JPS63298019A - Knife edge for measuring laser beam intensity distribution - Google Patents

Knife edge for measuring laser beam intensity distribution

Info

Publication number
JPS63298019A
JPS63298019A JP13320187A JP13320187A JPS63298019A JP S63298019 A JPS63298019 A JP S63298019A JP 13320187 A JP13320187 A JP 13320187A JP 13320187 A JP13320187 A JP 13320187A JP S63298019 A JPS63298019 A JP S63298019A
Authority
JP
Japan
Prior art keywords
intensity distribution
laser beam
area
knife
knife edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13320187A
Other languages
Japanese (ja)
Inventor
Hideki Segawa
秀樹 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP13320187A priority Critical patent/JPS63298019A/en
Publication of JPS63298019A publication Critical patent/JPS63298019A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Abstract

PURPOSE:To accurately measure a beam intensity distribution by equalizing two areas which are provided on a beam crossing direction about a boundary line in reflection factor to certain wavelength, and making the transmissivity of one area to other wavelength smaller than that of the other. CONSTITUTION:A focus servo mechanism performs focus servocontrol by utilizing a 1st area P in a knife edge 5. Then the knife edge 5 is sent laterally as shown by an arrow B to make a laser beam to be measured as an original knife edge cross the boundary line part between 1st and 2nd areas P and Q, thereby measuring the beam intensity distribution. At this time, the areas P and Q have nearly equal reflection factors P and Q to the laser beam (wavelength lambda1) for focus servocontrol, so even if the laser beam moves relatively from the area P to the area Q, the same focus servocontrol is performed. Transmitted light, on the other hand, decreases at the part of the area P, so output characteristics by laser beam (wavelength lambda2) for exposure decreases and the characteristic distribution is differentiated to obtain the laser beam intensity distribution of the beam waist part.

Description

【発明の詳細な説明】 技術分野 本発明は、例えば、光デイスク原盤露光機などにおける
レーザ光強度分布測定用ナイフェツジに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a knife for measuring laser light intensity distribution in, for example, an optical disk master exposure machine.

従来技術 一般に、光ディスクの原盤露光時に重要な要素となるの
は、対物レンズを通ってきたレーザ光の焦点付近での強
度分布である。ここに、レーザ光の強度分布、特に対物
レンズ下でのレーザ光の焦点付近における強度分布の測
定法としては、ブラウン管上強度分布測定法とナイフェ
ツジ法との2つが知られている。
BACKGROUND OF THE INVENTION In general, an important factor during exposure of an optical disk master is the intensity distribution near the focal point of the laser beam that has passed through the objective lens. There are two known methods for measuring the intensity distribution of a laser beam, particularly the intensity distribution near the focal point of the laser beam under an objective lens: the intensity distribution measurement method on a cathode ray tube and the Knifezi method.

前者のブラウン管上強度分布測定法は、ビームウェスト
での像を顕微鏡で拡大し、固体カメラで撮影し、そのブ
ラウン管上での明暗を数値化し、レーザ光強度分布を把
握しようとするものである(「光メモリシンポジウム 
86 論文集」第157頁参照)。しかし、この測定法
の場合、分解能がブラウン管の解像力によって限定され
てしまうものである。又、ブラウン管上での明暗とレー
ザ光強度分布との間の関係を把握しにくいものでもある
The former method of measuring the intensity distribution on a cathode ray tube magnifies the image at the beam waist with a microscope, photographs it with a solid-state camera, and digitizes the brightness and darkness on the cathode ray tube to understand the laser light intensity distribution ( “Optical Memory Symposium
86 Collected Papers” p. 157). However, in this measurement method, the resolution is limited by the resolving power of the cathode ray tube. Furthermore, it is difficult to understand the relationship between the brightness and darkness on the cathode ray tube and the laser light intensity distribution.

一方、後者のナイフェツジ法は、rJuly  197
7/Vo1.l 6.に7/APPLIEDOPTIC
3J中やrVHD/AHD方式ビデオディスクのマスタ
リング」中において示されているものである。概略的に
は、レーザビームをナイフ状のもので径方向に遮光して
いき、その下方に配置させたディテクタへの光量を変化
させるものであり、ナイフェツジの移動量とディテクタ
への到達光量からビームの強度分布を算出するものであ
る。
On the other hand, the latter Naifetsu method is rJuly 197
7/Vo1. l 6. 7/APPLIEDOPTIC
3J and "mastering of rVHD/AHD format video discs". Roughly speaking, the laser beam is blocked in the radial direction by a knife-shaped object, and the amount of light to the detector placed below is changed.The amount of light that reaches the detector is determined by the amount of movement of the knife This is to calculate the intensity distribution of .

ナイフェツジ法について、第3図ないし第5図により、
より詳細に説明する。まず、第3図に示すように対物レ
ンズ1下でのレーザ光2の焦点(ビームウェスト2a)
に対してナイフェツジ3を径方向に横送りして通過させ
、その時のディテクタ4上のレーザ光出力を測定する。
Regarding the Naifetsuji method, according to Figures 3 to 5,
This will be explained in more detail. First, as shown in Fig. 3, the focus of the laser beam 2 under the objective lens 1 (beam waist 2a)
The knife 3 is traversed in the radial direction and passed through, and the laser light output on the detector 4 at that time is measured.

この時のディテクタ4上でのレーザ光出力は第4図(a
)に示すような特性を示す。即ち、ナイフェツジ3によ
ってレーザ光2を遮るに従い出力が低下する特性が得ら
れる。このような特性分布を微分することにより、第4
図(b)に示すようにビームウェスト2a部分でのレー
ザ光強度分布が得られる。
The laser light output on the detector 4 at this time is shown in Figure 4 (a
). That is, a characteristic is obtained in which the output decreases as the laser beam 2 is blocked by the knife 3. By differentiating such a characteristic distribution, the fourth
As shown in Figure (b), a laser light intensity distribution at the beam waist 2a is obtained.

ところが、ナイフェツジ3をビームウェスト2aの位置
で正確に横切らせることは実際上極めて困難である。そ
こで、実際には、ナイフェツジ3の位置をビームウェス
ト2a付近で対物レンズ1側に近づけたり対物レンズl
から遠ざけたりしながら上述した測定を繰返し、各々の
位置で、第4図(b)に示すようなレーザ光強度分布を
求め、その中から中心強度が最大のものをビームウェス
ト2a位置での測定値として処理するようにしている。
However, it is actually extremely difficult to make the knife blade 3 cross accurately at the position of the beam waist 2a. Therefore, in reality, the position of the knife lens 3 should be moved closer to the objective lens 1 side near the beam waist 2a, or
The above measurement is repeated while moving away from the beam, and at each position, a laser beam intensity distribution as shown in Fig. 4(b) is obtained, and the one with the maximum center intensity is measured at the beam waist position 2a. I am trying to process it as a value.

しかし、このようにビームウェスト2a付近にてナイフ
ェツジ3を横送りするとしても、その送りはステップモ
ータ等を用いて行なうため、直線的に送ることは困難で
、実際には第5図に示す砿線Aのような上下振動を伴う
蛇行軌跡を持ちやすい。よって、正確なビームウェスト
2a位置での測定値を得るのは困難である。
However, even if the knife blade 3 is fed horizontally near the beam waist 2a in this way, it is difficult to feed it in a straight line because it is carried out using a step motor or the like. It tends to have a meandering trajectory with vertical vibrations like line A. Therefore, it is difficult to obtain an accurate measurement value at the beam waist 2a position.

目的 本発明は、このような点に鑑みなされたもので、横送り
精度が多少悪くても正確にビーム強度分布を測定するこ
とができるレーザ光強度分布測定用ナイフェツジを得る
ことを目的とする。
OBJECTS The present invention has been made in view of the above points, and an object of the present invention is to provide a knife for measuring laser light intensity distribution that can accurately measure beam intensity distribution even if the lateral feed accuracy is somewhat poor.

構成 本発明は、上記目的を達成するため、境界線を境にビー
ム横切り方向に分割した第1領域と第2領域とを設け、
ある波長λ1に対する第1領域の反射率と第2領域の反
射率とをほぼ等しく設定し、ある波長λ2に対する第1
領域の透過率を第2領域の透過率に比べて十分に小さく
設定したことを特徴とするものである。
Configuration In order to achieve the above object, the present invention provides a first region and a second region that are divided in the cross-beam direction along a boundary line,
The reflectance of the first region and the second region for a certain wavelength λ1 are set approximately equal, and the reflectance of the first region for a certain wavelength λ2 is set to be approximately equal.
This is characterized in that the transmittance of the region is set to be sufficiently smaller than the transmittance of the second region.

以下、本発明の一実施例を第1図に基づいて説明する。An embodiment of the present invention will be described below with reference to FIG.

本実施例は光デイスク原盤露光機におけるフォーカスサ
ーボ機構を利用するものである。
This embodiment utilizes a focus servo mechanism in an optical disk master exposure machine.

まず、第1図は第3図中のナイフェツジ3に代えて用い
られるナイフェツジ5を示すもので、想定した境界線り
を境に2分割した第1領域Pと第2領域Qとからなる。
First, FIG. 1 shows a knife 5 used in place of the knife 3 shown in FIG. 3, which consists of a first region P and a second region Q, which are divided into two along an assumed boundary line.

なお、矢印Bで示す方向がビーム横切り方向であり、こ
の方向に2分割されている。
Note that the direction indicated by arrow B is the cross-beam direction, and the beam is divided into two in this direction.

ここで、前記第1,2領域P、Qの光学的性質について
説明する。まず、フォーカスサーボ用レーザ光源、例え
ばHe−Neレーザによる波長λ、=6328人に対す
る各々の領域P、Qの反射率をP、、 Q、とした時、
P、坤Q、 = R,なる条件を満足して両者がほぼ等
しくなるように設定されている。一方、露光用レーザ光
源、例えばArレーザによる波長λ、=4579人(又
は、λ2=488nm)に対する各々の領域P、Qの透
過率をP、、Q、とした時、両者は大きく異なり、P、
(Q2なる条件を満足するように設定されている。
Here, the optical properties of the first and second regions P and Q will be explained. First, when the reflectance of each area P and Q for a focus servo laser light source, for example, a He-Ne laser with a wavelength λ and 6328 people is P, Q,
The conditions are set such that P, Q, = R, and the two are approximately equal. On the other hand, when the transmittance of each region P and Q for an exposure laser light source, for example, an Ar laser with a wavelength λ = 4579 people (or λ2 = 488 nm) is P, , Q, the two are significantly different, and P ,
(It is set to satisfy the condition Q2.

つまり、本実施例では、ナイフェツジ5中の第2領域Q
には遮光特性を持たせて本来のナイフェツジとして機能
させる一方、その先端にフォーカスサーボ用に反射・透
光性を持たせた第1領域Pを付加させたものである。こ
のような反射率、透過率特性を持つ第1,2領域P、Q
は多層薄膜技術を用いることにより形成できる。
That is, in this embodiment, the second area Q in the knife 5
The lens is provided with a light-shielding property to function as an original knife, while a first region P having reflective and light-transmitting properties for focus servo is added to the tip thereof. The first and second regions P and Q have such reflectance and transmittance characteristics.
can be formed using multilayer thin film technology.

このようなナイフェツジ5を用いたレーザ光強度分布測
定作用について説明する。基本的には、第3図中のナイ
フェツジ3に代えてこのナイフェツジ5を用いるもので
ある。ここに、まず、ナイフェツジ5中の第1領域Pを
利用してフォーカスサーボ機構によるフォーカスサーボ
をかける、その後、ナイフェツジ5を矢印B方向に横送
りさせ、第1,2領域P、Qの境界線り部分を本来のナ
イフェツジとして測定すべきレーザビーム、例えばAr
レーザを横切らせ、ビーム強度分布を測定する。この時
、フォー・カスサーボ用のレーザ光、例えば波長λ1 
なるHe−Neレーザに対しては第1.2領域P、Qが
ともに同等の反射率P、、 Q。
The operation of measuring the laser light intensity distribution using such a knife 5 will be explained. Basically, this knife 5 is used in place of the knife 3 in FIG. Here, first, focus servo is applied by the focus servo mechanism using the first area P in the knife 5, and then the knife 5 is moved horizontally in the direction of arrow B, and the boundary line between the first and second areas P and Q is A laser beam, e.g. Ar
Cross the laser and measure the beam intensity distribution. At this time, the laser beam for focus servo, for example, the wavelength λ1
For a He-Ne laser, both the first and second regions P and Q have the same reflectance P,,Q.

を持つので、第1,2領域P、Qの区別なく作用する。Therefore, it acts regardless of the first and second regions P and Q.

この結果、ナイフェツジ5の横送りにより、強度測定し
たいレーザ光が相対的に第1領域Pから第2領域Qへ移
動したとしても、フォーカスサーボは第1領域Pと同一
のフォカスサーボがかかったままとなる。これは、ナイ
フェツジ5の横送りに際して対物レンズ1からナイフェ
ツジ5までの距離は一定に維持されることを意味する。
As a result, even if the laser beam whose intensity is to be measured moves relatively from the first area P to the second area Q due to the lateral movement of the knife 5, the focus servo remains the same as in the first area P. becomes. This means that the distance from the objective lens 1 to the knife 5 is maintained constant when the knife 5 is moved laterally.

このため、従来例で説明したように、ナイフェツジ5の
横送り自体に上下振動による蛇行があったとしても、フ
ォーカスサーボにより対物レンズ1とナイフェツジ5と
の間の距離が一定となるので、ナイフェツジ5はビーム
に対しては相対的に直線横送りされることになる。そし
て、ディテクタ4に対するレーザ光2の到達量を変化さ
せる作用は第2領域Qにより従来と同様になされる。
Therefore, as explained in the conventional example, even if the lateral movement of the knife 5 itself meanders due to vertical vibration, the distance between the objective lens 1 and the knife 5 is kept constant by the focus servo, so the knife 5 will be moved in a straight line relative to the beam. The effect of changing the amount of laser light 2 reaching the detector 4 is performed by the second region Q in the same manner as in the conventional case.

このように、本実施例のナイフェツジ5を用いたレーザ
光強度分布測定によれば、ナイフェツジ5のビーム横切
り方向の横送り精度が多少悪くても常にフォーカスサー
ボにより直線的な移動状態とさせることができ、正確な
ビーム強度分布が得られるものとなる。
As described above, according to the laser beam intensity distribution measurement using the knife 5 of this embodiment, even if the cross-feeding accuracy of the knife 5 in the cross-beam direction is somewhat poor, it is possible to always maintain a linear movement state by the focus servo. This allows accurate beam intensity distribution to be obtained.

ところで、本実施例方式のナイフェツジ5によれば、次
のような応用も可能となる。即ち、従来にあっては、ビ
ームウェスト付近でナイフェツジを対物レンズに近づけ
たり遠ざけたりすることにより本当のビームウェスト部
分を探し出すようにしているわけであるが、本実施例の
ナイフェツジ5を用いた場合には、電気的オフセット値
を変えるだけでビームウェストを探し出せることになる
By the way, according to the knife 5 of this embodiment, the following applications are also possible. That is, conventionally, the true beam waist portion is searched for by moving the knife closer to or away from the objective lens near the beam waist, but when using the knife 5 of this embodiment, In this case, the beam waist can be found simply by changing the electrical offset value.

まず、フォーカスエラー信号は一般に第2図中に特性線
E1で示すように、0点(=ビームウェスト位置)を通
る直線として表される。このような特性線E1 に対し
πに相当するオフセット電圧を加えて、フォーカスエラ
ー信号が特性II E 、に従う状態に変化させれば、
対物レンズ・ナイフェツジ間の距離をOD分だけビーム
ウェストからずらすことができる。よって、ナイフェツ
ジ自体を遠近移動させる方式に代えることができる。特
に、従来の機械的な移動方式に比べると、電気的オフセ
ット処理による方が安定した移動距離を確保することが
できる。
First, the focus error signal is generally expressed as a straight line passing through the 0 point (=beam waist position), as shown by the characteristic line E1 in FIG. If an offset voltage corresponding to π is applied to such a characteristic line E1 and the focus error signal is changed to follow the characteristic II E , then
The distance between the objective lens and the knife lens can be shifted from the beam waist by OD. Therefore, it is possible to replace the method by moving the knife itself far and near. In particular, compared to conventional mechanical movement methods, electrical offset processing can ensure a more stable movement distance.

なお、本実施例では、光デイスク原盤露光機、即ち、フ
ォトレジスト露光についてのビーム強度分布測定例で説
明したが、実際のコンパクトディスク等のディスクドラ
イブにおけるビーム強度分布形状用のナイフェツジとし
ても利用できる。この場合、記録・再生用レーザ光源も
フォーカスサーボ用レーザ光源も波長が788〜830
nmの1つの半導体レーザを兼用使用するものであり、
前述した第1,2領域P、Qの特性を規制する波長λ1
.λ2についてはλ、=λ、=788nm又は830n
mとして、各々の領域P、Qの反射率P、、 Q。
In this embodiment, an example of beam intensity distribution measurement for an optical disk master exposure machine, that is, photoresist exposure is explained, but it can also be used as a knife for measuring the beam intensity distribution shape in an actual disk drive such as a compact disk. . In this case, both the recording/reproducing laser light source and the focus servo laser light source have a wavelength of 788 to 830.
It uses one nm semiconductor laser,
Wavelength λ1 that regulates the characteristics of the first and second regions P and Q described above
.. For λ2, λ, = λ, = 788nm or 830n
As m, the reflectance of each region P, Q is P, , Q.

及び透過率P、、 Q、を設定すればよい。and transmittance P, , Q, may be set.

効果 本発明は、上述したように同等の反射率、異なる透過率
特性の第1.2領域を分割形成したので、ビーム強度分
布測定に際してナイフェツジのビーム横切り方向への横
送り精度が多少悪くても第1領域から第2領域へ連続さ
せたフォーカスサーボにて、ビームに対しては相対的に
直線移動となるように制御することができ、よって、蛇
行の影響を受けることなく正確にビーム強度分布を測定
することができるものである。
Effects In the present invention, as described above, the 1.2 regions with the same reflectance and different transmittance characteristics are formed separately, so even if the accuracy of the knife's traverse in the beam transverse direction is somewhat poor when measuring the beam intensity distribution, By using a continuous focus servo from the first area to the second area, it is possible to control the beam so that it moves relatively linearly, so the beam intensity distribution is accurate without being affected by meandering. can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は応用
例を示すフォーカスエラー信号特性図、第3図は従来例
を示すナイフェツジ方式の概略側面図、第4図は特性図
、第5図はビームウェスト付近の拡大側面図である。 5・・・ナイフェツジ、P・・・第1領域、Q・・・第
2領域、L・・・境界線、B・・・ビーム横切り方向比
 願 人   株式会社   リ コ −JLL昆 (a)          (b) J55 図
Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a focus error signal characteristic diagram showing an applied example, Fig. 3 is a schematic side view of a conventional knife system, and Fig. 4 is a characteristic diagram. , FIG. 5 is an enlarged side view of the vicinity of the beam waist. 5... Naifetsuji, P... First area, Q... Second area, L... Boundary line, B... Beam crossing direction ratio. b) J55 diagram

Claims (1)

【特許請求の範囲】[Claims] 境界線を境にビーム横切り方向に分割した第1領域と第
2領域とを設け、ある波長λ_1に対する第1領域の反
射率と第2領域の反射率とをほぼ等しく設定し、ある波
長λ_2に対する第1領域の透過率を第2領域の透過率
に比べて十分に小さく設定したことを特徴とするレーザ
光強度分布測定用ナイフエッジ。
A first region and a second region are provided which are divided in the cross-beam direction with the boundary line as a boundary, and the reflectance of the first region and the second region for a certain wavelength λ_1 are set to be approximately equal, and the reflectance for a certain wavelength λ_2 is set to be approximately equal. A knife edge for measuring laser light intensity distribution, characterized in that the transmittance of the first region is set to be sufficiently smaller than the transmittance of the second region.
JP13320187A 1987-05-28 1987-05-28 Knife edge for measuring laser beam intensity distribution Pending JPS63298019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13320187A JPS63298019A (en) 1987-05-28 1987-05-28 Knife edge for measuring laser beam intensity distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13320187A JPS63298019A (en) 1987-05-28 1987-05-28 Knife edge for measuring laser beam intensity distribution

Publications (1)

Publication Number Publication Date
JPS63298019A true JPS63298019A (en) 1988-12-05

Family

ID=15099091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13320187A Pending JPS63298019A (en) 1987-05-28 1987-05-28 Knife edge for measuring laser beam intensity distribution

Country Status (1)

Country Link
JP (1) JPS63298019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469993A (en) * 2009-04-28 2010-11-10 Sec Dep For Innovation Univers Measuring the propagation properties of a light beam using a variable focus lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469993A (en) * 2009-04-28 2010-11-10 Sec Dep For Innovation Univers Measuring the propagation properties of a light beam using a variable focus lens
US8736827B2 (en) 2009-04-28 2014-05-27 The Secretary of State for Business Innovation and Skills of Her Majesty's Brittannic Government Method and system for measuring the propagation properties of a light beam

Similar Documents

Publication Publication Date Title
US4964726A (en) Apparatus and method for optical dimension measurement using interference of scattered electromagnetic energy
GB2167262A (en) Distance measurement
JPH065663B2 (en) Semiconductor exposure method and apparatus
JPS6383931A (en) Light emitting element
JPS6117905A (en) Thickness measuring instrument
JPS63298019A (en) Knife edge for measuring laser beam intensity distribution
JPS6161178B2 (en)
JPH095046A (en) Three-dimensional shape measuring apparatus
JP4239977B2 (en) Manufacturing method of optical disc manufacturing master and optical disc manufacturing method
JP3179697B2 (en) Photomask defect detector
TW201001414A (en) Focus optical system and optical disc master exposure apparatus
JP4646342B2 (en) Thin film magnetic head size / array measuring method and thin film magnetic head size / array measuring apparatus
JP2795725B2 (en) Optical disk cutting method and cutting device
JP2775519B2 (en) Dual focus device using reference reticle
JPS6117908A (en) Three-dimensional shape measuring instrument
JPS60164326A (en) Device for projecting pattern on semiconductor substrate
JPS5897008A (en) Positioning method for semiconductor laser and collimator lens
JP3405523B2 (en) Phase shift amount measuring method and apparatus
JP2005311057A (en) Exposure device
JPS61228332A (en) Apparatus for optical inspection of flaw
JPS6117907A (en) Three-dimensional shape measuring instrument
JP2869143B2 (en) Substrate tilt detector
JP2001108877A (en) Method and device for adjusting optical unit
JPH0471161B2 (en)
JPH09222398A (en) Pattern defect inspection device and method