney: Gen Kuki; Agent: Yoshiyuki Osuga, patent attorney: Heichi~ Δ □□ OD ψ□ To ■ [

Claims (2)

【特許請求の範囲】[Claims] (1)高融点金属を用いる半導体装置の製造において、 アンモニア(NH_3)雰囲気中で窒化して半導体基板
(11)上に前記金属で作った電極(13)の上面およ
び側面に窒化物(14)を形成し、 酸素雰囲気中の熱処理によって前記窒化物(14)を酸
化物(13a)とし、かつ、半導体基板(11)の表面
に酸化膜(15)を形成し、 次いで水素雰囲気中の熱処理によって前記酸化物(13
a)を還元することを特徴とする半導体装置の製造方法
(1) In the manufacture of semiconductor devices using high-melting point metals, nitrides (14) are formed on the top and side surfaces of electrodes (13) made of the metals on the semiconductor substrate (11) by nitriding in an ammonia (NH_3) atmosphere. , convert the nitride (14) into an oxide (13a) by heat treatment in an oxygen atmosphere, and form an oxide film (15) on the surface of the semiconductor substrate (11), and then heat treatment in a hydrogen atmosphere to form an oxide film (15). The oxide (13
A method for manufacturing a semiconductor device, comprising reducing a).
(2)該電極(13)の上面に窒化物(22)を形成し
ておき、しかる後に該電極の側壁に窒化物(14)を形
成する特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein a nitride (22) is formed on the upper surface of the electrode (13), and then a nitride (14) is formed on the side wall of the electrode.
JP13146087A 1987-05-29 1987-05-29 Manufacture of semiconductor device Pending JPS63299273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13146087A JPS63299273A (en) 1987-05-29 1987-05-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13146087A JPS63299273A (en) 1987-05-29 1987-05-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63299273A true JPS63299273A (en) 1988-12-06

Family

ID=15058478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13146087A Pending JPS63299273A (en) 1987-05-29 1987-05-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63299273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441999B1 (en) * 2002-08-23 2004-07-30 삼성전자주식회사 Method for forming an electric layer and an electric pattern in semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441999B1 (en) * 2002-08-23 2004-07-30 삼성전자주식회사 Method for forming an electric layer and an electric pattern in semiconductor device

Similar Documents

Publication Publication Date Title
JP3584129B2 (en) Method for manufacturing capacitor of semiconductor device
US6432779B1 (en) Selective removal of a metal oxide dielectric
US6187656B1 (en) CVD-based process for manufacturing stable low-resistivity poly-metal gate electrodes
US6096640A (en) Method of making a gate electrode stack with a diffusion barrier
JPH01186675A (en) Manufacture of semiconductor device
JPH0736403B2 (en) How to attach refractory metal
US6100188A (en) Stable and low resistance metal/barrier/silicon stack structure and related process for manufacturing
JPS62101049A (en) Formation of silicide
JPH0794731A (en) Semiconductor device and its manufacturing method
KR100290467B1 (en) Method of forming a metal barrier film in a semiconductor device
KR19990000815A (en) Manufacturing method of semiconductor memory device to prevent oxidation of bit line
JP3923218B2 (en) Manufacturing method of semiconductor device
JPS6312152A (en) Semiconductor device and manufacture thereof
JP2001210606A (en) Method of manufacturing semiconductor device
JPS63299273A (en) Manufacture of semiconductor device
KR100339873B1 (en) Semiconductor device having an improved wiring structure and manufacturing method thereof
KR100318459B1 (en) A method for forming titanium polycide gate electrode
JP4730993B2 (en) Method for forming conductive line of semiconductor element
KR0171936B1 (en) Method of manufacturing transistor in semiconductor device
JPH07183515A (en) Manufacture of semiconductor device
JPH05166752A (en) Method for forming titanium silicide layer
JPH08250717A (en) Manufacture of semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
KR100399930B1 (en) Method of forming gate for semiconductor device
JPH03278576A (en) Manufacture of mos transistor