JPS61228332A - Apparatus for optical inspection of flaw - Google Patents

Apparatus for optical inspection of flaw

Info

Publication number
JPS61228332A
JPS61228332A JP6944785A JP6944785A JPS61228332A JP S61228332 A JPS61228332 A JP S61228332A JP 6944785 A JP6944785 A JP 6944785A JP 6944785 A JP6944785 A JP 6944785A JP S61228332 A JPS61228332 A JP S61228332A
Authority
JP
Japan
Prior art keywords
light
inspected
light source
defect inspection
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6944785A
Other languages
Japanese (ja)
Inventor
Takafumi Sugano
菅野 隆文
Kazuo Momoo
和雄 百尾
Koji So
孝治 相
Kazumasa Shiozuka
塩塚 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6944785A priority Critical patent/JPS61228332A/en
Publication of JPS61228332A publication Critical patent/JPS61228332A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • G11B7/00375Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs arrangements for detection of physical defects, e.g. of recording layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Abstract

PURPOSE:To make it possible to detect a flaw having unevenness and a flaw changing only in reflectivity, by using not only illumination beam allowed to obliquely irradiate an object to be inspected but also illumination beam having a spot diameter near to a diffraction limit and allowed to vertically irradiate the object to be inspected. CONSTITUTION:The semiconductive laser beam from a beam source 20 is allowed to obliquely irradiate an object 25 to be inspected. When there is a flaw on the object 25 to be inspected, the illumination beam is scattered to be guided to a beam detector 41 and condensed thereto to be converted to a flow detection signal A. The remaining scattered beam is guided to a shaping circuit 46 to be converted to a flaw detection signal C. The beam from a beam source 30 is focused to the object 25 to be inspected and a part of the reflected beam thereof is guided to a focus error drive circuit 42 and the illumination beam from the beam source 30 is controlled by the output signal of said circuit 42 so as to be always focused to the object 25 to be inspected. Reflected beam is guided to shaping circuits 44, 43 to be respectively converted to flaw detection signals B', B. By this method, both or either one of a flaw having unevenness and a flaw changing in reflectivity can be detected by the same apparatus and detection accuracy is also enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 光ディスク(VLP)、コンパクトディスク(CD)、
追記録可能ディスクなど種々のシステムが開発を終了し
、製品化されている。
[Detailed Description of the Invention] Industrial Application Fields Optical disks (VLPs), compact disks (CDs),
Various systems such as recordable discs have been developed and commercialized.

このようなシステムで用いるディスクは、画像。The disks used in such systems are images.

音声、アドレスデータ、ディジタルデータなどの情報を
凹凸の変化として、主として光学的に原盤に記録し、原
盤よりメッキ工程で金型を造り、この金型を用いて複製
ディスクを大量に生産している。
Information such as voice, address data, and digital data is recorded primarily optically on the master disc as changes in the unevenness, a mold is made from the master disc through a plating process, and this mold is used to mass-produce duplicate discs. .

この複製ディスクの製造工程において生ずる欠陥の発生
原因として1 ガラス原盤表面の傷、2ガラス原盤の洗
浄状態(異物の付着)、3 レジスト中の異物、4 レ
ジストのピンホール、6工程作業中のケアレスミス、6
 複製材料の金型への付着、など種々考えられる。これ
らの欠陥を早期に発見し、不良器を次工程に流すことを
防ぐ為の欠陥検査装置、検査技術は工程の歩留り、コス
トダウンを考える場合非常に重要である。
The causes of defects that occur in the manufacturing process of this duplicate disk are 1. Scratches on the surface of the glass master, 2. Cleaning condition of the glass master (adhesion of foreign matter), 3. Foreign matter in the resist, 4. Pinholes in the resist, and 6. Lack of care during process operations. Miss, 6
There are various possible causes such as adhesion of the replication material to the mold. Defect inspection equipment and inspection techniques that detect these defects early and prevent defective devices from being sent to the next process are extremely important when considering process yield and cost reduction.

ここでは、光学的なディスク製造工程について述べたが
、例えば機械式記録などによるディスク作成工程におい
ても同様の検査が必要となる。また、ディスクに限らず
、シリコンウェハーや、鋼板、アルミ板の表面上の欠陥
やキズなどの検査は重要なことである。
Although the optical disc manufacturing process has been described here, similar inspections are also required in the disc manufacturing process using mechanical recording, for example. Furthermore, it is important to inspect not only disks but also silicon wafers, steel plates, and aluminum plates for defects and scratches on their surfaces.

本発明は、以上の様な被検査物表面の欠陥、キズ、異物
の付着を光学的に検査する光学的欠陥検査装置に関する
ものである。
The present invention relates to an optical defect inspection device that optically inspects the surface of an object to be inspected for defects, scratches, and adhesion of foreign matter.

従来の技術 従来の原盤表面の欠陥検査装置の一例として特公昭52
−146601号公報に示されるような欠陥検査装置が
ある。第6図にその原理図を示す。
Conventional technology An example of a conventional master disk surface defect inspection device is the Japanese Patent Publication No. 52
There is a defect inspection device as shown in Japanese Patent No.-146601. Fig. 6 shows the principle diagram.

光源1(例えばレーザー)からのコヒーレント光はミラ
ー2の反射面を越えたある一点に集まるようにレンズ3
によって集束される。この鏡面に入射する集束ビームは
、鏡面で反射されて第一の中継レンズ4,6へ投射され
る。このレンズ4,6を通過した光ビームはミラー6で
反射されて第二の中継レンズ7.8を通過してモータ9
で回転しているターンテーブル10上の被検査物11の
表面へ進む。中継レンズ7.8から出る光ビームは、被
検査物110表面を越えたある位置にある焦点へ集束さ
れて、これを遮ぎる被検査物面に光スポットを形成する
。スポット径はほぼ100μm程平行な関係を持ち、被
検査物の中心軸線に対しである選ばれた角度(例えば4
6度)を作り、ディスクの半径に沿って被検査物表面と
交わり、かつ、被検査物の中心軸線を含む平面上にある
ことが望まれている。
Coherent light from a light source 1 (for example, a laser) is passed through a lens 3 so that it converges at a certain point beyond the reflective surface of a mirror 2.
focused by. The focused beam incident on this mirror surface is reflected by the mirror surface and projected onto the first relay lenses 4 and 6. The light beam passing through the lenses 4 and 6 is reflected by the mirror 6 and passes through the second relay lens 7.8 to the motor 9.
to the surface of the object to be inspected 11 on the turntable 10 which is rotating. The light beam emerging from the relay lens 7.8 is focused to a focal point at a certain position beyond the surface of the object to be inspected 110, and forms a light spot on the surface of the object to be inspected that blocks this. The spot diameters are parallel to each other by approximately 100 μm, and are placed at a selected angle (for example, 4
6 degrees), intersects the surface of the object to be inspected along the radius of the disk, and is preferably on a plane that includes the central axis of the object to be inspected.

入射光は被検査物表面で反射されビームスプリッタ12
に入射される。このビームスプリッタ12は入射する光
の一部を透過させて第一の光検出器13へ向って進行さ
せ、残りを第二の光検出器14へ向って反射する。遮光
板16は回折格子として働くディスクの0次回折光をカ
ットする為のもので、ディスク上に欠陥がない場合、光
は検出器13では検出されない。光検出器14はディス
ク上での光スポットを一定に保つためのものでこの検出
出力によりミラー2,6を動かし、光ビーム位置ディス
ク面上で半径方向及び接線方向へ検出器14上でスポッ
トが動かないように補正する。
The incident light is reflected by the surface of the object to be inspected and passes through the beam splitter 12.
is incident on the This beam splitter 12 transmits a portion of the incident light to travel toward the first photodetector 13 and reflects the remainder toward the second photodetector 14 . The light shielding plate 16 is for cutting off the 0th order diffracted light of the disk which acts as a diffraction grating, and if there is no defect on the disk, the light will not be detected by the detector 13. The photodetector 14 is used to maintain a constant light spot on the disk, and the detection output moves the mirrors 2 and 6, so that the spot on the detector 14 is moved in the radial and tangential directions on the disk surface. Correct so that it does not move.

発明が解決しようとする問題点 しかしながら、上記した従来の構成の欠陥検査装置につ
いては、以下の問題点がある。
Problems to be Solved by the Invention However, the defect inspection apparatus having the conventional configuration described above has the following problems.

(1)照明光を被検査物に対して、斜めに照射しており
、被検査物上に大きな異物やキズなどがある場合は、検
出感度は高いが、凹凸がなく反射率だけが変化する欠陥
に対しては、検出感度が低い。
(1) The illumination light is irradiated obliquely onto the object to be inspected, and if there is a large foreign object or scratch on the object, the detection sensitivity is high, but there are no irregularities and only the reflectance changes. Detection sensitivity for defects is low.

(2)照明光のスポット径を10μm以下に集光するこ
とが困難であり、欠陥に対する検出精度が低い。
(2) It is difficult to focus the spot diameter of illumination light to 10 μm or less, and the detection accuracy for defects is low.

本発明はかかる点に鑑み、凹凸がなく反射率だけが変化
する欠陥の検出も可能で、欠陥検出精度の高い光学的欠
陥検出装置を提供せんとするものである。
In view of these points, the present invention aims to provide an optical defect detection device that is capable of detecting defects that have no irregularities and only changes in reflectance, and has high defect detection accuracy.

問題点を解決するための手段 上記問題点を解決するために本発明の光学的欠陥検査装
置は、被検査物に対して斜めに照射された光と、はぼ垂
直に照射されかつスポット径がほぼ回折限界に近い照射
光を被検査物上のほぼ同一位置に照射する手段と、斜め
に照射された光の欠陥による散乱光、被検査物よりの反
射光、及びほぼ垂直に照射された光の反射光もしくは透
過光の各々により被検査物上の欠陥を検出する手段と、
はぼ垂直に照射される光が、被検査物上に焦点を保つた
めの焦点位置制御手段と、被検査物上を相対的に前記照
射光が走査する手段を有するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the optical defect inspection apparatus of the present invention uses two types of light: one that is irradiated obliquely to the object to be inspected, and the other that is irradiated almost perpendicularly and has a spot diameter. A means of irradiating irradiation light close to the diffraction limit to almost the same position on the object to be inspected, light scattered by defects in light irradiated obliquely, light reflected from the object to be inspected, and light irradiated almost perpendicularly. means for detecting defects on the object to be inspected by each of the reflected light or transmitted light;
The apparatus includes a focus position control means for keeping the nearly perpendicularly irradiated light focused on the object to be inspected, and means for relatively scanning the irradiation light over the object to be inspected.

作  用 本発明は上記した構成により、被検査物に対して、斜め
に照射される照明光と、回折限界に近いスポット径を有
し、かつ被検査物に対しヤはぼ垂直に照射される照明光
を用いて、凹凸を有する欠陥及び凹凸は有さないが反射
率あるいは透過率変化を有する欠陥の両方もしくは各々
一方を同一の装置により検出可能で、かつ欠陥検出精度
が高く、安定な光学的欠陥検出装置を提供せんとするも
のである。
Effect The present invention has the above-described configuration, and the object to be inspected is irradiated with illumination light obliquely, has a spot diameter close to the diffraction limit, and is irradiated almost perpendicularly to the object to be inspected. Using illumination light, defects with irregularities and defects without irregularities but with changes in reflectance or transmittance can be detected with the same device, and with high defect detection accuracy and stable optics. The purpose of this invention is to provide a defect detection device that can detect defects.

実施例 以下本発明の実施例を、添付図面にもとづいて説明する
EXAMPLES Hereinafter, examples of the present invention will be described based on the accompanying drawings.

第1図は本発明の第1の実施例である。第1図において
20は第一の光源で例えば波長8000人の半導体レー
ザーである。光源2oよりの光はシャツp−21、ビー
ムエクスパンダ−系22゜23を通過後、平行光となり
ミラー24により反射すれスピンドルモータ26で回転
駆動される被検査物26上に照射され照明光となる。被
検査物26より反射された光は、ミラー27に導びかれ
た後、収束レンズ28により光検出器29上に集光され
る。被検査物25上に欠陥がある場合、この照明光は散
乱され、散乱された光はボイスコイルにマウントされた
レンズ34で集光され、ビームスプリッタ−33に導び
かれる。ビームスプリッタ−33を透過した光は、ダイ
クロイックミラー35を通過し、レンズ4oに導びかれ
光検出器41上に集光され欠陥検出信号Aとなる。一方
散出を有する整形回路46に導びかれた後欠陥検出信号
Cとなる。被検査物26はターンテーブル26a上にマ
ウントされており、回転する。又ターンテーブル26a
は図中矢印P方向(半径方向)にキャリーツジにより移
送される。被検査物26の面振れは通常数10μm〜数
100μmはどの面振れを有している。この場合、被検
査物26により反射される光は、ミラー27上で移動す
るが、ミラー27、集光レンズ28を被検査物25の面
振れによる移動量を考慮して設計することにより、面振
れによって反射光が受光できなくなることはない。
FIG. 1 shows a first embodiment of the invention. In FIG. 1, reference numeral 20 denotes a first light source, which is, for example, a semiconductor laser with a wavelength of 8,000. The light from the light source 2o passes through the shirt p-21 and the beam expander system 22-23, becomes parallel light, is reflected by the mirror 24, and is irradiated onto the inspection object 26, which is rotated by the spindle motor 26, and becomes illumination light. Become. The light reflected from the object to be inspected 26 is guided by a mirror 27 and then condensed onto a photodetector 29 by a converging lens 28. If there is a defect on the object 25 to be inspected, this illumination light is scattered, and the scattered light is focused by a lens 34 mounted on a voice coil and guided to a beam splitter 33. The light transmitted through the beam splitter 33 passes through the dichroic mirror 35, is guided to the lens 4o, and is focused on the photodetector 41, where it becomes a defect detection signal A. On the other hand, it becomes a defect detection signal C after being led to a shaping circuit 46 having a scattering. The object to be inspected 26 is mounted on a turntable 26a and rotates. Also turntable 26a
is transported in the direction of arrow P (radial direction) in the figure by the carry tool. The surface runout of the object to be inspected 26 usually ranges from several tens of micrometers to several hundreds of micrometers. In this case, the light reflected by the object to be inspected 26 moves on the mirror 27, but by designing the mirror 27 and the condenser lens 28 in consideration of the amount of movement caused by the surface deflection of the object to be inspected 25, Shaking does not prevent reflected light from being received.

第二の光源30は例えばHe−Noレーザーで、第二の
光源からの光はビームエクスパンダ−系よ。
The second light source 30 is, for example, a He-No laser, and the light from the second light source is a beam expander system.

32により、拡大され、ビームスプリッタ−33に導ひ
かれ反射された後、レンズ34に入射し、被検査物25
上に焦点を結ぶ。レンズ34のNAとしては例えばNA
=0.5程度のものを用いる。
32, the beam is guided and reflected by the beam splitter 33, enters the lens 34, and the object to be inspected 25
Focus on the top. For example, the NA of the lens 34 is NA.
= approximately 0.5 is used.

被検査物25により反射された光は、往路と四元路を戻
り、ビームスプリッタ−33を透過し、ダイクロイック
ミラー35で全反射され、集光レンズ36により集光さ
れる。ミラー37はナイフェツジフォーカス検出方法を
構成するための全反射ミラーである。レンズ36により
集光された光の半分は、フォーカス誤差検出用光検出素
子である光電変換素子38に導びかれる。この出力信号
は、フォーカス誤差駆動回路42に導びかれ、この出力
信号により、フォーカスアクチュエーター34を駆動し
、第二の光源3oよりの照明光が、被検査物26上に常
に焦点を結ぶように制御される。
The light reflected by the object to be inspected 25 returns through the forward path and the four-way path, passes through the beam splitter 33, is totally reflected by the dichroic mirror 35, and is condensed by the condensing lens 36. The mirror 37 is a total reflection mirror for configuring the knife focus detection method. Half of the light focused by the lens 36 is guided to a photoelectric conversion element 38 which is a photodetection element for detecting focus error. This output signal is led to the focus error drive circuit 42, which drives the focus actuator 34 so that the illumination light from the second light source 3o is always focused on the object to be inspected 26. controlled.

ミラー37で反射された光は、光電変換素子39により
光電変換され、その出力は、増幅/レベル検出機能を有
する整形回路44と、加算/増幅/レベル検出機能を有
する整形回路43へ導びかれる。整形回路44の出力は
欠陥検出信号B′となる。
The light reflected by the mirror 37 is photoelectrically converted by the photoelectric conversion element 39, and its output is guided to a shaping circuit 44 having an amplification/level detection function and a shaping circuit 43 having an addition/amplification/level detection function. . The output of the shaping circuit 44 becomes the defect detection signal B'.

又、光電変換素子38の出力信号の一部は整形回路43
に導びかれ、光電変換素子39の出力信号と加算された
後、欠陥検出信号Bとなる。光電変換素子38.39の
出力信号は、被検査物上に凹凸の欠陥が存在し、照明光
が散乱された時は、出力レベルが低下する。又、被検査
物上に凹凸がないが反射率変化を有する場合は、その反
射率に応じて、出力レベルが増減する。従って、整形回
路43.44を欠陥により照明光が散乱した場合と、欠
陥の反射率変化が存在した場合のレベルを考慮して設計
することにより、同一のレベルの検出器で、検出するこ
とが可能である。又、例えば整形回路44のレベル検出
器は、散乱した場合の検出に適したレベルに、整形回路
43の検出レベルを反射率変化の検出に適したレベルに
設定し、欠陥検出信号B、B’を各々の欠陥検出信号と
することも可能である。又、本実施例では第二の光源3
0よりの照明光が、被検査物上で反射された実施例を用
いたが、すでに公知の技術で透過光により検出すること
も可能で、被検査物の反射率により考慮できる。シャッ
ター21を開閉することにより、斜め照明光の0N10
FFが可能となる。
Further, a part of the output signal of the photoelectric conversion element 38 is transmitted to the shaping circuit 43.
After being added to the output signal of the photoelectric conversion element 39, it becomes the defect detection signal B. The output level of the output signals of the photoelectric conversion elements 38 and 39 decreases when an uneven defect exists on the object to be inspected and the illumination light is scattered. Furthermore, when there is no unevenness on the object to be inspected but there is a change in reflectance, the output level increases or decreases depending on the reflectance. Therefore, by designing the shaping circuits 43 and 44 in consideration of the levels when the illumination light is scattered by a defect and when there is a change in the reflectance of the defect, it is possible to detect it with a detector of the same level. It is possible. For example, the level detector of the shaping circuit 44 is set to a level suitable for detecting scattering, and the detection level of the shaping circuit 43 is set to a level suitable for detecting a change in reflectance, and the defect detection signals B, B' It is also possible to make each defect detection signal. Further, in this embodiment, the second light source 3
Although the embodiment in which the illumination light from 0 is reflected on the object to be inspected is used, it is also possible to detect by transmitted light using a known technique, and this can be taken into consideration based on the reflectance of the object to be inspected. By opening and closing the shutter 21, the diagonal illumination light is 0N10.
FF becomes possible.

本発明の第2の実施例を第2図を用いて説明する。ここ
で、第1の実施例の構成で説明した構成要素は図面上同
じ番号を付与してあり、第1の実施例と異なる点につい
てのみ説明する。
A second embodiment of the present invention will be described using FIG. 2. Here, the constituent elements described in the configuration of the first embodiment are given the same numbers in the drawings, and only points different from the first embodiment will be explained.

光源3oは例えばHe −N eレーザであり、光源よ
りの光は半透鏡49により、適当な比率で分別され、第
1の実施例で説明した、第一と第二の光源を同一波長で
構成した場合と等価の機能を有する。光源の偏波面はS
偏波になるように配置されている全反射ミラー60は半
透鏡49により分割された光をレンズ22に導くために
追加しである。
The light source 3o is, for example, a He-N e laser, and the light from the light source is separated at an appropriate ratio by a semi-transparent mirror 49, and the first and second light sources are configured with the same wavelength as described in the first embodiment. It has the same function as when The polarization plane of the light source is S
A total reflection mirror 60 arranged to polarize the light is added to guide the light split by the semi-transparent mirror 49 to the lens 22.

エクスパンダ−系22,23を通過し、ミラー24によ
り全反射された照明光は被検査物26上如照射される。
The illumination light that passes through the expander systems 22 and 23 and is totally reflected by the mirror 24 is irradiated onto the object 26 to be inspected.

被検査物上に凹凸の欠陥が存在した場合、この照明光は
散乱され、この散乱光はレンズ34によ゛り集光された
後に、ビームスプリッタ−(以下BSと略す)51を透
過した後に、偏光ビームスプリンター(以下PBSと略
す)52に導びかれる。ここで光源よりの光の偏波面は
S偏波となるように設定しであるが、凹凸の欠陥により
散乱された場合は、散乱光の偏波面がP偏波成分増加す
るので、PBS52に透過し、レンズ40により集光さ
れ、光電変換素子41上導びかれる。
If there is an uneven defect on the object to be inspected, this illumination light is scattered, and this scattered light is focused by a lens 34 and then transmitted through a beam splitter (hereinafter abbreviated as BS) 51. , and is guided to a polarized beam splinter (hereinafter abbreviated as PBS) 52. Here, the polarization plane of the light from the light source is set to be S polarization, but if it is scattered by uneven defects, the polarization plane of the scattered light will increase the P polarization component, so it will be transmitted to the PBS 52. The light is focused by the lens 40 and guided onto the photoelectric conversion element 41 .

一方光源3oよりの光で、半透鏡49を透過した光は、
B561で反射され、レンズ34により被検査物上に集
光された後、反射し、往路と同党路を戻り、B551を
透過した後、PBS62で反射される。各光電変換素子
出力は第1の実施例と同様に処理され、゛各欠陥検出信
号となる。
On the other hand, the light from the light source 3o that has passed through the semi-transparent mirror 49 is
It is reflected by B561, condensed onto the object to be inspected by lens 34, then reflected, returns along the same path as the outgoing path, passes through B551, and then is reflected by PBS 62. The output of each photoelectric conversion element is processed in the same manner as in the first embodiment, and becomes each defect detection signal.

次に本発明の第3の実施例を第3図を用いて説明する。Next, a third embodiment of the present invention will be described using FIG. 3.

ここでも、第1の実施例の構成で説明した構成要素は図
面上同一番号を付与してあり、第1の実施例と異なる点
についてのみ説明する。
Here again, the constituent elements explained in the configuration of the first embodiment are given the same numbers in the drawings, and only the points different from the first embodiment will be explained.

光源42は例えばHe −N oレーザーで、偏光面は
PBSelに対してS偏波になるように配置されている
。光源42よりの光はレンズ6oに導びかれた後、PB
Selにより全反射され、ダイクロイックミラー62を
透過し、レンズ34に導ヒカレル。レンズ6oとレンズ
34はビームエクスパンダ−系を構成しており、光源4
2よりの光は、レンズ34の光軸よりずれた位置に入射
し、レンズ34より出射した光は平行光となる。被検査
物26より反射された光は、往路と同党路を戻った後、
PBSelで全反射された後、レンズ63により集光さ
れた後、2分割光電変換素子38A。
The light source 42 is, for example, a He-N o laser, and is arranged so that the plane of polarization is S polarized with respect to PBSel. After the light from the light source 42 is guided to the lens 6o, the light from the PB
It is totally reflected by Sel, transmitted through the dichroic mirror 62, and guided to the lens 34. The lens 6o and the lens 34 constitute a beam expander system, and the light source 4
The light from the lens 34 enters the lens 34 at a position shifted from the optical axis, and the light emitted from the lens 34 becomes parallel light. After the light reflected from the object to be inspected 26 returns along the same route as the outgoing route,
After being totally reflected by the PBSel and condensed by the lens 63, the light is divided into two photoelectric conversion elements 38A.

38Bに入射する。この系はオフ−アキスフオーカース
検出系を構成するとともに、被検査物上で、もう一方の
光源30の集光スポットとほぼ同一の位置に射熱され、
前実施例の被検査物に対して斜めに照射される照明光を
同様の機能を有する。被検査物上に、欠陥が存在し、散
乱された光は、PBSelまでは、光源よりの光と同党
路を戻るが、散乱による偏波面の回転作用により、PB
S61に対してP偏波を有するので、PBS61を通過
し、レンズ40により集光された後、光電変換素子41
に入射する。もう一方の光源30は例えば半導体レーザ
ーで、シャッター21を通過後、ビームエクスパンダ−
系31.32を通過し、所望のビーム径に拡大された後
半透鏡63を通過した後ダイクロインクミラー62で全
反射され、レンズ34により集光されて、被検査物上で
、はぼ回折限界まで絞られたスポット径を有する。被検
査物により反射された光は、往路と同光路を半透鏡63
まで戻った後、半透鏡63で反射されレンズ64で集光
された後、光電変換素子66に導びかれる。この光電変
換素子出力は、第1の実施例における光電変換素子38
と39の出方を加算したものと等価となる。整形回路6
6は、増幅/レベル検出回路より構成される。一方、光
電変換素子出力38A 、38Bは、増幅回路/加算回
路/レベル検出回路/差動回路より構成された整形回路
67に導びかれ、加算された信号は、第1の実施例の光
電変換素子29の出力と等価となり、差動された信号は
フォーカス誤差信号となる。又、シャッター21は光源
30の直後に配置されており、このシャンター21を開
閉することにより、垂直に照射された照明光の0N−O
FFが可能となる。
38B. This system constitutes an off-axis focused detection system, and heat is radiated onto the object to be inspected at approximately the same position as the focused spot of the other light source 30.
It has the same function as the illumination light that is obliquely irradiated onto the object to be inspected as in the previous embodiment. There is a defect on the object to be inspected, and the scattered light returns to the PBSel along the same path as the light from the light source, but due to the rotation of the plane of polarization due to scattering, the scattered light returns to the PBSel.
Since it has P polarization with respect to S61, after passing through PBS61 and being focused by lens 40, it is transmitted to photoelectric conversion element 41.
incident on . The other light source 30 is, for example, a semiconductor laser, and after passing through the shutter 21, the beam expander
The beam passes through systems 31 and 32, passes through a rear mirror 63 that has been expanded to a desired beam diameter, is totally reflected by a dichroic ink mirror 62, is focused by a lens 34, and is placed on the object to be inspected at the diffraction limit. It has a spot diameter narrowed down to . The light reflected by the object to be inspected passes through a semi-transparent mirror 63 along the same optical path as the forward path.
After returning to this point, the light is reflected by a semi-transparent mirror 63 and condensed by a lens 64, and then guided to a photoelectric conversion element 66. This photoelectric conversion element output is the photoelectric conversion element 38 in the first embodiment.
It is equivalent to the sum of the numbers 39 and 39. Shaping circuit 6
6 is composed of an amplification/level detection circuit. On the other hand, the photoelectric conversion element outputs 38A and 38B are led to a shaping circuit 67 composed of an amplifier circuit/addition circuit/level detection circuit/differential circuit, and the added signal is the photoelectric conversion element of the first embodiment. This is equivalent to the output of the element 29, and the differential signal becomes a focus error signal. Further, the shutter 21 is placed immediately after the light source 30, and by opening and closing this shunter 21, the 0N-O of the vertically irradiated illumination light is removed.
FF becomes possible.

次に欠陥検出信号の後処理について、第4図を用いて説
明する。第4図(−)には、第1の実施例の整形回路以
降を示している。この場合、各欠陥検出信号は各々独立
に出力されている。しかし、実際の検査結果情報として
は、例えば、各々の欠陥検出信号のうち所望の欠陥検出
が一致した欠陥検出情報や、各々の欠陥検出信号全部が
一致した場合の欠陥検出情報が重要となる。このような
欠陥検出情報は、公知の技術により処理することが可能
となる。第4図(b)にこの処理回路の一実施例を示す
Next, post-processing of the defect detection signal will be explained using FIG. 4. FIG. 4(-) shows the shaping circuit and subsequent parts of the first embodiment. In this case, each defect detection signal is output independently. However, as actual inspection result information, for example, defect detection information in which the desired defect detection matches among the respective defect detection signals, and defect detection information in the case where all the respective defect detection signals match are important. Such defect detection information can be processed using known techniques. FIG. 4(b) shows an embodiment of this processing circuit.

各実施例において、被検査物は円盤状でかつ走査方向は
、被検査物に対して、半径方向の送りと・ 回転である
と仮定したが、本実施例においては被検査物形状並びに
走査方向について限定するものではない。
In each example, it was assumed that the object to be inspected was disk-shaped and the scanning direction was radial feed and rotation with respect to the object to be inspected, but in this example, the shape of the object to be inspected and the scanning direction It is not limited to.

X−Y方向に走査可能な手段を本発明に適用することに
より、被検査物形状は四角であっても、長い帯状のもの
であっても可能となる。又被検査物もガラスやレジスト
原盤に限定するものではない。
By applying means capable of scanning in the X-Y directions to the present invention, the shape of the object to be inspected can be square or long strip-like. Furthermore, the object to be inspected is not limited to glass or resist master disks.

本実施例を実現できる構成であれば、光源や光学素子な
どの構成要素並びにフォーカス検出手段なども限定する
ものではない。
Components such as a light source and optical elements, as well as focus detection means, etc. are not limited as long as the configuration can realize this embodiment.

発明の効果 以上のように本発明は、被検査物に対して斜めに照射さ
れた光と、はぼ垂直に照射されかつスポット径がほぼ回
折限界に近い照射光を被検査物上のほぼ同一位置に照射
する手段と、斜めに照射された光の欠陥による散乱光、
被検査物よりの反射光及びほぼ垂直に照射された光の反
射光もしくは透過光の各々により被検査物上の欠陥を検
出する手段に有する構成により、被検査物上の凹凸を有
する欠陥及び凹凸は有さないが、反射率もしくは透過率
変化を有する欠陥の両方もしくはどちらが一方を同一の
装置によシ検出可能で、欠陥検出精度が高く、かつ各欠
陥検出信号を処理することにより、従来よりも確度の高
い所望の欠陥検出信号全部を可能とし、安定かつ簡素化
された構成が可能な光学的欠陥検査装置を提供すること
ができる。
Effects of the Invention As described above, the present invention allows light that is irradiated obliquely to the object to be inspected and light that is irradiated almost perpendicularly to the object to be inspected to have a spot diameter close to the diffraction limit. means for irradiating the light to the position, and scattered light due to defects in the obliquely irradiated light;
The structure of the means for detecting defects on the object to be inspected using each of the reflected light from the object to be inspected and the reflected light or transmitted light of light irradiated almost perpendicularly to the object to be inspected detects defects with irregularities and irregularities on the object to be inspected. However, it is possible to detect defects with reflectance or transmittance changes using the same device, and by processing each defect detection signal, it is possible to detect both or either defect using the same device. It is also possible to provide an optical defect inspection device that can generate all desired defect detection signals with high accuracy and has a stable and simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の光学的欠陥検査装置の
ブロック図、第2図は同第2の実施例のブロック図、第
3図は同第3の実施例のブロック図、第4図は本発明の
欠陥検出信号の後処理を構成するための一実施例を示す
ブロック図、第6図は従来の光学的欠陥検査装置のブロ
ック図である。 1.20,30.42・・・・・・光源、3.4.5 
。 7.8,22,23,28,31.32,33゜36.
40・・・・・・レンズ、34・・・・・・アクチュエ
ーターにマウントされたレンズ、21・・・・・・シャ
ッター、2.6,24,27.37・・・・・・ミラー
、11,26・・・・・・被検査物、26・・・・・・
スピンドルモーター、13゜29・・・−光検出器、3
8,39.41・・・・・・光電変換素子、43,44
.45・・・・・・整形回路、67・・・・・・整形及
びフォーカス誤差検出回路、33.51・・・・−・ビ
ームスプリッタ−135,62・・・・・・ダイクロイ
ックミラ、52.61・・・・・・偏光ビームスプリッ
タ−0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名20
、 30−−一光 う5シト、 43、44.45−−一贅形回路 第2図 と4′ 第3図 第4図 (a) (b) 第5図        /−光源 3−m=対物レンズ U−一一液捜査物 I3−  光検出喜
FIG. 1 is a block diagram of an optical defect inspection apparatus according to a first embodiment of the present invention, FIG. 2 is a block diagram of the second embodiment, and FIG. 3 is a block diagram of a third embodiment of the present invention. FIG. 4 is a block diagram showing an embodiment of post-processing of defect detection signals according to the present invention, and FIG. 6 is a block diagram of a conventional optical defect inspection apparatus. 1.20, 30.42... Light source, 3.4.5
. 7.8, 22, 23, 28, 31. 32, 33° 36.
40... Lens, 34... Lens mounted on actuator, 21... Shutter, 2.6, 24, 27.37... Mirror, 11 , 26... object to be inspected, 26...
Spindle motor, 13°29...-Photodetector, 3
8,39.41...Photoelectric conversion element, 43,44
.. 45... Shaping circuit, 67... Shaping and focus error detection circuit, 33.51... Beam splitter 135, 62... Dichroic mirror, 52. 61...Polarizing beam splitter-0 Name of agent Patent attorney Toshio Nakao and 1 other person20
, 30--Ikko U5 site, 43, 44.45--Single-shaped circuit Figure 2 and 4' Figure 3 Figure 4 (a) (b) Figure 5 /-Light source 3-m = Objective Lens U-Liquid Investigation Object I3- Light Detection Joy

Claims (8)

【特許請求の範囲】[Claims] (1)被検査物表面を照明するための第一の光源と、前
記第一の光源からの光を前記被検査物に対して斜めに照
射する第一の照射手段と、前記被検査物上の欠陥により
散乱された光の少なくとも一部を検出系に導く第一の光
学手段と、この散乱された光を検出する為の第一の検出
手段と、第二の光源と、第二の光源からの光を集光して
前記被検査物に対してほぼ垂直に前記第一の光源よりの
照射光とほぼ同一位置に照射する第二の照射手段と、前
記被検査物よりの反射もしくは透過光を検出系に導く第
二の光学手段と、この反射もしくは透過光を検出するた
めの第二の検出手段と、第二の光源より集光された光が
被検査物上に焦点を保つ為の焦点位置制御手段と、被検
査物上を相対的に前記照射光が走査する走査手段を有す
ることを特徴とする光学的欠陥検査装置。
(1) A first light source for illuminating the surface of the object to be inspected, a first irradiation means for irradiating light from the first light source obliquely to the object to be inspected, and a first light source for illuminating the surface of the object to be inspected; a first optical means for guiding at least a portion of the light scattered by the defect to the detection system, a first detection means for detecting the scattered light, a second light source, and a second light source. a second irradiation means for condensing light from the object to be inspected and irradiating it almost perpendicularly to the same position as the irradiation light from the first light source; and reflection or transmission from the object to be inspected. A second optical means for guiding light to the detection system, a second detection means for detecting the reflected or transmitted light, and a second light source for keeping the light focused on the object to be inspected. An optical defect inspection apparatus comprising: a focal position control means; and a scanning means for relatively scanning the irradiation light over an object to be inspected.
(2)被検査物上の欠陥により散乱された斜めに照射さ
れた照明光を集光する手段と、前記被検査物に対してほ
ぼ垂直に照射される光を集光する手段を同一のレンズで
兼用することを特徴とする特許請求の範囲第1項記載の
光学的欠陥検査装置。
(2) The means for condensing obliquely irradiated illumination light scattered by defects on the inspected object and the means for concentrating the light irradiated almost perpendicularly to the inspected object are integrated into the same lens. The optical defect inspection device according to claim 1, characterized in that it is also used as an optical defect inspection device.
(3)被検査物上に前記第一の光源よりの照射光もしく
は前記第二の光源よりの照射光のどちらか一方のみを照
射するように選択する手段を有することを特徴とする特
許請求の範囲第1項記載の光学的欠陥検査装置。
(3) A patent claim characterized by having means for selecting to irradiate only one of the irradiation light from the first light source or the irradiation light from the second light source onto the object to be inspected. The optical defect inspection device according to scope 1.
(4)被検査物上の欠陥により散乱された光のP偏波光
のみを検出する手段を有することを特徴とする特許請求
の範囲第1項記載の光学的欠陥検査装置。
(4) The optical defect inspection apparatus according to claim 1, further comprising means for detecting only P-polarized light of light scattered by defects on the object to be inspected.
(5)被検査物上に斜めに照射された光の被検査物より
の反射光を検出する手段を有することを特徴とする特許
請求の範囲第1項記載の光学的欠陥検査装置。
(5) The optical defect inspection apparatus according to claim 1, further comprising means for detecting reflected light from the object to be inspected of light irradiated obliquely onto the object to be inspected.
(6)検出された欠陥信号のいずれかもしくは全部の論
理和を出力することを特徴とする特許請求の範囲第1項
記載の光学的欠陥検査装置。
(6) The optical defect inspection device according to claim 1, which outputs a logical sum of any or all of the detected defect signals.
(7)第一の光源と第二の光源の波長が異なることを特
徴とする特許請求の範囲第1項記載の光学的欠陥検査装
置。
(7) The optical defect inspection device according to claim 1, wherein the first light source and the second light source have different wavelengths.
(8)第一の光源と第二の光源とを兼用することを特徴
とする特許請求の範囲第1項記載の光学的欠陥検査装置
(8) The optical defect inspection device according to claim 1, characterized in that the first light source and the second light source are used in combination.
JP6944785A 1985-04-02 1985-04-02 Apparatus for optical inspection of flaw Pending JPS61228332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6944785A JPS61228332A (en) 1985-04-02 1985-04-02 Apparatus for optical inspection of flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6944785A JPS61228332A (en) 1985-04-02 1985-04-02 Apparatus for optical inspection of flaw

Publications (1)

Publication Number Publication Date
JPS61228332A true JPS61228332A (en) 1986-10-11

Family

ID=13402897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6944785A Pending JPS61228332A (en) 1985-04-02 1985-04-02 Apparatus for optical inspection of flaw

Country Status (1)

Country Link
JP (1) JPS61228332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147513A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Foreign matter analyzer
JPH03102248A (en) * 1989-09-18 1991-04-26 Hitachi Ltd Method and apparatus for detecting foreign matter
JP2007248383A (en) * 2006-03-17 2007-09-27 Jatco Ltd Surface defect inspection device
JP2013536436A (en) * 2010-08-24 2013-09-19 ケーエルエー−テンカー コーポレイション Defect inspection and photoluminescence measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147513A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Foreign matter analyzer
JPH03102248A (en) * 1989-09-18 1991-04-26 Hitachi Ltd Method and apparatus for detecting foreign matter
JP2007248383A (en) * 2006-03-17 2007-09-27 Jatco Ltd Surface defect inspection device
JP2013536436A (en) * 2010-08-24 2013-09-19 ケーエルエー−テンカー コーポレイション Defect inspection and photoluminescence measurement system
US9163987B2 (en) 2010-08-24 2015-10-20 Kla-Tencor Corporation Defect inspection and photoluminescence measurement system

Similar Documents

Publication Publication Date Title
KR100882306B1 (en) Optical pickup device and recording/reproducing device
JPH036460B2 (en)
JPS6367549A (en) Defect inspecting and film thickness measuring instrument for resist original disk
US5719840A (en) Optical sensor with an elliptical illumination spot
JP2007279475A (en) Hologram recording device and hologram recording method
JPS61228332A (en) Apparatus for optical inspection of flaw
JPS6250774B2 (en)
JPS61191946A (en) Optical defect inspector
JPH0240541A (en) Surface checking apparatus
JPH0449060B2 (en)
JPS5897008A (en) Positioning method for semiconductor laser and collimator lens
JPH0883441A (en) Optical master disk exposure device
JPH0725682Y2 (en) Disk inspection device
JPS599546A (en) Defect detector for information recording body
JPS58147824A (en) Inspecting device of disk
JPH02193347A (en) Optical head structure for magneto-optical recorder
JP2733072B2 (en) Separable optical pickup
JP2528445B2 (en) Optical pickup device
JPH0954952A (en) Optical pickup device and optical disk inspection device
JPS63146253A (en) Checking device for optical recording medium
JP2000076713A (en) Inspection method for substrate of optical disk master disk, recording method and device for optical disk master disk
JPS63153454A (en) Flaw inspection device for optical disk transparent disk
JPH0575263B2 (en)
JPH0451239A (en) Method for detecting foreign matter on pellicle
JPS6381249A (en) Optical disk inspection device