JPS6329919B2 - - Google Patents

Info

Publication number
JPS6329919B2
JPS6329919B2 JP57229918A JP22991882A JPS6329919B2 JP S6329919 B2 JPS6329919 B2 JP S6329919B2 JP 57229918 A JP57229918 A JP 57229918A JP 22991882 A JP22991882 A JP 22991882A JP S6329919 B2 JPS6329919 B2 JP S6329919B2
Authority
JP
Japan
Prior art keywords
oil
molten metal
water
hydrogen
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57229918A
Other languages
Japanese (ja)
Other versions
JPS59124991A (en
Inventor
Tadayuki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO JUKI KK
Original Assignee
SANKYO JUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO JUKI KK filed Critical SANKYO JUKI KK
Priority to JP22991882A priority Critical patent/JPS59124991A/en
Publication of JPS59124991A publication Critical patent/JPS59124991A/en
Publication of JPS6329919B2 publication Critical patent/JPS6329919B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、水を用いた水素精製法により、油中
の不純物除去及び粘度や引火点等の調整を行う油
の精製改質方法に関する。 [従来の技術] 従来、油の精製改質方法としては、水素精製法
が知られてている。これは水素添加分解反応を利
用したもので、圧力約50気圧、温度350〜450℃に
て油と水素を接触させ、油の不飽和結合へ水素を
付加すると共に、飽和結合を切断し、それによつ
て生じた分解生成物へ水素を添加して行くもので
ある。 また、水を用いた水素精製法による油の精製改
質方法としては、大気圧又はそれよりわずかに高
圧下にて、沸点付近にまで加熱した油に水を噴射
し、この水の噴射による熱衝撃の結果生じたガス
を取り出して冷却し、液化成分を分離取得する方
法が知られている(特開昭50−139805号)。 [発明が解決しようとする問題点] しかしながら、前記通常の水素精製法では、油
と水素とを加熱加圧下で接触させるための非常な
高圧釜を必要とし、設備が高価につく欠点があ
る。また、油と接触させるべき水素を別途用意し
なければならず、水素の製造をも加えると、手
間、装置及び経費に多大の負担が加わつている。 また、前記従来の水を用いた水素精製法では、
加熱した油に水を噴射して水素添加を図つてお
り、高温雰囲気下における水と油の接触、ひいて
は水が分解して生ずる水素と油の接触が不十分と
なりやすい。加えて、油への水素の添加は高圧雰
囲気化で促進されると考えられるが、水と油の接
触を大気圧又はそれよりわずかに高圧下で行つて
いるので、水素添加が阻害されやすく、炭化物を
生じやすくなつて、収率が低下しやすい問題があ
る。これは、水と油を高圧下で接触させればある
程度改善されるが、それには極めて高い圧力に耐
え得る高圧釜が必要となつて、設備負担が増大す
る。 [問題点を解決するための手段] 上記問題点を解決するために、本発明は、300
〜800℃の溶融金属内に油と水を供給して、溶融
金属による加熱加圧下で油と水を接触させ、発生
ガスを取出して冷却し、液化成分を分離取得する
という手段を講じているものである。 本発明で溶融状態で用いる金属としては、アル
カリ土類金属、鉄族金属、ホウ素族金属、炭素族
金属、窒素族金属、酸素族金属並びにこれらの合
金等で、好ましくは、鉛、錫、ビスマス、バリウ
ム、アルミニウム、アンチモン並びにこれらを含
む合金である。最適には、溶融状態で酸素と結び
付きやすい鉛、錫、バリウム並びにこれらを含む
合金である。酸素と結び付きやすい金属であれ
ば、炭素と水素の再合成阻害要因である。酸素を
金属酸化物として反応系から除去でき、炭化水素
の生成を助けることができるためである。また、
溶融金属は、酸素と水素の再合成時の触媒的役割
もなしていると見られるので、対象油に応じて最
も効果的に作用し得るものを選択することが好ま
しい。 溶融金属の温度は、対象となる油や使用する金
属によつても異なるが、300〜800℃であることが
必要である。温度が低過ぎると十分な油の分解が
できなくなる。逆に温度が高くなり過ぎると、分
解が進行して生成される炭化水素が低級化し過
ぎ、冷却しても油として取得できなくなる。十分
な量の精製改質油を得るためには、350℃〜600℃
が最適である。 また、本発明においては、前記溶融金属の触媒
機能を補助するために、溶融金属の温度より高い
融点の金属であつて、油の炭素と水の水素との結
合に触媒として機能し得ると考えられるものを、
溶融金属内に介在させることもできる。例えば、
ニツケルや白金等を網状に形成して、溶融金属内
を上下に仕切るようにして設置しておく等の方法
が考えられる。この触媒用の金属は、反復使用が
できるよう酸化されにくい金属であることが好ま
しい。 本発明で用いる油としては、原油、重質油、廃
油、並びに油脂等であつて、これらを単独又は混
合して用いる。 本発明において溶融金属内へ供給すべき油と水
の混合比は、油によつても相違するが、油100重
量部に対して水を10〜100重量部、最適には30〜
60重量部を加えることが好ましい。水が少な過ぎ
ると十分な量の精製改質油を回収できなくなり、
逆に過量としてもそれほど精製改質油量は増大せ
ず、かえつて溶融金属の熱を多く奪うことになつ
て熱のロスが大きくなる。 上記油と水の混合物は、反応の迅速性及び確実
性を得るため、エマルジヨン化するまで混合して
供給することが好ましい。また、油と水の供給に
より、溶融金属を急激に冷して固化させてしまう
ことがないよう、供給すべき油と水は、あらかじ
めある程度予熱しておくことが好ましい。 上記混合物が溶融金属内で反応するときの圧力
は、当該混合物を供給する溶融金属内深さや、使
用金属の比重等によつて自由に定めることができ
るので、対象油の種類等に応じて適宜調節すれば
よい。この溶融金属内への混合物の供給には、射
出成形機の射出機様のものが好適に使用される。 [作用] 溶融金属内に供給された油と水は、溶融金属と
いう極めて大きな比重を有する液体内で外部の酸
素から遮断された状態で、比重差により浮上され
つつ溶融金属内の深さに応じた圧力を受け、同時
に加熱されることになる。即ち、供給された油と
水は、溶融金属からの加圧と加熱を受けながら外
気と遮断された状態で溶融金属内を上昇するもの
である。そして、この間に、加熱されて活性化し
た油と水が接触し、油の高分子構造が分解水素化
され、炭化水素が生成されるが、両者が混合物と
して供給されるので、この接触が確実である。 上記油と水の溶融金属内での細かな挙動は必ず
しも明らかではないが、本発明者は次のように推
測している。即ち、溶融金属内で高温にさらされ
ることによつて、油の連鎖が切断されて低分子化
されると共に、炭素に結合して油を構成している
一部の水素やその他の原子が分離され、更に炭素
と水素が優先的に結合して再合成が成されている
ものと考えられる。一方水は、高温下において活
性化されると共に、油が高温下に置かれることに
よつて生成された炭素と反応して水性ガス化しよ
うとし、そのときの水素が溶融金属による加圧下
において油に作用し、油の連鎖の切断、それによ
つて生じた分解生成物への水素の添加、硫黄や窒
素等の分離等を促進させていると考えられる。そ
して、このときに溶融金属は、炭素と水素の再合
成時の触媒的役割をもなすのではないかと考えら
れる。 油の組成に含まれている酸素は、水素と結び付
いて水となり、他方水の分解により生じる酸素
は、油の炭酸と結び付いて一酸化炭素や二酸化炭
素となつて、いずれも炭素と水素の再合成の阻害
要因となる。しかし、溶融金属を溶融状態で酸素
と結び付きやすい金属としておくことにより、上
記酸素を金属酸化物として反応系から除去するこ
とができ、炭素と水素の再合成を助けることがで
きる。また、油中の硫黄や窒素等並びにその他の
不純物は、溶融金属と化合したり、種々のガス体
となつて除去されてしまうものと考えられる。こ
のようにして、溶融金属内で低分子化され、不純
物が取除かれた油は、余剰水分と共にガス化して
取出される。一方、炭化物は、溶融金属上に浮上
分離されると共に、前述の酸素と結び付いた溶融
金属を還元することになる。 上記取出された発生ガスを、冷却すると炭化水
素系の油が液化成分として回収される。この液化
成分は、水と炭化水素系の油に大別される。ま
た、残りのガス成分は、液化されなかつた炭化水
素系のガスや水素等を主成分とし、可燃性である
ので、溶融金属の加熱等に用いることができる。 [実施例] まず、本実施例に用いた装置を第1図で説明す
る。 図中1は反応容器で、この反応容器1内には、
溶融金属2が充填されている。また、反応容器1
の周囲には、加熱ジヤケツト3が取付けられてお
り、反応容器1内の溶融金属2の温度が保持され
ている。 反応容器1の下部には、油及び水を反応容器1
の下部に供給するための供給機4が連結されてい
る。反応容器1の上部には、生成される炭化物等
を搬出するための搬出コンベア5と、発生ガスを
取出すためのガス抽出口6が設けられている。ガ
ス抽出口6は、冷却器7を介して油容器8からガ
ス容器9へと連結されており、冷却によつて生ず
る液化成分は油容器8に回収され、残りの液化さ
れなかつたガス成分はガス容器9へ回収されるも
のとなつている。 実施例 1 市販のエンジンオイルを用いてその精製改質を
行なつた。 反応容器は直径約50mmの筒体とし、また溶融金
属としては鉛を使用し、反応容器内に50cmの深さ
で充填した。鉛の溶融及び温度保持は、反応容器
の周囲に巻き付けた電気ヒーターの加熱ジヤケツ
トによつて行なつた。 エンジンオイルに50重量%の水を添加したもの
を、鉛を約550℃に保持して、反応容器の下部に
油圧シリンダーで圧入し、反応容器上部から発生
ガスを取出して冷却し、液化成分とガス成分を回
収する作業を行なつた。 液化成分は、水と油に大別され、この油は石油
状の低粘度液体であり、マツチの炎を近ずけると
瞬時に引火燃焼した。 結果等を第1表に示す。 実施例 2 水の添加量を100重量%として429g供給し、鉛
の温度を600℃とした以外は実施例1と全く同様
にしてエンジンオイルの精製改質を行なつた。結
果を第1表に示す。 実施例 3 溶融金属を錫にしてエンジンオイルの改質を行
なつたところ、実施例1及び2と同様の結果が得
られた。 比較例 1 実施例1と同じ市販のエンジンオイルに50重量
%の水を添加したものを、溶融金属を入れずに
600℃に熱した反応容器中へ噴射して油の精製改
質を行つた。 結果等を第1表に示す。 比較例 2 水の添加量を100重量%にした他は比較例1と
同様にして油の精製改質を行つた。 結果等を第1表に示す。
[Industrial Application Field] The present invention relates to an oil refining and reforming method for removing impurities in oil and adjusting viscosity, flash point, etc., by a hydrogen purification method using water. [Prior Art] Hydrogen refining methods are conventionally known as methods for refining and reforming oil. This method utilizes a hydrogen cracking reaction, in which oil and hydrogen are brought into contact at a pressure of approximately 50 atmospheres and a temperature of 350 to 450 degrees Celsius, hydrogen is added to the unsaturated bonds of the oil, and saturated bonds are broken. Hydrogen is then added to the resulting decomposition products. In addition, as a method for refining and reforming oil by the hydrogen refining method using water, water is injected into oil heated to near its boiling point at atmospheric pressure or slightly higher pressure, and the heat generated by the injection of water is A method is known in which the gas produced as a result of the impact is extracted and cooled, and the liquefied components are separated and obtained (Japanese Patent Application Laid-open No. 139805/1982). [Problems to be Solved by the Invention] However, the above-mentioned conventional hydrogen purification method requires a very high-pressure cooker for bringing oil and hydrogen into contact under heating and pressure, and has the disadvantage that the equipment is expensive. In addition, hydrogen to be brought into contact with oil must be prepared separately, and adding the production of hydrogen adds a great deal of effort, equipment, and expense. In addition, in the conventional hydrogen purification method using water,
Hydrogenation is attempted by injecting water into heated oil, but contact between water and oil in a high-temperature atmosphere, and even contact between hydrogen and oil produced by water decomposition, tends to be insufficient. In addition, the addition of hydrogen to oil is thought to be promoted by creating a high-pressure atmosphere, but since the water and oil are brought into contact at atmospheric pressure or slightly higher pressure, hydrogen addition is likely to be inhibited. There is a problem that carbide tends to be formed and the yield tends to decrease. This can be improved to some extent by bringing water and oil into contact under high pressure, but this requires a high-pressure cooker that can withstand extremely high pressure, which increases the burden on equipment. [Means for Solving the Problems] In order to solve the above problems, the present invention provides 300
The method is to supply oil and water into molten metal at ~800℃, bring the oil and water into contact under heating and pressure by the molten metal, extract the generated gas, cool it, and separate and obtain the liquefied components. It is something. The metals used in a molten state in the present invention include alkaline earth metals, iron group metals, boron group metals, carbon group metals, nitrogen group metals, oxygen group metals, and alloys thereof, and preferably lead, tin, and bismuth. , barium, aluminum, antimony, and alloys containing these. Most suitable are lead, tin, barium, and alloys containing these, which easily combine with oxygen in a molten state. Metals that easily combine with oxygen are a factor that inhibits the resynthesis of carbon and hydrogen. This is because oxygen can be removed from the reaction system in the form of metal oxides and can assist in the production of hydrocarbons. Also,
It is believed that the molten metal also plays a catalytic role during the resynthesis of oxygen and hydrogen, so it is preferable to select a metal that can act most effectively depending on the target oil. The temperature of the molten metal needs to be 300 to 800°C, although it varies depending on the target oil and the metal used. If the temperature is too low, sufficient oil decomposition will not be possible. On the other hand, if the temperature becomes too high, the decomposition progresses and the hydrocarbons produced become too low-grade and cannot be obtained as oil even after cooling. In order to obtain a sufficient amount of refined reformate, the temperature must be between 350℃ and 600℃.
is optimal. In addition, in the present invention, in order to assist the catalytic function of the molten metal, a metal with a melting point higher than the temperature of the molten metal is considered to be able to function as a catalyst for the combination of carbon in oil and hydrogen in water. what you can do,
It can also be interposed within the molten metal. for example,
One possible method is to form a net of nickel, platinum, etc. and install it so that the inside of the molten metal is partitioned into upper and lower parts. The metal for this catalyst is preferably a metal that does not easily oxidize so that it can be used repeatedly. The oil used in the present invention includes crude oil, heavy oil, waste oil, fats and oils, and these can be used alone or in combination. In the present invention, the mixing ratio of oil and water to be supplied into the molten metal varies depending on the oil, but 10 to 100 parts by weight of water to 100 parts by weight of oil, optimally 30 to 100 parts by weight.
Preferably, 60 parts by weight are added. If there is too little water, it will not be possible to recover a sufficient amount of refined reformate;
On the other hand, even if there is an excess amount, the amount of purified reformed oil will not increase much, and instead a large amount of heat will be taken away from the molten metal, resulting in a large heat loss. In order to obtain rapid and reliable reaction, it is preferable that the oil and water mixture is mixed and supplied until it becomes an emulsion. Further, it is preferable that the oil and water to be supplied be preheated to some extent in advance so that the molten metal is not rapidly cooled and solidified by the supply of oil and water. The pressure at which the above mixture reacts in the molten metal can be freely determined depending on the depth within the molten metal to which the mixture is supplied, the specific gravity of the metal used, etc., so it can be adjusted as appropriate depending on the type of target oil, etc. Just adjust it. An injection machine similar to an injection molding machine is preferably used to supply the mixture into the molten metal. [Function] The oil and water supplied into the molten metal are kept in a state where they are shielded from external oxygen within the molten metal, a liquid with an extremely high specific gravity, and are floated up due to the difference in specific gravity, depending on the depth within the molten metal. It will be under pressure and heated at the same time. That is, the supplied oil and water rise within the molten metal while being pressurized and heated by the molten metal while being isolated from the outside air. During this time, the heated and activated oil and water come into contact, and the polymer structure of the oil is decomposed and hydrogenated, producing hydrocarbons.Since both are supplied as a mixture, this contact is ensured. It is. Although the detailed behavior of the oil and water in the molten metal is not necessarily clear, the inventors speculate as follows. In other words, by being exposed to high temperatures in molten metal, the oil chains are broken and the molecules are reduced, and some hydrogen and other atoms that are bonded to carbon and make up the oil are separated. It is thought that carbon and hydrogen are combined preferentially and resynthesized. On the other hand, water is activated at high temperatures and reacts with the carbon produced when oil is exposed to high temperatures, attempting to turn into water gas. It is thought that this acts on the chain of oil, promotes the addition of hydrogen to the resulting decomposition products, and the separation of sulfur, nitrogen, etc. At this time, it is thought that the molten metal also plays a catalytic role during the resynthesis of carbon and hydrogen. Oxygen contained in the composition of oil combines with hydrogen to form water, while oxygen produced by water decomposition combines with carbonic acid in oil to form carbon monoxide and carbon dioxide, both of which result in the regeneration of carbon and hydrogen. It becomes a factor that inhibits synthesis. However, by using the molten metal as a metal that easily binds to oxygen in a molten state, the oxygen can be removed from the reaction system as a metal oxide, and the resynthesis of carbon and hydrogen can be aided. It is also believed that sulfur, nitrogen, and other impurities in the oil are removed by combining with molten metal or becoming various gases. In this way, the oil is reduced in molecular weight in the molten metal and the impurities are removed, and the oil is gasified and taken out together with excess moisture. On the other hand, the carbide is separated by flotation on the molten metal and reduces the molten metal combined with the aforementioned oxygen. When the extracted generated gas is cooled, hydrocarbon oil is recovered as a liquefied component. This liquefied component is roughly divided into water and hydrocarbon oil. Further, the remaining gas component is mainly composed of unliquefied hydrocarbon gas, hydrogen, etc., and is flammable, so it can be used for heating molten metal, etc. [Example] First, the apparatus used in this example will be explained with reference to FIG. In the figure, 1 is a reaction vessel, and inside this reaction vessel 1,
It is filled with molten metal 2. In addition, reaction vessel 1
A heating jacket 3 is attached around the molten metal 2 to maintain the temperature of the molten metal 2 in the reaction vessel 1. At the bottom of reaction vessel 1, oil and water are placed in reaction vessel 1.
A feeder 4 is connected to the lower part of the feeder. At the top of the reaction vessel 1, there are provided a carry-out conveyor 5 for carrying out the generated carbide, etc., and a gas extraction port 6 for taking out the generated gas. The gas extraction port 6 is connected from the oil container 8 to the gas container 9 via the cooler 7, and the liquefied components generated by cooling are collected in the oil container 8, and the remaining gas components that have not been liquefied are The gas is collected into a gas container 9. Example 1 A commercially available engine oil was purified and reformed. The reaction vessel was a cylinder with a diameter of approximately 50 mm, and lead was used as the molten metal, which was filled into the reaction vessel to a depth of 50 cm. Melting the lead and maintaining the temperature was accomplished by a heating jacket of an electric heater wrapped around the reaction vessel. Engine oil with 50% water added is pressurized into the lower part of the reaction vessel with a hydraulic cylinder while the lead is maintained at approximately 550°C, and the generated gas is taken out from the upper part of the reaction vessel and cooled to form a liquefied component. Work was carried out to recover gas components. The liquefied components are broadly divided into water and oil, and this oil is a low-viscosity oil-like liquid that instantly ignites and burns when brought close to the pine flame. The results are shown in Table 1. Example 2 Engine oil was purified and reformed in the same manner as in Example 1, except that the amount of water added was 100% by weight, 429 g was supplied, and the temperature of lead was 600°C. The results are shown in Table 1. Example 3 When engine oil was modified using tin as the molten metal, the same results as in Examples 1 and 2 were obtained. Comparative Example 1 The same commercially available engine oil as in Example 1 with 50% water added was used without adding molten metal.
The oil was purified and reformed by injecting it into a reaction vessel heated to 600°C. The results are shown in Table 1. Comparative Example 2 Oil was purified and reformed in the same manner as in Comparative Example 1, except that the amount of water added was 100% by weight. The results are shown in Table 1.

【表】【table】

【表】 [発明の効果] 以上の説明から明らかなように、本発明は、溶
融金属中に水と混合した油を供給し、溶融金属に
よる加熱と加圧を利用している点に大きな特徴を
有するもので、これらによつて次のような利益が
得られるものである。 (1) 溶融金属が加圧触媒として作用するので、反
応容器の高さ及び溶融金属の充填深さを調節す
るだけで容易に圧力設定ができ、装置が極めて
簡便なもので済む。 (2) 水素源として水を利用しているため、ことさ
ら別途水素を用意する必要がなく、水素製造の
ための設備、手間、経費を省くことができる。 (3) 廃油の如き不純物の多いものであつても、混
在物を炭化物等として溶融金属上に浮上分離す
ることができるので、その処理が極めて容易で
ある。
[Table] [Effects of the Invention] As is clear from the above description, the main feature of the present invention is that oil mixed with water is supplied into the molten metal, and heating and pressure by the molten metal are utilized. With these, the following benefits can be obtained. (1) Since the molten metal acts as a pressurized catalyst, the pressure can be easily set by simply adjusting the height of the reaction vessel and the filling depth of the molten metal, and the equipment can be extremely simple. (2) Since water is used as the hydrogen source, there is no need to prepare hydrogen separately, and the equipment, labor, and expense for hydrogen production can be saved. (3) Even if there are many impurities such as waste oil, the inclusions can be floated and separated on the molten metal as carbides, so the treatment is extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた装置の説明図
である。 1:反応容器、2:溶融金属、3:加熱ジヤケ
ツト、4:供給機、5:搬出コンベア、6:ガス
抽出口、7:冷却器、8:油容器、9:ガス容
器。
FIG. 1 is an explanatory diagram of an apparatus used in an embodiment of the present invention. 1: reaction vessel, 2: molten metal, 3: heating jacket, 4: feeder, 5: discharge conveyor, 6: gas extraction port, 7: cooler, 8: oil container, 9: gas container.

Claims (1)

【特許請求の範囲】[Claims] 1 300〜800℃の溶融金属内に油と水の混合物を
供給して、溶融金属による加熱加圧下で油と水を
接触させ、発生ガスを取出して冷却し、液化成分
を分離取得することを特徴とする油の精製改質方
法。
1 A mixture of oil and water is supplied into molten metal at 300 to 800℃, the oil and water are brought into contact under heating and pressure by the molten metal, the generated gas is taken out and cooled, and the liquefied components are separated and obtained. Characteristic oil refining and reforming method.
JP22991882A 1982-12-29 1982-12-29 Refining and reforming of oil Granted JPS59124991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22991882A JPS59124991A (en) 1982-12-29 1982-12-29 Refining and reforming of oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22991882A JPS59124991A (en) 1982-12-29 1982-12-29 Refining and reforming of oil

Publications (2)

Publication Number Publication Date
JPS59124991A JPS59124991A (en) 1984-07-19
JPS6329919B2 true JPS6329919B2 (en) 1988-06-15

Family

ID=16899775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22991882A Granted JPS59124991A (en) 1982-12-29 1982-12-29 Refining and reforming of oil

Country Status (1)

Country Link
JP (1) JPS59124991A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241377B2 (en) * 2003-09-04 2007-07-10 Dtx Technologies, Llc Salt bath refining
US7150822B1 (en) * 2003-09-04 2006-12-19 Dtx Technologies Llc Five degrees for separation
EP2102323A1 (en) * 2006-11-17 2009-09-23 DTX Technologies LLC Oil refining process
JP2022507701A (en) * 2018-11-19 2022-01-18 ビーオファブリーク・ホイエルスヴェルダ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Methods and equipment for refining contaminated waste oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139805A (en) * 1974-04-20 1975-11-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139805A (en) * 1974-04-20 1975-11-08

Also Published As

Publication number Publication date
JPS59124991A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
US4312849A (en) Phosphorous removal in silicon purification
US4256717A (en) Silicon purification method
US4409021A (en) Slag decarbonization with a phase inversion
US2675307A (en) Process for coking-calcining complete smelting charge aggregates
US4246249A (en) Silicon purification process
US3060015A (en) Steel purification
MX2007015384A (en) Method for reducing and/or refining a metal-containing slag.
US4312848A (en) Boron removal in silicon purification
JPS6329919B2 (en)
US4312847A (en) Silicon purification system
US2403419A (en) Method of recovering the constituents of scrap bi-metal
US2400000A (en) Production of aluminum
US4312846A (en) Method of silicon purification
US2268779A (en) Method for the recovery of metallic magnesium from mixtures of elemental magnesium and carbon monoxide, produced by the carboniferous reduction, at high temperatures, of magnesium oxide
NO128620B (en)
JPS6033868B2 (en) coal liquefaction method
US2052297A (en) Carbon bisulphide process
US2060073A (en) Copper refining method
JPS59124992A (en) Conversion of waste high-molecular weight compound to fuel
US2060074A (en) Copper refining apparatus
US1629563A (en) Process for making iron and steel
US4140523A (en) Chemicothermal production of magnesium
SU550845A1 (en) Process for producing bitumen
US1938046A (en) Process for separating aluminium alloys
US3108061A (en) Method for preparing and catalytically cracking petroleum residuum fractions